Journal of Mathematical Extension Vol. 7, No. 3, (2013), 15-27

Essential Submodules with respect to an Arbitrary Submodule

S. Safaeeyan*

Yasouj university

N. Saboori Shirazi

Yasouj university

Abstract. The concept of *essential submodules* is a well known concept. In this paper we try to replace an arbitrary submodule of M, say T, instead of 0 in the definition of essential submodules. By this, essential submodules are precisely $\{0\}$ -essential submodules. For a submodule K of right R-module M, we have $K \subseteq_{ess} M$ if and only if (K:m) is $\operatorname{ann}_{r}(m)$ -essential right ideal of R, for each $m \in M \setminus \{0\}$. Among other things, this generalization of essential submodules gives a necessary and sufficient condition for $\frac{M}{T}$ being finitely co-generated.

AMS Subject Classification: 16D10; 16D60

Keywords and Phrases: Essential submodules, s-essential submodules, socle of a module

1. Introduction

Throughout this article, all rings are associative with identity and all modules are unitary right modules. We know that the submodule K of right R-module M is called essential, denoted by $K \subseteq_{\text{ess}} M$, provided that for each submodule L of M, $K \cap L = 0$ implies that L = 0. The right R-module M is called *uniform* provided that every non-zero submodule of M is an essential submodule. If K is a submodule of right R-module M, then by Zorn's Lemma, $S = \{L \mid L \leq M \text{ and } K \cap L = 0\}$

Received: April 2013; Accepted: July 2013

^{*}Corresponding author

has a maximal element which is called the complement of K in M and is denoted by K^c . For each $m \in M$, $(K : m) = \{r \in R | mr \in K\}$. In Section 2, first, the essentiality with respect to a submodule is defined and is shown, this concept is different from the concept of essentiality (Example 2.9). After that, for a submodule T of right R-module M, the relationship between essential submodules of M with respect to T and essential right ideals of R with respect to (T : m), for each $m \in M \setminus \{0\}$, will be investigated (Theorem 2.7). Moreover, it will be answered, for a submodule K of M, when is K^c the largest submodule of M which has zero intersection with K?

In Section 3, for a submodule T of right R-moduleM, the intersection of all submodules of M which containing T and also are essential with respect to T will be investigated. All unexplained terminologies and basic results on modules that are used in the sequel can be found in [3], [4] and [5].

2. {}-essential submodules

The reader is reminded that a submodule K of right R-module M is essential provided that K has non-zero intersection to every non-zero submodule.

Definition 2.1. Let R be a ring and T be a proper submodule of right R-module M. The submodule K of M is called T-essential provided that $K \nsubseteq T$ and for each submodule L of M, $K \cap L \subseteq T$ implies that $L \subseteq T$. In this case K is denoted by $K \trianglelefteq_T M$.

Proposition 2.2. For each $m, n \in \mathbb{Z}$, $m\mathbb{Z} \leq_{n\mathbb{Z}} m\mathbb{Z} + n\mathbb{Z}$.

Proof. Put (n,m) = d, [n,m] = l. Assume that $k\mathbb{Z} \subseteq m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$ such that $m\mathbb{Z} \bigcap k\mathbb{Z} \subseteq n\mathbb{Z}$. Put (k,m) = g, [k,m] = e. It is clear that nm = dl and km = ge. Since both d|k and d|m, then d|(k,m) = g. On the other hand, since n|e and m|e, then l = [n,m]|e. Therefore d|g and l|e imply that dl|ge. Thus nm|km and hence n|k which implies that $k\mathbb{Z} \subseteq n\mathbb{Z}$. \Box

At first glance, it seems that for submodules K and $T \neq M$ of M, $K \leq_T M$ if and only if $\frac{K+T}{T} \subseteq_{\text{ess}} M$. But it is not true, generally. For this, we need some assertions.

Lemma 2.3. Let $T \subseteq K \subseteq M$ be submodules of right *R*-module M. Then $K \trianglelefteq TM$ if and only if $\frac{k}{T} \subseteq_{\text{ess}} \frac{M}{T}$.

