Journal of Mathematical Extension Vol. 14, No. 4, (2020), 91-99 ISSN: 1735-8299 URL: http://www.ijmex.com Original Research Paper

On Pseudo-Amenability of Weighted Semigroup Algebras

K. Oustad

Central Tehran Branch, Islamic Azad University

A. Mahmoodi^{*}

Central Tehran Branch, Islamic Azad University

Abstract. Amenability and pseudo-amenability of $\ell^1(S, \omega)$ is characterized, where S is a left (right) zero semigroup or it is a rectangular band semigroup. The equivalence conditions to amenability of $\ell^1(S, \omega)$ are provided, where S is a band semigroup. The equivalence properties of amenability of $\ell^1(S, \omega)^{**}$ are described, where S is an inverse semigroup. For a locally compact group G, pseudo-amenability of $L^1(G, \omega)$ is also discussed.

AMS Subject Classification: 22D15; 43A10; 43A20; 46H25 **Keywords and Phrases:** Amenability, pseudo-amenability, beurling algebra

1. Introduction

For a Banach algebra \mathfrak{A} the projective tensor product $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$ is a Banach \mathfrak{A} bimodule in a natural manner and the multiplication map $\pi : \mathfrak{A} \widehat{\otimes} \mathfrak{A} \longrightarrow \mathfrak{A}$ defined by $\pi(a \otimes b) = ab$ for $a, b \in \mathfrak{A}$ is a Banach \mathfrak{A} -bimodule homomorphism. Amenability for Banach algebras introduced by B. E. Johnson [8]. Let \mathfrak{A} be a Banach algebra and E be a Banach \mathfrak{A} -bimodule. A continuous linear operator $D : \mathfrak{A} \longrightarrow E$ is a *derivation* if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathfrak{A}$. Given $x \in E$, the *inner* derivation $ad_x : \mathfrak{A} \longrightarrow E$ is defined by

Received: September 2018; Accepted: June 2019

^{*}Corresponding author

 $ad_x(a) = a \cdot x - x \cdot a$. A Banach algebra \mathfrak{A} is *amenable* if for every Banach \mathfrak{A} -bimodule E, every derivation from \mathfrak{A} into E^* , the dual of E, is inner.

An approximate diagonal for a Banach algebra \mathfrak{A} is a net $(m_i)_i$ in $\mathfrak{A} \otimes \mathfrak{A}$ such that $a \, . \, m_i - m_i \, . \, a \longrightarrow 0$ and $a\pi(m_i) \longrightarrow a$, for each $a \in \mathfrak{A}$. The concept of pseudo-amenability introduced by F. Ghahramani and Y. Zhang in [4]. A Banach algebra \mathfrak{A} is *pseudo-amenable* if it has an approximate diagonal. It is well-known that amenability of \mathfrak{A} is equivalent to the existence of a *bounded* approximate diagonal. One may see [9, 10, 11] for more details and related notions.

The notions of biprojectivity and biflatness of Banach algebras introduced by Helemskii in [6]. A Banach algebra \mathfrak{A} is *biprojective* if there is a bounded \mathfrak{A} -bimodule homomorphism $\rho : \mathfrak{A} \longrightarrow \mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that $\pi o \rho = I_{\mathfrak{A}}$, where $I_{\mathfrak{A}}$ is the identity map on \mathfrak{A} . We say that \mathfrak{A} is *biflat* if there is a bounded \mathfrak{A} bimodule homomorphism $\rho : \mathfrak{A} \longrightarrow (\mathfrak{A} \widehat{\otimes} \mathfrak{A})^{**}$ such that $\pi^{**}o\rho = k_{\mathfrak{A}}$, where $k_{\mathfrak{A}} : \mathfrak{A} \longrightarrow \mathfrak{A}^{**}$ is the natural embedding of \mathfrak{A} into its second dual.

