Stability of Special Functional Equations on Banach Lattices

H. Behroozizadeh
South Tehran Branch, Islamic Azad University

H. Azadi Kenary*
Yasouj University

Abstract

In this paper, using direct method, we prove the Hyers-Ulam-Rassias stability of the some functional equations on Banach lattices.

AMS Subject Classification: 47H10; 39B72
Keywords and Phrases: Stability, Banach space, mixed type additivequadratic and cubic, functional equation, direct mehtod, lattice

1. Introduction

We say that a functional equation Q is stable if any function g satisfying the equation Q approximately is near to true solution of Q.

In 1940, S. M. Ulam [8], while he was giving a talk before the mathematics club of the University of Wisconsin, he proposed a number of importent unsolved problems. One of the peoblems is the stability of functional equations. In the last five decades the problem was tackled by numerous authors $[3,6]$

[^0]It's solutions via various forms of functional equations like additive, quadratic, Cubic and quartic and its mixed forms were discussed.

Ulam's stability problem states as follows:
Let G be a group and let H be a metric group with metric $d(.,$.$) . Given$ $\varepsilon>0$ dose exists a $\delta>0$ such that if a function $f: G \longrightarrow H$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then there exists a homomorphism $A: G \longrightarrow H$ with $d(f(x), A(x))<\varepsilon$ for all $x \in G$?
In 1941, Hyers [6] gave a first affirmative answer to the question of Ulam for Banach spaces as follows:

Theorem 1.1. [4](Hyers) Let E, E^{\prime} be Banach spaces and let $f: E \longrightarrow$ E^{\prime} be a mapping satisfying:

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \varepsilon \tag{1}
\end{equation*}
$$

for some $\varepsilon>0$ and all $x, y \in E$. Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $A: E \longrightarrow E^{\prime}$ is the unique additive mapping satisfying:

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \varepsilon \tag{2}
\end{equation*}
$$

for all $x \in E$. Moreover, If $f(t x)$ is continuous in t for each fixed $x \in E$, then A is linear.

Proof. See[4].
In 1983 , Skof proved the Hyers-Ulam-Rassias stability problem for quadratic of the following functional equation:

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{3}
\end{equation*}
$$

for a class of functions $f: A \longrightarrow B$ where A is a normed space and B is a Banach space ($[1,7]$).

In 1994, a generalization of the Rassias's theorem was obtained by Gavruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach .

In 2003, Cadariu and Radu applied the fixed point method to the investigation of the Jensen functional equation [3]. They could persent a
short and simple proof(different of the direct method, initiated by Hyers in 1941) for the generalized Hyers-Ulam stability of Jensen functional equation [3], for Cauchy functional equation [2].
In this paper, using direct method we investegat the Hyers-Ulam-Rassias stability of the following equations:
a) $f(x+2 y)-f(x-2 y)=2(f(x+y)-f(x-y))+2 f(3 y)-6 f(2 y)+6 f(y)$,
b) $f(3 x+y)+f(3 x-y)=3(f(x+y)+f(x-y))+48 f(x)$.

Definition 1.2. The additive Cauchy equation $f(x+y)=f(x)+f(y)$ is said to have the Hyers-Ulam stability on $\left(E, E^{\prime}\right)$ if for everyf $: E \rightarrow E^{\prime}$ satisfying the inequality (1) for some $\varepsilon \geqslant 0$ and for all $x, y \in E$, there exists an additive function $A: E \rightarrow E^{\prime}$ such that $f-A$ is bounded on E [4].
An ordered set (M, \leqslant) is called a lattice if any two elements $x, y \in M$ have a least upper bound denoted by $x \vee y=\sup \{x, y\}$ and a greatest lower bound denoted by $x \wedge y=\inf \{x, y\}$.
Similarly, we denoted the supremum and the infimum for arbitrary subsets. if v is the least upper bound of a subset $A \subset M$, then we will write

