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Abstract. We want to show the lineability of space of quasi-everywhere
surjective functions, i.e. we want to show that the space contains a vec-
tor space with infinite dimension.
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1. Introduction

This paper is a contribution to the very new area of research in math-
ematical analysis, that is to search for large algebraic structures (linear
spaces or algebras) in space of functions that are enjoying a special prop-
erty. It has become a usual notation to call a subset M of a topological
vector space X, µ-lineable (respectively, µ-spaceable) if M∪{0} contains
a linear vector space (respectively, closed vector space) of dimension µ.
If M contains an infinite-dimensional (closed) vector space, then M

will be shortly called lineable (spaceable). Lineability, spaceability and
algebrability are called pathological properties. These properties was
introduced by Gurariy in early 2000’s and were studied in [4] for the
first time.
The origin of lineability and spaceability is due to Gurariy ([18], [19])
that showed that there exists an infinite dimensional linear space such
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that every non-zero element of which is a continuous nowhere differen-
tiable function on C[0; 1]. Many examples of vector spaces of functions
on R or C enjoying certain special properties have been constructed in
the recent years. More recently, many authors got interested in this sub-
ject and gave a wide range of examples. For instance, in [4] it was shown
that the set of everywhere surjective functions in R is 2c-lineable (where
c denotes the cardinality of R) and that the set of differentiable functions
on R which are nowhere monotone, i. e. there is no non-trivial interval
on which the function is monotone, is lineable in C(R). These behav-
iors occur, sometimes, in particularly interesting ways. For example,
in [20], Hencl showed that any separable Banach space is isometrically
isomorphic to a subspace of C[0; 1] whose non-zero elements are nowhere
approximately differentiable and nowhere Holder, i. e., there is no set
with non-empty interior on which the following equation is hold

|f(x)− f(y)| 6 c|x− y|α,

where x, y ∈ [0, 1] and c, α are positive real numbers. We refer the
interested reader to [2, 3, 7-14, 16, 17] for a wider range of results in
this topic of lineability and spaceability.
Of course, one could go further and not just consider linear spaces but,
instead, larger or more complex structures. For instance, in [1] the au-
thors showed that there exists an uncountably generated algebra every
non-zero element of which is an everywhere surjective function on C and
in [5] it was shown that, if E ⊂ T, the unit circle, is a set of measure zero,
and if F(T) denotes the subset of C(T) of continuous functions whose
Fourier series expansion diverges at every point of E, then F(T) contains
an infinitely generated and dense subalgebra. One of the newest result
in this area ([8]) proves the existence of uncountably generated algebras
inside the following sets of special functions: Sierpinski-Zygmund func-
tions, perfectly everywhere surjective functions, and nowhere continuous
Darboux functions. That a space contains an infinitely generated alge-
bra is called algebrability. It is clear that algebrability implies lineability
but studying the algebrability of a space is sometimes far harder than
lineability.
The notation of everywhere surjective functions that was mentioned ear-
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lier was first introduced by Lebesgue ([21]) in 1904 by showing the exis-
tence of a function f : R → R with the property that

f((a, b)) = R,

for every non-trivial interval (a, b). Space of everywhere surjective func-
tions on R will be denoted by ES in this paper. These sort of func-
tions was not taken in to account until recently that Aron and Seoane-
Sepulveda [6] has investigated the algebraic structure contained in the
space of these functions. This trend of research was continued in [15]
that they defined perfectly everywhere surjective and strongly every-
where surjective functions and showed some pathological properties of
space of such functions.
Our main concept in this paper is to expand the theory of everywhere
surjective functions by defining quasi-everywhere surjective functions
and investigating the pathological properties of those spaces.

2. Quasi-Everywhere Surjective Functions

This section is devoted to defining quasi-everywhere surjective functions
and studying their pathological properties.