Proof. The verification is immediate. \Box

Proposition 2.4. Let K and T be submodules of right R-module M. Then $\leq TM$ implies that $\frac{K+T}{T} \subseteq_{\text{ess}} \frac{M}{T}$.

Proof. Let $\frac{A}{T}$ be a non-zero submodule of $\frac{M}{T}$ such that $\frac{A}{T} \cap \frac{K+T}{T} = 0$. Therefore $K \cap A \subseteq T$ and hence the *T*-essentiality of *K* in *M* implies that $A \subseteq T$, as desired. \Box

Definition 2.5. Let K be a submodule and T be a proper submodule of right R-module M. A submodule K' of M is called T-complement to K if K' is maximal with respect to the property that $K \cap K' \subseteq T$.

Proposition 2.6. Let C and S be submodules of right R-module M and $T = C \bigcap S$. Then C is T-complement to S if and only if $\frac{S+C}{C} \subseteq_{\text{ess}} \frac{M}{C}$.

Proof. Let $\frac{S+C}{C} \subseteq_{\text{ess}} \frac{M}{C}$ and D be a submodule of M such that $C \subseteq D$ and $D \cap S \subseteq T$. It is clear that $\frac{D}{C} \cap \frac{(S+C)}{c} = 0_{\frac{M}{C}}$ because d+C = s+C, for $d \in D$ and $s \in S$, implies that $s \in D \cap S \subseteq T = C \cap S \subseteq C$. The essentiality $\frac{S+C}{C}$ in $\frac{M}{C}$ implies that C = D. Conversely, assume that D is a submodule of M containing C such that $\frac{D}{C} \cap \frac{S+C}{C} = 0$. If $x \in D \cap S$, then $x + C \in \frac{D}{C} \cap \frac{S+C}{C}$ and hence x + C = C. Therefore $D \cap S \subseteq C \cap S = T$. By assumption, D = C. \Box

By the above definition, it is easy to see that K is an essential submodule of right R-module M if and only if $K \leq_{\{0\}} M$. It is well known that if $K \subseteq_{\text{ess}} M$, then $(K:m) \subseteq_{\text{ess}} R$, for each $m \in M$. But the converse is not true. For an example $K = \{\overline{0}, \overline{2}, \overline{4}\}$ is not essential in \mathbb{Z}_6 as a \mathbb{Z} -module but for each $\overline{x} \in \mathbb{Z}_6$, $(K:\overline{x}) \subseteq_{\text{ess}} \mathbb{Z}$ because \mathbb{Z} is uniform. Now consider the following theorem. **Theorem 2.7.** Let M be an R-module and K, T be submodules of M. The following assertions are equivalent

- 1. $K\Delta_T M$;
- 2. For each $m \in M \setminus T$, there exists $r \in R$ such that $mr \in K \setminus T$.
- 3. $(K:m) \trianglelefteq_{(T:m)} R$, for each $m \in M \setminus T$.

Proof. $1 \Rightarrow 2$ Let $m \in M \setminus T$. Since $K\Delta_T M$, then $K \bigcap mR \not\subseteq T$. Hence there exists $r \in R$ such that $mr \in K \setminus T$.

 $2\Rightarrow 1$ By hypotheses, $K \not\subseteq T$. Assume that L is a submodule of M such that $K \bigcap L \subseteq T$. If $L \not\subseteq T$, there exists $a \in L \setminus T$. By assumption, there is an $r \in R$ such that $ar \in K \setminus T$. On the other hand $ar \in K \cap L \subseteq T$, a contradiction.

1⇒3 Assume that $K\Delta_T M$ and $m \in M \setminus T$. By 2, there exists $r \in R$ such that $mr \in K \setminus T$ or equivalently $(K:m) \not\subseteq (T:m)$. Suppose that I is a right ideal of R such that $(K:m) \cap I \subseteq (T:m)$. It is clear that $K \cap mI \subseteq T$ and hence $mI \subseteq T$ because $K\Delta_T M$. Now, $mI \subseteq T$ implies that $I \subseteq (T:m)$, as desired.