Let S be a semigroup. A continuous function $\omega : S \longrightarrow (0, \infty)$ is a *weight* on S if $\omega(st) \leq \omega(s)\omega(t)$, for all $s, t \in S$. Then it is standard that

$$\ell^1(S,\omega) = \left\{ f = \sum_{s \in S} f(s)\delta_s : \|f\|_\omega = \sum_{s \in S} |f(s)|\omega(s)| < \infty \right\}$$

is a Banach algebra with the convolution product $\delta_s * \delta_t = \delta_{st}$. These algebras are called *Beurling algebras*.

In this note, we study the earlier mentioned properties of Banach algebras for Beurling algebras. Firstly in Section 2, we characterize amenability and pseudo-amenability of $\ell^1(S, \omega)$, for some certain class of semigroups. We prove that pseudo-amenability of $\ell^1(S, \omega)$, for a left or right zero semigroup S, is equivalent to it's amenability and these equivalent conditions imply that S is singleton. We show that the same result holds for $\ell^1(S, \omega)$, whenever S is a rectangular band semigroup and ω is separable. Further, we investigate biprojectivity of $\ell^1(S, \omega)$ whenever S is either left (right) zero semigroup or a rectangular band semigroup. For a band semigroup S, we show that amenability of $\ell^1(S, \omega)$ is equivalent to that of $\ell^1(S)$ and these are equivalent to S being a finite semilattice. We find necessary and sufficient conditions for $\ell^1(S, \omega)^{**}$ to be amenable, where S is an inverse semigroup.

Finally in Section 3, we investigate pseudo-amenability of $L^1(G, \omega)$ where G is a locally compact group and ω is a weight on G. We prove that pseudo-amenability of $L^1(G, \omega)$ implies amenability of G, and under a certain condition it implies diagonally boundedness of ω . Next, if $L^1(G, \omega)$ is pseudo-amenable we may obtain a character φ on G for which $\varphi \leq \omega$.

2. Amenability and Pseudo-Amenability of $\ell^1(S,\omega)$

A semigroup S is a left zero semigroup if st = s, and it is a right zero semigroup if st = t for each $s, t \in S$. Then for $f, g \in \ell^1(S, \omega)$, it is obvious that $f * g = \varphi_S(f)g$ if S is a right zero semigroup, and $f * g = \varphi_S(g)f$ if S is a left zero semigroup, where φ_S is the augmentation character on $\ell^1(S, \omega)$.

We extend the results for $\ell^1(S)$ in [1, 2] to the weighted case $\ell^1(S, \omega)$.

Proposition 2.1. Suppose that S is a right (left) zero semigroup and ω be a weight on S. Then $\ell^1(S, \omega)$ is biprojective.

Proof. We only give the proof in the case S is a right zero semigroup. Define $\rho : \ell^1(S, \omega) \longrightarrow \ell^1(S, \omega) \widehat{\otimes} \ell^1(S, \omega)$ by $\rho(f) = \delta_{t_0} \otimes f$, where t_0 is an arbitrary element S. Then for each $f, g \in \ell^1(S, \omega)$ we have

$$\begin{split} \rho(f*g) &= \delta_{t_{\circ}} \otimes (f*g) = \varphi_{S}(f)(\delta_{t_{\circ}} \otimes g) = (f*\delta_{t_{0}}) \otimes g = f \ . \ (\delta_{t_{0}} \otimes g) = f \ . \ \rho(g) \\ \text{and similarly} \ \rho(f*g) &= \rho(f) \ . \ g. \ \text{Further,} \ \pi\rho \text{ is the identity map on } \ell^{1}(S,\omega), \\ \text{as required.} \quad \Box \end{split}$$

Remark 2.2. It is known that every biprojective Banach algebra is biflat. Hence Proposition 2.1 shows that for every right or left zero semigroup S, $\ell^1(S, \omega)$ is biflat.