Definition 2.1. Let X and Y be two topological vector spaces. A func-
tion f : X → Y is called quasi-everywhere surjective if f(U) is dense
in Y for every open subset U of X. We will show the collection of all
quasi-everywhere surjective functions by QES(X,Y ) and if X = Y , it
will be shown by QES(X). We use the notation QES, in a spacial case
that X = Y = R.
Here we provide the reader with an example of a quasi-everywhere surjec-
tive function that is not everywhere surjective. The idea of the following
example is partially inspired from [6, 15]. By a Cantor like set in the
next example we mean a subset of R that is isomorphic to the ternary
Cantor set. These sets are obviously nowhere dense and have cardinal-
ity c.

Example 2.2. A function f : R → R that is quasi-everywhere surjective
but not everywhere surjective.
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To construct this function let {In} be the sequence of all open intervals in
R with rational end points. We create a collection of mutually disjoint
uncountable nowhere dense sets by induction. Let C1 be Cantor like
subset of I1. Since C1 is nowhere dense we can take C2 in I2 \ C1 to be
a Cantor like set. Now we can continue this way to choose Cn to be a
Cantor like subset of In \ {C1 ∪ C2 ∪ . . . ∪ Cn−1}.
Now take hn to be any bijection between Cn and R \

⋃
Cn and define

f : R → R by

f(x) =
{
hn(x) if x ∈ Cn,
0 otherwise.

It is clear that for any open subset U ⊂ R, f(U) is equal to R \
⋃
Cn

which is dense in R by Bair’s Theorem.

Remark 2.3. We have used the fact that if X is a nowhere dense subset
of R then its complement is uncountable. This can be easily proved by
Bair’s theorem as well.
The following lemmas help us creating an infinite dimensional vector
space contained in the space of all quasi-everywhere surjective functions
that are not everywhere surjective.

Lemma 2.4. If f : X → Y is a quasi-everywhere surjective function
and g : Y → Z is a continuous surjective function, then g ◦ f is quasi-
everywhere surjective.

Proof. Let U be an open subset of X. By quasi-everywhere surjec-
tiveness of f , f(U) = Y . Since g is surjective, we have g(f(U)) = Z.
But continuity of g implies that g(f(U)) ⊆ g(f(U)). This completes the
proof. �

Lemma 2.5. There exists a vector space Λ of functions R → R with
the following properties.
(i) Every non-zero element of Λ takes dense sets of R to dense subsets.
(ii) dim(Λ)= ℵ◦.

Proof. Let Λ be the span of {xn : n ∈ N, n is odd}. It is clear that
each element of Λ is an odd order polynomial. Every such polynomial
is surjective and continuous. Take p ∈ Λ, since p(Ū) ⊂ ¯p(U), p takes
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dense subsets of R to dense subsets and (i) holds. That dim(Λ)= ℵ◦ is
clear. �

Theorem 2.6. Space of all quasi-everywhere surjective functions on
R that are not everywhere surjective is lineable, i.e., (QES \ ES)

⋃
{0}

contains an infinite dimensional vector space.

Proof. Let f be the function that was presented in the Example 2.2
and Λ be the vector space in the Lemma 2.5. Since every polynomial
p in Λ is a continuous surjective function on R, by Lemma 2.4, p ◦ f
is a quasi-everywhere surjective function on R. On the other hand,
Ran(f) = R \

⋃
Cn. It shows that Ran(f) doesn’t contain any open

subset of R since each open subset contains Cn for some n. Now if
p ∈ Λ, p is injective on an interval [r,∞] for some large r, so p ◦ f is not
everywhere surjective. This completes the proof. �

Remark 2.7. We can improve earlier result and show the c-lineability
of QES \ ES by taking Λ = Span{tan(αx);α ∈ [0, 1]} with the same
proofs. This shows that QES \ ES ia actually c-lineable. The thing that
can be studied is to find the largest cardinal number µ that QES\ES is µ-
lineable. Another trend of research in this area is to study the spaceability
and algebrability of this space.
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