 $3 \Rightarrow 1$ Suppose that L is a submodule of M such that $K \bigcap L \subseteq T$. If $L \not\subseteq T$, there exists $x \in L \setminus T$. By hypotheses, there exists $r \in R$ such that $xr \in K \setminus T$. It is a contradiction because $xr \in K \bigcap L \subseteq T$. \Box

Proposition 2.8. Let $\{N_i\}_{i\in I}$, $\{M_i\}_{i\in I}$ and T be submodules of right R-module M such that $N_i \leq_T M_i$ for every $i \in I$. Then $\bigoplus_{i\in I} N_i \leq_{\bigoplus_{i\in I} T} \bigoplus M_i$.

Proof. By Theorem 2.7, assume that $\{m_i\}_{i \in I} \in \bigoplus M_i \setminus \bigoplus T$. Since $N_i \leq_T M_i$ for every $i \in I$, there exists an $r \in R$ such that $\{m_i r\} \in \bigoplus N_i \setminus \bigoplus T$, as desired. \Box

The following example shows that the converse of Proposition 2.4, is not true, generally.

Example 2.9. It is easy to check that $\frac{6\mathbb{Z}+12\mathbb{Z}}{12\mathbb{Z}} = \frac{6\mathbb{Z}}{12\mathbb{Z}}$ is an essential \mathbb{Z} -submodule of $\frac{\mathbb{Z}}{12\mathbb{Z}}$, but $6\mathbb{Z}$ is not 12 \mathbb{Z} -essential \mathbb{Z} -submodule of \mathbb{Z} . To the

contrary, assume that $6\mathbb{Z} \leq_{12\mathbb{Z}} \mathbb{Z}$. By Theorem 2.7, for $8 \in \mathbb{Z} \setminus 12\mathbb{Z}$ there exists an $n \in \mathbb{Z}$ such that $8n \in 6\mathbb{Z}$. Therefore 3|n and hence $8n \in 12\mathbb{Z}$, a contradiction.

Corollary 2.10. Let K be a submodule of right R-module M. Then $N \subseteq_{\text{ess}} M$ if and only if $(K : m) \trianglelefteq_{\text{ann}(m)} R$, for each $m \in M \setminus \{0\}$.

Proof. It is clear that for each $m \in M$, $\operatorname{ann}_{r}(m) = (\{0\} : m)$. By Theorem 2.7, we have $N \subseteq_{\operatorname{ess}} M$ if and only if $N \trianglelefteq_{\{0\}} M$ if and only if $(N:m) \trianglelefteq_{(\{0\}:m)} R$, for each $m \in M$. \Box

Let R be a ring. An element $x \in R$ is said to be *regular* provided that $\operatorname{ann}_{\mathrm{r}}(x) = \operatorname{ann}_{l}(x) = 0$ and the set of all regular elements of R is denoted by \mathcal{C}_{R} . For a right R-module M, put $\operatorname{T}(M) = \{m \in M | \operatorname{ann}_{\mathrm{r}}(m) \bigcap \mathcal{C}_{R} \neq \emptyset\}$. If $\operatorname{T}(M) = 0$, M is called torsion free and if $\operatorname{T}(M) = M$, M is called torsion R-module. See [4, §10, Exercise 19].

Corollary 2.11. Let R be a domain, M be a right R-module and K be a non-zero submodule of M. Then K is an essential submodule of M if and only if $\frac{M}{K}$ is a torsion R-module.

Proof. For each $0 \neq m \in M$, we have $\operatorname{ann}_{\mathbf{r}}(m) = 0$ because $C_R = R \setminus \{0\}$ and

 $\mathcal{T}(M) = \{x \in M | \operatorname{ann}(x) \bigcap (R \setminus \{0\}) \neq \emptyset\} = \{x \in M | \operatorname{ann}_{\mathbf{r}}(x) \neq 0\} = \{0\}.$

By Theorem 2.7, $K \subseteq_{\text{ess}} M$ if and only if $K \leq_{\{0\}} M$ if and only if $(K:m) \not\subseteq (0:m), \forall m \in M \setminus \{0\}$ if and only if $(K:m) \not\subseteq \operatorname{ann}_{\mathbf{r}}(m) = 0, \forall m \in M \setminus \{0\}$ if and only if $\frac{M}{K}$ is a torsion *R*-module. \Box

Proposition 2.12. Let K, L and T be submodules of right R-module. Then

1. If K and L are T-essential submodules of M, then $K \bigcap L$ is T-essential too.

2. Let $K \subseteq L \subseteq M$. Then $K \trianglelefteq_T M$ if and only if $K \trianglelefteq_T L$ and $L \trianglelefteq_T M$.