Given two semigroups S_1 and S_2 , we say that a weight ω on $S := S_1 \times S_2$ is separable if there exist two weights ω_1 and ω_2 on S_1 and S_2 , respectively such that $\omega = \omega_1 \otimes \omega_2$. It is easy to verify that $\ell^1(S, \omega) \cong \ell^1(S_1, \omega_1) \widehat{\otimes} \ell^1(S_2, \omega_2)$.

Let S be a semigroup and let $E(S) = \{p \in S : p^2 = p\}$. We say that S is a band semigroup if S = E(S). A band semigroup S satisfying sts = s, for each $s, t \in S$ is called a *rectangular band semigroup*. For a rectangular band semigroup S, it is known that $S \simeq L \times R$, where L and R are left and right zero semigroups, respectively [7, Theorem 1.1.3].

Proposition 2.3. Let S be a rectangular band semigroup and ω be a separable weight on S. Then $\ell^1(S, \omega)$ is biprojective, and so it is biflat.

Proof. In view of earlier argument, it follows From Proposition 2.1, and then from [12, Proposition 2.4]. \Box

Theorem 2.4. Let S be a rectangular band semigroup and ω be a weight on S. Then $\ell^1(S, \omega)$ is amenable if and only if S singleton.

Proof. From [13, Theorem 3.6], $\ell^1(S)$ is amenable. Then it is immediate by [1, Theorem 3.3]. \Box

For a semigroup S, we denote by S^{op} the semigroup whose underlying space is S but whose multiplication is the multiplication in S reversed.

Proposition 2.5. Let S be a right (left) zero semigroup and ω be a weight on S. Then $\ell^1(S, \omega)$ is amenable if and only if S is singleton.

Proof. Suppose that S is a left zero semigroup, and that $\ell^1(S, \omega)$ is amenable. Then S^{op} is a right zero semigroup. It is readily seen that $S \times S^{op}$ is a rectangular band semigroup, and $\ell^1(S^{op}, \omega)$ is amenable. Hence $\ell^1(S, \omega) \widehat{\otimes} \ell^1(S^{op}, \omega) \cong \ell^1(S \times S^{op}, \omega \otimes \omega)$ is amenable. Now by Theorem 2.4, S is singleton. \Box

Let \mathfrak{A} be Banach algebra, \mathcal{I} be a *semilattice* (i.e., \mathcal{I} is a commutative band semigroup) and $\{\mathfrak{A}_{\alpha} : \alpha \in \mathcal{I}\}$ be a collection of closed subalgebras of \mathfrak{A} . Then \mathfrak{A} is ℓ^1 -graded of \mathfrak{A}_{α} 's over the semilattice \mathcal{I} , denoted by $\mathfrak{A} = \bigoplus_{\alpha \in \mathcal{I}}^{\ell^1} \mathfrak{A}_{\alpha}$, if it is ℓ^1 -directsum of \mathfrak{A}_{α} 's as Banach space such that $\mathfrak{A}_{\alpha}\mathfrak{A}_{\beta} \subseteq \mathfrak{A}_{\alpha\beta}$, for each $\alpha, \beta \in \mathcal{I}$.

Suppose that S^1 is the unitization of a semigroup S. An equivalence relation τ on S is defined by $s\tau t \iff S^1 s S^1 = S^1 t S^1$, for all $s, t \in S$. If S is a band semigroup, then by [7, Theorem 4.4.1], $S = \bigcup_{\alpha \in \mathcal{I}} S_\alpha$ is a semilattice of rectangular band semigroups, where $\mathcal{I} = \frac{S}{\tau}$ and for each $\alpha = [s] \in \mathcal{I}, S_\alpha = [s]$.

Theorem 2.6. Let S be a band semigroup and ω be a weight on S. Then the following are equivalent:

(i) $\ell^1(S, \omega)$ is amenable.

(ii) S is finite and each τ -class is singleton.

- (iii) $\ell^1(S)$ is amenable.
- (iv) S is a finite semilattice.

Proof. The implications (ii) to (iv) are equivalent [1, Theorem 3.5]. We establish $(i) \longrightarrow (ii)$ and $(iv) \longrightarrow (i)$.