$$
v=\sup (A)=\bigvee_{x \in A} x=\sup \{x: x \in A\}
$$

If u is the greatest lower bound of A, then we will write

$$
u=\inf (A)=\bigwedge_{x \in A} x=\inf \{x: x \in A\}
$$

Of course, if $\sup (A)$ exists, then A is bounded from above. To using the lattice notation, let $x, y \in \mathbb{R}(\mathbb{R}$ is a Banach lattice $)$ then we have :

$$
\begin{equation*}
x+y=x \vee y+x \wedge y \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x-y=x \vee(-y)+x \wedge(-y) \tag{5}
\end{equation*}
$$

and using Relation (4) and (5) we obtain that:

$$
\begin{equation*}
x=\frac{1}{2}(x \vee y+x \wedge y+x \vee(-y)+x \wedge(-y)), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{1}{2}(x \vee y+x \wedge y+(-x) \vee y+(-x) \wedge y) \tag{7}
\end{equation*}
$$

2. Main Results

In this section, we deal with prove the Hyers-Ulam-Rassias stability of the following a Mixed Type Additive, Quadratic, and Cubic functional equation in Banach lattices.

$$
\begin{array}{r}
f(x+2 y)-f(x-2 y)=2(f(x+y)-f(x-y)) \tag{8}\\
+2 f(3 y)-6 f(2 y)+6 f(y)
\end{array}
$$

By (4), (5), (6), (7), The above Mixed functional equation in the lattices form is the following:

$$
\begin{aligned}
& f\left(\frac{3}{2}(x \vee y+x \wedge y)-\frac{1}{2}(x \vee(-y)+x \wedge(-y))\right) \\
& =2(f(x \vee y+x \wedge y))-f(x \vee(-y)+x \wedge(-y)) \\
& +2 f\left(\frac{3}{2}(x \vee y+x \wedge y+y \vee(-x)+y \wedge(-x))\right) \\
& -6 f((x \vee y+x \wedge y+y \vee(-x)+y \wedge(-x))) \\
& +6 f\left(\frac{1}{2}(x \vee y+x \wedge y+y \vee(-x)+y \wedge(-x))\right)
\end{aligned}
$$

Let X and Y be two Banach lattices and, $f: X \longrightarrow Y$ define the difference operator $D_{f}: X \times X \longrightarrow Y$ by

$$
\begin{array}{r}
D_{f}(x, y)=f(x+2 y)-f(x-2 y)-2(f(x+y)-f(x-y)) \\
-2 f(3 y)+6 f(2 y)-6 f(y)
\end{array}
$$

for all $x, y \in X$. We consider the following functional inequality

$$
\left\|D_{f}(x, y)\right\| \leqslant \phi(x, y)
$$

for an upper bound $\phi: X \times X \longrightarrow[0, \infty)$.
Theorem 2.1. Let X and Y be two Banach lattices and $s \in\{-1,1\}$ be fixed. Suppose that an even mapping $f: X \longrightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leqslant \phi(x, y) \tag{9}
\end{equation*}
$$

for all $x, y \in X$. If the upper bound $\phi: X \times X \longrightarrow[0, \infty)$, is a mapping such that

$$
\sum_{i=0}^{\infty} 4^{s i}\left(\phi\left(2^{-s i} x, 2^{-s i} x\right)+\frac{1}{2} \phi\left(0,2^{-s i} x\right)\right)<\infty
$$

and that

$$
\lim _{n \longrightarrow \infty} 4^{s n}\left(\phi\left(2^{-s i} x, 2^{-s i} y\right)=0\right.
$$

for all $x, y \in X$, the limit

$$
Q(x)=\lim _{n \longrightarrow \infty} 4^{s n} f\left(2^{-s i} x\right)
$$

exists for all $x \in X$, and $Q: X \longrightarrow Y$ is a unique quadratic function satisfying (8) and

$$
\begin{equation*}
\|(f(x) \vee(-Q(x))+f(x) \wedge(-Q(x)))\| \leqslant \frac{1}{8} \sum_{i=(s+1) / 2}^{\infty} 4^{s i}\left(\phi\left(2^{-s i} x, 2^{-s i} x\right)+\frac{1}{2} \phi\left(0,2^{-s i} x\right)\right), \tag{10}
\end{equation*}
$$

for all $x \in X$.