Proof. The verification is immediate. \Box

Theorem 2.13. Let $T_1 \leq K_1 \leq M_1 \leq M$ and $T_2 \leq K_2 \leq M_2 \leq M$

such that $M_1 \cap M_2 = T_1 \cap T_2$. Then, $K_1 + K_2 \leq_{(T_1+T_2)} M_1 + M_2$ if and only if $K_1 \leq_{T_1} M_1$ and $K_2 \leq_{T_2} M_2$.

Proof. Assume that $K_1 + K_2 \leq_{(T_1+T_2)} M_1 + M_2$ and L_1 is a submodule of M_1 such that $K_1 \cap L_1 \subseteq T_1$. It is clear that $(K_1 + K_2) \cap L_1 \subseteq$ $T_1 + T_2(:)$ If $x \in K_1$, $y \in K_2$ and $z \in L_1$ such that x + y = z, then $x - z = -y \in M_1 \cap M_2 = T_1 \cap T_2$. Hence $y \in T_1 \subseteq K_1$. Therefore $z = x + y \in K_1 \cap L_1 \subseteq T_1$. In the other hand $x - z \in T_1$ implies that $x \in T_1$. Thus $x + y \in T_1 + T_2$. By hypothesis, $L_1 \subseteq T_1 + T_2$. It implies that $L_1 \subseteq T_1$. Similarly, we can show that $K_2 \leq_{T_2} M_2$. Conversely, suppose that $x + y \in M_1 + M_2 \setminus T_1 + T_2$, where $x \in M_1$ and $y \in M_2$. Either $x \notin T_1$ or $y \notin T_2$. Assume that $x \in M_1 \setminus T_1$. There exists $r \in R$ such that $xr \in K_1 \setminus T_1$. If $yr \in K_2$, then the proof is completed(:: $(x+y)r \in K_1+K_2 \setminus T_1+T_2)$. If $yr \in M_2 \setminus K_2 \subseteq M_2 \setminus T_2$, then there exists $s \in R$ such that $yrs \in K_2 \setminus T_2$. Hence $(x+y)rs \in K_1 + K_2 \setminus T_1 + T_2$. \Box

Theorem 2.14. Let M and N be R-modules, $T \leq N$ and $f \in \text{Hom}_R(M, N)$ such that $\text{Im} f \not\subseteq T$. Then $\text{Im} f \trianglelefteq_T N$ if and only if, for each homomorphism h, if ker $h \cap \text{Im} f \subseteq T$, then ker $h \subseteq T$.

Proof. The "only if" part is clear. Conversely, let K be a submodule of N such that $\operatorname{Im} f \bigcap K \subseteq T$. Define the map $h : (\operatorname{Im} f + K) \longrightarrow \frac{M}{f^{-1}(T)}$, with $h(f(m) + k) = m + f^{-1}(T)$, for each $m \in M$ and $k \in K$. It is clear that h is an R-homomorphism such that $\ker h \bigcap \operatorname{Im} f \subseteq T$. By hypotheses, $K \subseteq \ker h \subseteq T$. \Box

Lemma 2.15. Let M and N be right R-modules, T and K be submodules of N and $f \in \operatorname{Hom}_R(M, N)$. If $\leq_T N$, then $f^{-1}(K) \leq_{f^{-1}(T)} M$.