 $(i) \longrightarrow (ii)$ If $\ell^1(S, \omega)$ is amenable, then E(S) = S is finite and so $\mathcal{I} = \frac{S}{\tau}$ is a finite semilattice. Hence $\ell^1(S, \omega) \cong \bigoplus_{\alpha \in \mathcal{I}}^{\ell^1} \ell^1(S_\alpha, \omega_\alpha)$, where $\omega_\alpha = \omega|_{S_\alpha}$. Then by [5, Proposition 3.1], each $\ell^1(S_\alpha, \omega_\alpha)$ is amenable. Now by Theorem 2.4, S_α is singleton for each $\alpha \in \mathcal{I}$, as required.

 $(iv) \longrightarrow (i)$ In this case $\ell^1(S, \omega) \cong \ell^1(S)$, and $\ell^1(S)$ is amenable. \Box

Theorem 2.7. Let S be a rectangular band semigroup, and let ω be a separable weight on S. Then $\ell^1(S, \omega)$ is pseudo-amenable if and only if S is singleton.

Proof. There is a left zero semigroup L and a right zero semigroup R, and there are weights ω_L and ω_R on L and R, respectively such that $S \cong L \times R$ and $\omega = \omega_L \otimes \omega_R$. We have $\ell^1(S, \omega) \cong \ell^1(L, \omega_L) \widehat{\otimes} \ell^1(R, \omega_R)$. Hence the map $\theta : \ell^1(S, \omega) \longrightarrow \ell^1(L, \omega_L)$ defined by $\theta(f \otimes g) = \varphi_R(g) f$ for $f \in \ell^1(L, \omega_L)$ and $g \in \ell^1(R, \omega_R)$, is an epimorphism of Banach algebras, whereas φ_R is the *aug*- mentation character on $\ell^1(R, \omega_R)$. Whence $\ell^1(L, \omega_L)$ has left and right approximate identity. Therefore L is singleton, because it is left zero semigroup. Similarly R is singleton, so is S. \Box

Corollary 2.8. Let S be a right (left) zero semigroup and ω be a weight on S. Then the following are equivalent:

(i) $\ell^1(S, \omega)$ is pseudo-amenable.

(ii) S is singleton.

(iii) $\ell^1(S,\omega)$ is amenable.

Proof. The implication $(ii) \leftrightarrow (iii)$ is Proposition 2.5. For $(i) \rightarrow (ii)$, we apply Theorem 2.7 for the rectangular band semigroup $S \times S^{op}$ with $\omega_L = \omega_R = \omega$. \Box

The following is a combination of Theorems 2.4 and 2.7. Notice that in Theorem 2.4, we need not ω to be separable.

Corollary 2.9. Let S be a rectangular band semigroup, and let ω be a separable weight on S. Then the following are equivalent:

(i) $\ell^1(S, \omega)$ is pseudo-amenable.

(ii) S is singleton.

(iii) $\ell^1(S,\omega)$ is amenable.

For the left cancellative semigroups we have the following.

Theorem 2.10. Suppose that S is a left cancellative semigroup and ω is a weight on S. If $\ell^1(S, \omega)$ is pseudo-amenable, then S is a group.

Proof. This is a more or less verbatim of the proof of [2, Theorem 3.6 (i) \longrightarrow (ii)]. \Box

Let (P, \leq) is a partially ordered set. Then (P, \leq) is *locally finite* if $(x] = \{y \in S : y \leq x\}$ is finite for every $x \in S$, and it is uniformly locally finite if $\sup\{|(x)| : s \in S\} < \infty$.

We recall that a semigroup S is an *inverse semigroup* if for each $s \in S$ there exists a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. The maximal subgroup of S at $p \in E(S)$ is denoted by G_p . It is known that $G_p = \{s \in S : ss^* = s^*s = p\}$.