Proof. Let $s=1$. putting $x=0$ in (9), we get

$$
\begin{aligned}
& \| 2((f(3 y) \vee(-3 f(2 y)+f(3 y) \wedge(-3 f(2 y)) \vee(3 f(y)) \\
& +2((f(3 y) \vee(-3 f(2 y)+f(3 y) \wedge(-3 f(2 y)) \wedge(3 f(y)) \| \leqslant \phi(0, y)
\end{aligned}
$$

for all $y \in X$. On the other hand by replacing y by x in (9), it follows that

$$
\begin{aligned}
& \|((-f(3 y)) \vee(4 f(2 y)+(-f(3 y)) \wedge(4 f(2 y))) \vee(-7 f(y))) \\
& +((-f(3 y) \vee(4 f(2 y))+(-f(3 y)) \wedge(4 f(2 y))) \wedge(-7 f(y))) \| \leqslant \phi(y, y)
\end{aligned}
$$

for all $y \in X$.
Let $s=1$. By combining two equations obtained by putting $x=0$ in (9) and replacing y by x in (9), it follows that:

$$
\begin{equation*}
\|(2 f(2 y)) \vee(-8 f(y))+(2 f(2 y)) \wedge(-8 f(y))\| \leqslant \phi(0, y)+2 \phi(y, y) \tag{11}
\end{equation*}
$$

for all $y \in X$. With the sub stitution $y:=\frac{x}{2}$ in (11) and then dividing both sides of inequality by 2 , we get

$$
\begin{equation*}
\left\|(f(x)) \vee\left(-4 f\left(\frac{x}{2}\right)\right)+(f(x)) \wedge\left(-4 f\left(\frac{x}{2}\right)\right)\right\| \leqslant \frac{1}{2}\left(2 \phi\left(\frac{x}{2}, \frac{x}{2}\right)+\phi\left(0, \frac{x}{2}\right)\right) \tag{12}
\end{equation*}
$$

Now, using methods similar, we can easily show that the function Q : $X \longrightarrow Y$ defined by

$$
Q(x)=\lim _{n \longrightarrow \infty} 4^{n} f\left(2^{-n} x\right)
$$

for all $x \in X$, is unique quadratic function satisfying in (8), (10). Let $s=-1$, replace $2 x$ by x and also dividing both sides of inequality by 4 , using by (12), we have

$$
\left\|(-f(x)) \vee\left(\frac{f(2 x)}{4}\right)+(-f(x)) \wedge\left(\frac{f(2 x)}{4}\right)\right\| \leqslant \frac{1}{8}(2 \phi(x, x)+\phi(0, x))
$$

for all $x \in X$. And analogously, as in the case $s=-1$, we can show that the function $Q: X \longrightarrow Y$ defined by

$$
Q(x)=\lim _{n \longrightarrow \infty} 4^{-n} f\left(2^{n} x\right)
$$

is unique quadratic function satisfying in (8), (10).
Theorem 2.2. Let X and Y be two Banach lattices. Function $f: X \longrightarrow$ Y satisfying in the following functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2(f(x+y)+f(x-y))+12 f(x) \tag{13}
\end{equation*}
$$

if and only if $f: X \longrightarrow Y$ satisfys in the functional equation

$$
f(m x+y)+f(m x-y)=m(f(x+y)+f(x-y))+2\left(m^{3}-m\right) f(x)
$$

for any natural number $m \geqslant 3$.
Proof. Let Function $f: X \longrightarrow Y$ satisfys in (13). If we put $x=y=$ 0 in (13), we have $f(0)=0$, and if we put $x=0$ in (13), we get $f(-y)=-f(y)$, also we put $y=0$ in (13), and we have $f(2 x)=$ $8 f(x)$. Furthermore, replacing y by x and y by $2 x$ in (13), then we have $f(3 x)=27 f(x)$ and $\mathrm{f}(2 \mathrm{x})=8 \mathrm{f}(\mathrm{x})$.
Then for all $x, y \in X$, all $k \in \mathbb{Z}^{+}$, replacing y by $x+y$ in (13), we get