Proof. Assume that L be a submodule of M such that $f^{-1}(K) \cap L \subseteq f^{-1}(T)$. It is clear that $K \cap f(L) \subseteq T$ and hence $f(L) \subseteq T$. Thus $L \subseteq f^{-1}(T)$, as desired. \Box

Corollary 2.16. Let M and N be right R-modules, K be a submodule of N and $f \in \operatorname{Hom}_R(M, N)$. If $K \subseteq_{\operatorname{ess}} N$, then $f^{-1}(K) \trianglelefteq_{\ker f} M$. Moreover, if f is an epimorphism, then $K \subseteq_{\operatorname{ess}} N$ if and only if $f^{-1}(K) \trianglelefteq_{\ker f} M$.

Proof. The first part is immediate consequence of Lemma 2.15, because $f^{-1}(0) = \ker f$. Now suppose that L be a submodule of N such that $K \bigcap L = 0$. It is obvious that $f^{-1}(K) \bigcap f^{-1}(L) \subseteq \ker f$. Thus $f^{-1}(L) \subseteq \ker f$ since $f^{-1}(K) \trianglelefteq_{\ker f} M$. If $y \in L$, there exists $x \in M$ such that y = f(x). Therefore $x \in f^{-1}(L) \subseteq \ker f$ and hence y = f(x) = 0. \Box

Lemma 2.17. Let K and T be submodules of right R-module M. If $K \leq_T M$, then $K^c \subseteq T$. Moreover, if $K \leq_T M$ and $K \cap T = 0$, then $K^c = T$.

Proof. The verification is immediate. \Box

The following proposition shows that when the complement of the submodule K of a right R-module M, is the largest submodule which has zero intersection with K.

Proposition 2.18. Let K be a submodule of right R-module M. The following assertions are equivalent.

- 1. K is K^c -essential in M;
- 2. For each submodule N of M, $K \cap N = 0$ implies that $N \subseteq K^c$;
- 3. For each $x \in M \setminus K^c$ there exists $r \in R$ such that $0 \neq xr \in K$.

Proof. $1 \Rightarrow 2$ It is clear by definition.

 $1\Rightarrow 3$ By Theorem 2.7, For each $x \in M \setminus K^c$ there exists $r \in R$ such that $xr \in K \setminus K^c = K \setminus \{0\}.$

2⇒1 Let N be a submodule of M such that $K \cap N \subseteq K^c$. Then $K \cap N \subseteq K \cap K^c = \{0\}$ and by hypotheses $N \subseteq K^c$. 3⇒1 it is clear by Theorem 2.7. \square

As an application of the Proposition 2.18, we have the following theorem.

Theorem 2.19. Let R be a commutative ring and $M = \bigoplus_{i \in F} M_i$ be an R-module, where M_i 's are non-isomorphic simple submodules of Mand $F = \{1, 2, \dots, n\}$. Then, for each $I \subseteq F$, $\bigoplus_{i \in I} M_i \leq_T M$, where $T = \bigoplus_{j \in F \setminus I} M_j$ **Proof.** Let K be a submodule of M such that $(\bigoplus_{i \in I} M_i) \cap K = 0$. We must show that $K \subseteq T$. By [1, Lemma 9.2], there exists a subset $J \subseteq F$ such that $M = (\bigoplus_{i \in I} M_i) \oplus K \oplus (\bigoplus_{i \in J} M_i)$. Hence

$$\operatorname{ann}(K) = \operatorname{ann}(\oplus_{t \in F \setminus (I \cup J)} M_t) \supseteq \operatorname{ann}(\oplus_{t \in F \setminus I} M_t) = \bigcap_{t \in F \setminus I} \operatorname{ann}(M_t).$$

In the other hand for each disjoint $i, j \in F \setminus I$, $\operatorname{ann}(M_i)$ and $\operatorname{ann}(M_j)$ are coprime and hence

$$\bigcap_{t \in F \setminus I} \operatorname{ann}(M_t) = \prod_{t \in F \setminus I} \operatorname{ann}(M_t),$$

by [2, Proposition 1.10]. Therefore for each $x \in K$, $x = m_1 + m_2 + \cdots + m_r$, where $0 \neq m_i \in M_{j_i}$. Hence

$$\prod_{t \in F \setminus I} \operatorname{ann}(M_t) \subseteq \operatorname{ann}(x) \subseteq \operatorname{ann}(m_i) \ (\forall i),$$

therefore there exists $t_i \in F \setminus I$ such that $\operatorname{ann}(M_{t_i}) \subseteq \operatorname{ann}(m_i) = \operatorname{ann}(M_{j_i})$. By maximality of $\operatorname{ann}(M_t)$'s we have $\operatorname{ann}(M_{t_i}) = \operatorname{ann}(M_{j_i})$. Thus $M_{t_i} \cong M_{j_i}$ and hence $M_{t_i} = M_{j_i}$. Therefore $x \in \bigoplus_{i \in F \setminus I} M_i$, as desired. \Box