Theorem 2.11. Let S be an inverse semigroup, let ω be a weight on S, and let $\ell^1(S, \omega)$ has a bounded approximate identity. Then the following are equivalent:

(i) $\ell^1(S,\omega)^{**}$ is amenable;

(ii) $\ell^1(S)$ is biprojective and S is finite;

(iii) $\ell^1(S,\omega)^{**}$ is biprojective.

Proof. $(i) \to (ii)$ Suppose that $\ell^1(S, \omega)^{**}$ is amenable. Hence $\ell^1(S)$ is amenable and S is finite [13, Theorem 3.7]. Then by [12, Thorem 3.7 (i)], S is uniformly locally finite and for each $p \in E(S)$, G_p is an amenable group. Finiteness of S implies that G_p is finite and then [12, Theorem 3.7 (ii)] shows that $\ell^1(S)$ is biprojective.

 $(ii) \to (iii)$ Since S is finite, $\ell^1(S) \cong \ell^1(S, \omega)$, and $\ell^1(S)$ is finite-dimensional. Therefore $\ell^1(S)^{**} \cong \ell^1(S)$, and so $\ell^1(S, \omega)^{**}$ is biprojective.

 $(iii) \rightarrow (i)$ Biprojectivity of $\ell^1(S, \omega)^{**}$ implies its biflatness. Thus, since $\ell^1(S, \omega)^{**}$ has a bounded approximate identity, $\ell^1(S, \omega)^{**}$ is amenable. \Box

3. Pseudo-Amenability of $L^1(G, \omega)$

Throughout G is a locally compact group and ω is a weight on G. The weight ω is diagonally bounded if $\sup_{g \in G} \omega(g)\omega(g^{-1}) < \infty$. It seems to be a right conjecture that $L^1(G, \omega)$ will fail to be pseudo-amenable whenever ω is not diagonally bounded. Although we are not able to prove (or disprove) the conjecture, we have the following.

Theorem 3.1. Suppose that there exists an approximate diagonal $(m_i)_i$ for $L^1(G, \omega)$ such that $m_i - \delta_g \, . \, m_i \, . \, \delta_{g^{-1}} \longrightarrow 0$ uniformly on G. Then ω is diagonally bounded.

Proof. Notice that our assumption is stronger than pseudo-amenability of $L^1(G, \omega)$. We follow the standard argument in [3, Proposition 8.7]. Choose $f \in L^1(G, \omega)$ such that K := supp f is compact and $\int f \neq 0$. Putting $F := f \cdot \chi_K \in L^{\infty}(G, \omega^{-1})$, we see that $\pi^*(F) \in L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})$ with

$$\pi^*(F)(x,y) = F(xy) = \int \chi_K(xyt)f(t)dt$$

Let $(m_i)_i \subseteq L^1(G \times G, \omega \times \omega)$ be an approximate diagonal for $L^1(G, \omega)$ such that $\delta_g \, . \, m_i \, . \, \delta_{g^{-1}} - m_i \longrightarrow 0$ uniformly on G, and $\pi(m_i)f - f \longrightarrow 0$. Then for each i

$$\langle \pi^*(F), m_i \rangle = \langle F, \pi(m_i) \rangle = \langle \chi_K, \pi(m_i) f \rangle \longrightarrow \langle \chi_K, f \rangle = \int f \; .$$

Consequently

$$\lim_{i} \langle \pi^*(F), m_i \rangle \neq 0 . \quad (1)$$

We define $E := KK^{-1}$, and $A := \{(x, y) \in G \times G : xy \in E\}$. For r > 0, we define $A_r := \{(x, y) \in A : \omega(x)\omega(y) < r\}$, and $B_r := \{(x, y) \in A : \omega(x)\omega(y) < r\}$.