$$
\begin{equation*}
f(3 x+y)+f(x-y)=2(f(2 x+y)-f(y))+12 f(x) \tag{14}
\end{equation*}
$$

then replacing y by $y-x$ in (13), for $x, y \in X$, we have

$$
\begin{equation*}
f(x+y)+f(3 x-y)=2(f(y)+f(2 x-y))+12 f(x) \tag{15}
\end{equation*}
$$

Combining (14) and (15), we lead to

$$
f(3 x+y)+f(3 x-y)=3(f(x+y)+f(x-y))+48 f(x)
$$

So by this method we get

$$
f(m x+y)+f(m x-y)=m(f(x+y)+f(x-y))+2\left(m^{3}-m\right) f(x)
$$

The converse of theorem us automatically consistant.

Now, we prove the Hyers-Ulam-Rassias stability of the following Cubic functional equation in Banach lattice .

$$
f(3 x+y)+f(3 x-y)=3(f(x+y)+f(x-y))+48 f(x)
$$

The above Cubic functional equation in the lattices form is the following:

$$
\begin{aligned}
& f((x \vee y+x \wedge y)-2((-x \vee y)+(-x \wedge y))) \\
+ & f((x \vee(-y)+x \wedge(-y))+2(x \vee y+x \wedge y)) \\
= & 3 f(x \vee y+x \wedge y)+3 f(x \vee(-y)+x \wedge(-y)) \\
+ & 48 f\left(\frac{1}{2}(x \vee y+x \wedge y+x \vee(-y)+x \wedge(-y))\right)
\end{aligned}
$$

Theorem 2.3. Let X and Y be two Banach lattices and $\phi: X^{2} \longrightarrow$ $[0, \infty)$ be a function satisfying in equality:

$$
\Phi(x, y)=\sum_{i=1}^{\infty} \frac{1}{27^{i}} \phi\left(\frac{3^{i} x}{3}, \frac{3^{i} y}{3}\right)<\infty
$$

for all $x, y \in X$ and also, $f: X \longrightarrow Y$ satisfys the inequality:

$$
\begin{align*}
& \| f((x \vee y+x \wedge y)-2((-x \vee y)+(-x \wedge y))) \\
& +f((x \vee(-y)+x \wedge(-y))+2(x \vee y+x \wedge y)) \\
& -3 f(x \vee y+x \wedge y)-3 f(x \vee(-y)+x \wedge(-y)) \\
& -48 f\left(\frac{1}{2}(x \vee y+x \wedge y+x \vee(-y)+x \wedge(-y))\right) \\
& \leqslant \phi(x, y) \tag{16}
\end{align*}
$$

then there exists an unique cubic function $C: X \longrightarrow Y$ for all $x, y \in$ X such that:

$$
\begin{equation*}
\|C(x) \vee(-f(x))+C(x) \wedge(-f(x))\| \leqslant \Phi(x, 0) \tag{17}
\end{equation*}
$$

Proof. If we put $y=0$ in (16), since:

$$
\begin{array}{ll}
x \vee 0=0, & x \wedge 0=x, \quad \text { for } x<0 \\
x \vee 0=x, & x \wedge 0=0, \quad \text { for } x>0,
\end{array}
$$

for all $x \in X$, then we get:

$$
\|f(3 x) \vee(-27 f(x))+f(3 x) \wedge(-27 f(x))\| \leqslant \phi(x, 0)
$$

hence:

$$
\begin{equation*}
\left\|\frac{f(3 x)}{27} \vee(-f(x))+\frac{f(3 x)}{27} \wedge(-f(x))\right\| \leqslant \frac{1}{27} \phi(x, 0) \tag{18}
\end{equation*}
$$