3. The {}-Socle

In this section, for a proper submodule T of right R-module M, the intersection of all submodules of M which containing T and simultaneously are T-essential is investigated.

Lemma 3.1. Let K and $T (\neq M)$ be submodules of right R-module M such that $T \subseteq K$. Then there exists a submodule K' of M such that $K + K' \trianglelefteq_T M$ and $\frac{K+K'}{T} = \frac{K}{T} \oplus \frac{K'+T}{T}$.

Proof. Define $S = \{N \mid N \text{ is a submodule of } M \text{ and } N \cap K \subseteq T\}$. By Zorn's Lemma, S has a maximal element, say K'. Assume that L is a submodule of M such that $(K + K') \cap L \subseteq T$. We clime that $K \cap (K' + L) \subseteq T$. For, suppose that $x \in K, y \in K'$, and $z \in L$ such that

x = y + z. Thus $x - y = z \in (K + K') \cap L \subseteq T \subseteq K$. Hence $y = x - z \in K \cap K' \subseteq T$ and hence $x \in T$, as desired. The maximality of K' in S implies that $L \subseteq K'$ and hence $L \subseteq T$. For the second part it is enough to show that $\frac{K}{T} \cap \frac{K'+T}{T} = 0$. Assume that $x \in K$ and $y \in K'$ such that x + T = y + T. Thus $x - y \in T \subseteq K$ and hence $y \in K \cap K' \subseteq T$, as desired. \Box

Definition 3.2. Let K and T be submodules of right R-module M. K is called T-simple submodule of M provided that $\frac{K+T}{T}$ is a simple R-module. Moreover,

$$\operatorname{Soc}_T(M) = \sum \{ K : K \text{ is a } T - simple submodule of } M \}.$$

Lemma 3.3. Let T be a submodule of right R-module M and

$$S_T(M) = \bigcap \{ L : T \subseteq L \text{ and } L \trianglelefteq_T M \}.$$

Then $\frac{S_T(M)}{T}$ is a semisimple right *R*-module.

Proof. Let $\frac{H}{T}$ be a submodule of $\frac{S_T(M)}{T}$. By Lemma 3.1, there exists a submodule H' of M such that $H + H' \leq_T M$. Then $\frac{H}{T} \subseteq \frac{S_T(M)}{T} \subseteq \frac{H+H'}{T} = \frac{H}{T} \oplus \frac{H'+T}{T}$. Then

$$\frac{\mathbf{S}_T(M)}{T} = \frac{\mathbf{S}_T(M)}{T} \bigcap (\frac{H}{T} \oplus \frac{H' + T}{T}) = \frac{H}{T} \oplus (\frac{\mathbf{S}_T(M)}{T} \bigcap \frac{H' + T}{T}). \quad \Box$$

Proposition 3.4. Let T be a submodule of right R-module M. Then

$$\operatorname{Soc}_T(M) = \bigcap \{L : T \subseteq L \text{ and } L \leq_T M \}.$$