 $A : \omega(x)\omega(y) \ge r$. Obviously, $\pi^*(F)\chi_{A_r}$ and $\pi^*(F)\chi_{B_r}$ both are in $L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})$, and $\pi^*(F) = \pi^*(F)\chi_A = \pi^*(F)\chi_{A_r} + \pi^*(F)\chi_{B_r}$. For every *i*, it is easy to see that

$$|\langle \pi^*(F)\chi_{B_r}, m_i \rangle| \leq ||m_i|| ||F|| r^{-1} c_1$$

where $c_1 := \sup_{t \in E} \omega(t)$. Hence

$$\lim_{r \to \infty} \langle \pi^*(F) \chi_{B_r}, m_i \rangle = 0 .$$
 (2)

Next, for every $g \in G$, r > 0, and i, we obtain

$$|\langle \pi^*(F)\chi_{A_r}, \delta_g . m_i . \delta_{g^{-1}} \rangle| \leq ||m_i|| ||F|| r c_1 c_2^2 1\omega(g)\omega(g^{-1})$$

where $c_2 := \sup_{t \in E^{-1}} \omega(t)$. Therefore

$$\begin{aligned} |\langle \pi^*(F)\chi_{A_r}, m_i \rangle| &\leq |\langle \pi^*(F)\chi_{A_r}, m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}} \rangle| + |\langle \pi^*(F)\chi_{A_r}, \delta_g \cdot m_i \cdot \delta_{g^{-1}} \rangle| \\ &\leq ||\pi^*(F)|| \sup_{\sigma \in \mathcal{O}} ||m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}|| + ||m_i|| ||F|| \ r \ c_1 \ c_2^2 1\omega(g)\omega(g^{-1}) \ . \end{aligned}$$
(3)

Towards a contradiction, we assume that ω is not diagonally bounded. Then there is a sequence $(g_n)_n$ in G such that $\lim_n \omega(g_n)\omega(g_n^{-1}) = \infty$. Whence, it follows from (3) that for each i and r > 0

$$|\langle \pi^*(F)\chi_{A_r}, m_i \rangle| \le ||\pi^*(F)|| \sup_{g \in G} ||m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}|| .$$
 (4)

Hence

$$|\langle \pi^*(F), m_i \rangle| \leq ||\pi^*(F)|| \sup_{g \in G} ||m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}|| + |\langle \pi^*(F)\chi_{B_r}, m_i \rangle|.$$

Putting (2) and (4) together, we may see that

$$\lim_{i} \langle \pi^*(F), m_i \rangle = 0$$

contradicting (1). \Box

Theorem 3.2. Suppose that $L^1(G, \omega)$ is pseudo-amenable, and that ω is bounded away from 0. Then G is amenable.

Proof. Since $L^1(G, \omega)$ is unital, pseudo-amenability and approximate amenability are the same [4, Proposition 3.2]. Now, it is immediate by [3, Proposition 8.1]. \Box

We conclude by the following which is an analogue of [3, Proposition 8.9].

Proposition 3.3. Let $L^1(G, \omega)$ be pseudo-amenable. Then there is a continuous positive character φ on G such that $\varphi \leq \omega$.

Proof. Suppose that $(m_i)_i \subseteq L^1(G \times G, \omega \times \omega)$ be an approximate diagonal for $L^1(G, \omega)$. For each *i* and $f \in L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})^+$ we define

$$\widetilde{m_i}(f) := \sup\{ Re\langle m_i, \psi \rangle : 0 \leqslant |\psi| \leqslant f, \ \psi \in L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1}) \}.$$

Then $\widetilde{m_i} \neq 0$ on $L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})^+$ and we may extend $\widetilde{m_i}$ to a bounded linear functional on $L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})$ in the obvious manner. It is readily seen that $\widetilde{m_i} \neq 0$, and $\langle \widetilde{m_i}, f \rangle \geq 0$, for every $f \in L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})^+$. One may also check that $\delta_{g^{-1}} \cdot \widetilde{m_i} \cdot \delta_g - \widetilde{m_i} \longrightarrow 0$ for every $g \in G$, (not uniformly on G).