Replacing x by $3 x$ in (18) we get:

$$
\left\|\frac{f\left(3^{2} x\right)}{27} \vee(-f(3 x))+\frac{f\left(3^{2} x\right)}{27} \wedge(-f(3 x))\right\| \leqslant \frac{1}{27} \phi(3 x, 0)
$$

therefor

$$
\left\|\frac{f\left(3^{2} x\right)}{27^{2}} \vee\left(-\frac{f(3 x)}{27}\right)+\frac{f\left(3^{2} x\right)}{27^{2}} \wedge\left(-\frac{f(3 x)}{27}\right)\right\| \leqslant \frac{1}{27^{2}} \phi(3 x, 0)
$$

so we have

$$
\left\|\frac{f\left(3^{2} x\right)}{27^{2}} \vee(-f(x))+\frac{f\left(3^{2} x\right)}{27^{2}} \wedge(-f(x))\right\| \leqslant \sum_{i=1}^{2} \frac{1}{27^{i}} \phi\left(\frac{3^{i} x}{3}, 0\right)
$$

By induction on n, we will prove that

$$
\begin{equation*}
\left\|\frac{f\left(3^{n} x\right)}{27^{n}} \vee(-f(3 x))+\frac{f\left(3^{n} x\right)}{27^{n}} \wedge(-f(3 x))\right\| \leqslant \sum_{i=1}^{n} \frac{1}{27^{i}} \phi\left(\frac{3^{i} x}{3}, 0\right) \tag{19}
\end{equation*}
$$

To prove (19), let (19) holds for each $k \leqslant n$, then we want to prove it for case $n=k+1$ is hold. For this replacing x by $3 x$ in (19), then we have

$$
\left\|\frac{f\left(3^{k+1} x\right)}{27^{k}} \vee(-f(3 x))+\frac{f\left(3^{k+1} x\right)}{27^{k}} \wedge(-f(3 x))\right\| \leqslant \sum_{i=1}^{k} \frac{1}{27^{i}} \phi\left(3^{i} x, 0\right)
$$

The dividing both sides of the above by 27 , we get

$$
\left\|\frac{f\left(3^{k+1} x\right)}{27^{k+1}} \vee\left(-\frac{f(3 x)}{27}\right)+\frac{f\left(3^{k+1} x\right)}{27^{k+1}} \wedge\left(-\frac{f(3 x)}{27}\right)\right\| \leqslant \frac{1}{27} \sum_{i=1}^{k} \frac{1}{27^{i}} \phi\left(3^{i} x, 0\right)
$$

therefor

$$
\left\|\frac{f\left(3^{k+1} x\right)}{27^{k+1}} \vee(-f(3 x))+\frac{f\left(3^{k+1} x\right)}{27^{k+1}} \wedge(-f(3 x))\right\| \leqslant \sum_{i=1}^{k+1} \frac{1}{27^{i}} \phi\left(\frac{3^{i} x}{3}, 0\right)
$$

Now we show that $\left\{\frac{f\left(3^{n} x\right)}{27^{n}}\right\}$ is a Cauchy sequence. Let $n>m>0$, then:

$$
\left\|\frac{f\left(3^{n} x\right)}{27^{n}} \vee\left(-\frac{f\left(3^{m} x\right)}{27^{m}}\right)+\frac{f\left(3^{n} x\right)}{27^{n}} \wedge\left(-\frac{f\left(3^{m} x\right)}{27^{m}}\right)\right\| \leqslant \sum_{i=m+1}^{n} \frac{1}{27^{i}} \phi\left(\frac{3^{i} x}{3}, 0\right)<\infty
$$

Taking the limit as $m \longrightarrow \infty$ yields:

$$
\lim _{m \longrightarrow \infty}\left\|\frac{f\left(3^{n} x\right)}{27^{n}} \vee\left(-\frac{f\left(3^{m} x\right)}{27^{m}}\right)+\frac{f\left(3^{n} x\right)}{27^{n}} \wedge\left(-\frac{f\left(3^{m} x\right)}{27^{m}}\right)\right\|=0
$$