Proof. Let S be a T-simple submodule of M and L be a submodule of M containing T such that $L \leq_T M$. Since $\frac{(S \cap L)+T}{T}$ is a submodule of $\frac{S+T}{T}$, then either $(S \cap L) + T = T$ or $(S \cap L) + T = S + T$. But $(S \cap L) + T = T$ and $L \leq_T M$ imply that $S \subseteq T$, a contradiction. Thus $(S \cap L) + T = S + T$. At the other hand $L \cap (T+S) = T + (L \cap S)$ and hence $S + T \subseteq L$. Therefore $S \subseteq L$ and hence $\operatorname{Soc}_T(M) \subseteq \bigcap \{L : T \subseteq L \text{ and } L \leq_T M\} = \operatorname{S}_T(M)$. In the other hand by Lemma 3.3,

$$\frac{\mathbf{S}_T(M)}{T} = \sum_{i \in I} \frac{S_i}{T} = \frac{\sum_{i \in I} S_i}{T},$$

where $\frac{S_i}{T}$'s are simple *R*-modules. Then for each $i \in I$, S_i is a *T*-simple submodule of *M* and hence $S_T(M) \subseteq Soc_T(M)$. \Box

The following theorem gives a necessary and sufficient condition under which $\frac{M}{T}$ is finitely co-generated.

Theorem 3.5. Let T be a submodule of right R-module M. Then $\frac{M}{T}$ is finitely co-generated if and only if $\frac{\operatorname{Soc}_T(M)}{T}$ is finitely co-generated and $\operatorname{Soc}_T(M) \trianglelefteq_T M$.

Proof. Let $\{\frac{L_i}{T}\}_{i\in I}$ be a family of submodules of $\frac{M}{T}$ such that $\bigcap_{i\in I} \frac{L_i}{T} = 0$. Then $\bigcap_{i\in I} \frac{L_i \bigcap \operatorname{Soc}_T(M)}{T} = 0$. since $\frac{\operatorname{Soc}_T(M)}{T}$ is finitely co-generated, then $\bigcap_{i\in I_0} \frac{L_i \bigcap \operatorname{Soc}_T(M)}{T} = 0$, for some finite subset I_0 of I. Therefore $(\bigcap_{i\in I_0} L_i) \cap \operatorname{Soc}_T(M) \subseteq T$. Since $\operatorname{Soc}_T(M) \trianglelefteq_T M$, then $(\bigcap_{i\in I_0} L_i) \subseteq T$ or equivalently $\bigcap_{i\in I_0} \frac{L_i}{T} = 0$. Conversely, assume that K be a submodule of M such that $\operatorname{Soc}_T(M) \cap K \subseteq T$. By Proposition 3.4, we have $(\bigcap_{i\in I} L: T \subseteq L \text{ and } L \trianglelefteq_T M\}) \cap K \subseteq T$. Since $\frac{M}{T}$ is finitely co-generated, then so $(\bigcap_{i=1}^n L_i) \cap K \subseteq T$ for finite number $L_i \in \{L: T \subseteq L \text{ and } L \trianglelefteq_T M\}$. By Proposition 2.12, $\bigcap_{i=1}^n L_i \trianglelefteq_T M$ and hence $K \subseteq T$. \Box

Corollary 3.6. Let T be a submodule of right R-module M. Then $\frac{M}{T}$ is finitely co-generated if and only if $\frac{\operatorname{Soc}_T(M)}{T}$ is finitely generated and $\operatorname{Soc}_T(M) \trianglelefteq_T M$.

Proof. By [1, Corllary 10.16], finitely co-generated semisimple *R*-modules are precisely finitely generated semisimple *R*-modules. Now by Lemma 3.3 and Proposition 3.4, $\frac{\text{Soc}_T(M)}{T}$ is semisimple, hence $\frac{\text{Soc}_T(M)}{T}$ is finitely co-generated if and only if it is finitely generated. \Box

Definition 3.7. Let T be a proper submodule of right R-module M. M is called T-uniform provided that for each submodule K of M, if $K \not\subseteq T$, then $K \leq_T M$.

Lemma 3.8. Let T be a proper submodule of right R-module M. Then M is T-uniform if and only if for each two submodules K and N of M, $K \bigcap N \subseteq T$ implies that either $K \subseteq T$ or $N \subseteq T$.

Proof. Let K and N be two submodules of M such that $K \cap N \subseteq T$ and $K \not\subseteq T$. By hypotheses, $K \trianglelefteq_T M$ and hence $L \subseteq T$. Conversely, assume that K and N are submodules of M such that $K \not\subseteq T$ and $K \cap L \subseteq T$, Then $L \subseteq T$, as desired. \Box

The right R-module M is said to be *uniserial* provided that the lattice of all submodules of M is totally ordered with inclusion.