Putting
$$\widetilde{\omega}(x) := \sup_{g \in G} \omega(g^{-1}xg), x \in G$$
. Then $\widetilde{\omega} \in L^{\infty}(G, \omega^{-1}), \widetilde{\omega}(xy) = \widetilde{\omega}(yx), \pi^*(\widetilde{\omega}) \in L^{\infty}(G \times G, \omega^{-1} \times \omega^{-1}), \text{ and } \delta_g \cdot \pi^*(\widetilde{\omega}) \cdot \delta_{g^{-1}} = \pi^*(\widetilde{\omega}).$

Take $f \in C_c(G)^+$ with $\int f = 1$, and then $h := f \cdot \chi_K$, where K := supp f. One may see that h is continuous, and there is c > 0 such that $\pi^*(\widetilde{\omega}) \ge c\pi^*(h)$. Hence

$$\begin{split} \lim_{i} \langle \widetilde{m_{i}}, \pi^{*}(\widetilde{\omega}) \rangle &\geq c \lim_{i} \langle \widetilde{m_{i}}, \pi^{*}(h) \rangle \geq c \lim_{i} Re \langle m_{i}, \pi^{*}(h) \rangle = c \lim_{i} Re \langle \pi(m_{i}), h \rangle \\ &= c \lim_{i} Re \langle \pi(m_{i}) . f, \chi_{K} \rangle = c Re \langle f, \chi_{K} \rangle = c > 0 . \end{split}$$

Therefore there is i_0 for which $\langle \widetilde{m}_{i_0}, \pi^*(\widetilde{\omega}) \rangle > 0$. Set $F := \langle \widetilde{m}_{i_0}, \pi^*(\widetilde{\omega}) \rangle^{-1} \pi^*(\widetilde{\omega})$, and for $g \in G$ we put

$$A_g(x,y) := 12 (\log \omega(gx) \omega(gy^{-1}) \omega(x) \omega(y^{-1})) F(x,y) \ , \quad (x,y \in G) \ .$$

Finally, for each $g \in G$, we define $\varphi(g) := \exp(\widetilde{m_{i_0}}, A_g)$. A similar argument used in [3, Proposition 8.9], shows that φ is the desired character on G. \Box

References

- M. Essmaili and A. Medghalchi, Biflatness of certain semigroup algebra, Bull. Iran. Math. Soc., 39 (2013), 959-969.
- [2] M. Essmaili, M. Rostami, and A. R. Medghalchi, Pseudo-contractibility and Pseudo-amenability of semigroup algebras, Arch. Math., 97 (2011), 167-177.
- [3] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability II, J. Funct. Anal., 254 (2008), 1776-1810.

- [5] M. Ghandahari, H. Hatami, and N. Spronk, Amenability constant for semilattice algebras, *Semigroup Forum*, 79 (2) (2009), 279-297.
- [6] A. Ya. Helemskii, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc., 47 (1985), 199-224.
- [7] J. Howie, Fundemental of Semigroup Theory, The Clarendon Press, Oxford University Press, New York 1995.
- [8] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
- [9] S. M. Maepa and O. T. Mewomo, On character amenability of semigroup algebras, Quaest. Math., 39 (3) (2016), 307-318.
- [10] O. T. Mewomo and S. M. Maepa, On character amenability of Beurling and second dual algebras, Acta Univ. Apulensis Math. Inform., 38 (4) (2014), 67-80.
- [11] O. T. Mewomo, Various notions of amenability in Banach algebras, Expo. Math., 29 (2011), 283-299.
- [12] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79 (3) (2009), 515-530.
- [13] M. Soroshmehr, Weighted Ress matrix semigroups and their applications, Arch. Math., 100 (2) (2013), 139-147.

Kobra Oustad

Ph.D Student of Mathematics Department of Mathematics Central Tehran Branch, Islamic Azad University Tehran, Iran E-mail: kob.oustad.sci@iauctb.ac.ir

Amin Mahmoodi

Associate Professor of Mathematics Department of Mathematics Central Tehran Branch, Islamic Azad University Tehran, Iran E-mail: a_mahmoodi@iauctb.ac.ir