Then $\left\{\frac{f\left(3^{n} x\right)}{27^{n}}\right\}$ is a Cauchy sequence in Y for all $x \in X$, and since Y is Banach space, hence is converge to Y Let:

$$
C(x):=\lim _{n \longrightarrow \infty} \frac{f\left(3^{n} x\right)}{27^{n}}
$$

Replacing x by $3^{n} x$ and y by $3^{n} y$ in (16), and Then dividing both sides of the obtained in equalities by 27^{n} and finally taking limit as $n \longrightarrow \infty$,
we have :

$$
\begin{aligned}
& \lim _{n \longrightarrow \infty} \| \frac{1}{27^{n}} f\left(3^{n}(x \vee y+x \wedge y)-2 \times 3^{n}((-x \vee y)+(-x \wedge y))\right) \\
& +f\left(\frac{1}{9^{n}}(x \vee(-y)+x \wedge(-y))+\frac{2}{9^{n}}(x \vee y+x \wedge y)\right) \\
& -3 f\left(\frac{1}{9^{n}}(x \vee y+x \wedge y)\right)-3 f\left(\frac{1}{9^{n}}(x \vee(-y)+x \wedge(-y))\right) \\
& -48 f\left(\frac{((x \vee y+x \wedge y+x \vee(-y)+x \wedge(-y))}{2 \times 9^{n}}\right) \\
& \leqslant \lim _{n \longrightarrow \infty} \frac{1}{27^{n}} \phi\left(3^{n} x, 3^{n} y\right),
\end{aligned}
$$

and therefor, we have

$$
\begin{aligned}
& C((x \vee y+x \wedge y)-2(-x \vee y)+(-x \wedge y))) \\
& +C((x \vee(-y)+x \wedge(-y))+2(x \vee y+x \wedge y)) \\
& -3 C(x \vee y+x \wedge y)-3 C(x \vee(-y)+x \wedge(-y)) \\
& -48 C\left(\frac{1}{2}(x \vee y+x \wedge y+x \vee(-y)+x \wedge(-y))\right) \\
& =0
\end{aligned}
$$

Then $C: X \longrightarrow Y$ is a Cubic function. Let $K: X \longrightarrow Y$ is an another Cubic function with the property (17), then for all $x \in X$ we have:

$$
\|C(x) \vee(-K(x))+C(x) \wedge(-K(x))\| \leqslant 2 \times \sum_{i=n}^{\infty} \frac{1}{27^{i+1}} \phi\left(3^{i} x, 0\right)
$$

Taking the limit as $n \longrightarrow \infty$, we have $C(x)=K(x)$. Then C is the unique Cubic function satisfying in the inequality (17), which ends the proof.

References

[1] Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variable, Fixed Point Theory and Applications 2008, Art. ID 749392 (2008).
[2] L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), Article ID 4.
[3] Y. J. Cho and R. Saadati, Lattice Non-Archimedean Random Stability of ACQ Functional Equation, Advan. in Diff. Equat., 2011, 2011:31
[4] P. Emyer-Nieberg, Banach Lattices, Springer-Verlag New York Berlin Hei delberg, (1991).
[5] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224.
[7] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, springer Optimization and its Applications, Vol. 48. springer, NewYork, 2011.
[8] S. M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1964.

Houshang Behroozizadeh
Assistant Professor of Mathematics
Department of Mathematics
South Tehran Branch, Islamic Azad University
Tehran, Iran
E-mail: behroozi_2007@yahoo.com

Hassan Azadi Kenary

Associate Professor of Mathematics
Department of Mathematics, College of Science
Yasouj University
Yasouj, Iran
E-mail: azadi@yu.ac.ir

[^0]: Received: September 2018; Accepted: March 2019
 ${ }^{*}$ Corresponding author