Proposition 3.9. The right *R*-module *M* is uniserial if and only if for each proper submodule *T*, *M* is *T*-uniform.

Proof. Let *T* be proper submodule of *M*. Assume that *N* and *K* are submodules of *M* such that $K \cap N \subseteq T$. Since *M* is uniserial, either $N \subseteq K$ or $K \subseteq N$. Hence either $K \cap N = K$ or $K \cap N = N$. Conversely, assume that *N* and *K* are submodules of *M* such that $K \not\subseteq N$. Hence $K \not\subseteq (K \cap N)$ and by assumption $K \trianglelefteq_{(K \cap N)} M$. On the other hand $K \cap N \subseteq K \cap N$. Thus $N \subseteq K \cap N$ and hence $N \subseteq K$. \Box

Note that if *R*-module *M* is *T*-uniform, then $\frac{M}{T}$ is a uniform *R*-module but the converse is not true. For instance, assume that $R = \mathbb{Z}_2$ and $M = R \oplus R$ as an *R*-module. We know that $T = \{(x, x) | x \in R\}$ is a maximal submodule of *M*, hence $\frac{M}{T}$ is uniform. But $R \oplus 0 \not\subseteq T$ and $R \oplus 0$ is not *T*-essential submodule of *M* because $(0, 1) \in M \setminus T$ and for each $r \in R$, $(0, 1)r \notin (R \oplus 0) \setminus T$.

Example 3.10. 1. Uniform *R*-modules are precisely 0-uniform *R*-module. 2. If *P* is a prime ideal of a commutative ring *R*, then *R* is a *P*-uniform *R*-module. Moreover, *P* is a prime ideal of *R* if and only if *R* is a *P*-uniform *R*-module. Moreover, *P* is a semi-prime ideal of *R* if and only if $\frac{R}{P}$ is uniform and *P* is a semi-prime ideal of *R*.

Proposition 3.11. For each positive integer number n, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a uniform \mathbb{Z} -module if and only if \mathbb{Z} is an $n\mathbb{Z}$ -uniform \mathbb{Z} -module.

Proof. The "if' part is always true. For the "only if' part, assume that $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a uniform \mathbb{Z} -module. It is clear that there exist a positive integer number k and a prime number p such that $n = p^k$. Suppose that $m \in \mathbb{Z}$ such that $m\mathbb{Z} \not\subseteq n\mathbb{Z}$ (or equivalently $n \not| m$). If $t \in \mathbb{Z} \setminus n\mathbb{Z}$, then there exist integer numbers $0 \leq r, s < k$ and prime numbers $p_1, p_2, \cdots p_a$ such that

$$m = p^{r} p_{1}^{n_{1}} p_{2}^{n_{2}} \dots p_{a}^{n_{a}} and$$
$$t = p^{s} p_{1}^{m_{1}} p_{2}^{m_{2}} \dots p_{a}^{m_{a}}.$$

It is clear that there exists integer number b such that $tb \in m\mathbb{Z} \setminus n\mathbb{Z}$ and by Lemma 2.7, proof is complete. \Box

References

- F. W. Anderson and K. R. Fuller, *Ring and Category of Modules*, Springer-Verlag, 1974.
- [2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [3] T. Y. Lam, A First Course in Noncommutative Rins, Graduate Texts in Mathematics. Vol. 131. New York/Berlin, Springer-Verlag, 1991.
- [4] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics. Vol. 139. New York/Berlin, Springer-Verlag, 1998.
- [5] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Mathematical Society Lecture Note Series 147, 1990.

Saeed Safaeeyan

Department of mathematical Sciences Assistant of Mathematics Yasouj University P.O. Box 75918-74831 Yasouj, Iran E-mail: safaeeyan@mail.yu.ac.ir

Najmeh Saboori Shirazi

Department of mathematical Sciences M.Sc Student of Mathematics Yasouj University P.O. Box 75918-74831 Yasouj, Iran E-mail: saboori@stu.yu.ac.ir