Best Proximity Point and Geometric Contraction Maps

M. R. Haddadi
Ayatollah Boroujerdi University

Abstract

In this paper we introduce geometric contraction map and give a new condition for the existence and uniqueness of best proximity point of geometric contractions. We also consider the convergence of iterates to proximity points in metric spaces.

AMS Subject Classification: 54E15; 46A03; 54E50; 41A17
Keywords and Phrases: Best proximity pair, best proximity point, fixed point, geometric contraction.

1. Introduction

Fixed point theory is an important tool for solving the equation $T(x)=x$. However, if T does not have any fixed point, then one often tries to find an element x which is in some sense closest to $T(x)$. A classical result in this direction is a best approximation theorem due to Ky Fan [1].
A best proximity pair evolves as a generalization of the best approximation considered in [1-5], of exploring the sufficient conditions for the existence of the best proximity point.
In this paper we consider sufficient conditions that ensure the existence of an element $x \in X$ for two subsets A, B in metric space (X, d) such that $d(x, T x)=\operatorname{dist}(A, B)$ for $T: A \cup B \rightarrow A \cup B$, where

$$
\operatorname{dist}(A, B)=\inf _{(a, b) \in A \times B} d(a, b) .
$$

[^0]In this case, we say that x is a best proximity point of T with respect to A and B. It is clear that if x is a best proximity point of T, then $\operatorname{dist}(A, B)=0$ if and only if x is a fixed point of T.

2. Main Results

In this section at first we give a new definition and use it to present new results.

Definition 2.1. Let A and B be nonempty subsets of a metric space X. A map $T: A \cup B \rightarrow A \cup B$ is a geometric contraction map if
i) $T(A) \subset B$ and $T(B) \subset A$.
ii) For some $\alpha \in(0,1)$ and all $x \in A$ and $y \in B$ we have

$$
d(T x, T y) \leqslant d(x, y)^{\alpha} \operatorname{dist}(A, B)^{1-\alpha} .
$$

For example, if

$$
A=\{(x, 0): x \geqslant 1\}, B=\{(0, y): y \geqslant 1\},
$$

and $T(x, y)=(\sqrt{y}, \sqrt{x})$. Then $\operatorname{dist}(A, B)=\sqrt{2}$ and $\alpha=\frac{1}{2}$,

$$
\begin{aligned}
\|T(x, 0)-T(0, y)\| & =\|(0, \sqrt{x})-(\sqrt{y}, 0)\| \\
& =\|(\sqrt{y}, \sqrt{x})\| \\
& =\sqrt{x+y} \\
& \leqslant \sqrt{\sqrt{2} \sqrt{x^{2}+y^{2}}} \\
& =\sqrt{\operatorname{dist}(A, B)\|(x, 0)-(0, y)\|}
\end{aligned}
$$

Hence T is a geometric contraction map with respect to $\alpha=\frac{1}{2}$.
Proposition 2.2. Let A and B be nonempty subsets of a metric space $X, T: A \cup B \rightarrow A \cup B$ be a geometric contraction map and $x_{n}=T^{n} x_{0}$ for $x_{0} \in A \cup B$. Then $d\left(x_{n}, T x_{n}\right) \rightarrow \operatorname{dist}(A, B)$.

Proof. By definition of geometric contraction map we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leqslant d\left(x_{n-1}, x_{n}\right)^{\alpha} \operatorname{dist}(A, B)^{1-\alpha} \\
& \leqslant d\left(x_{n-2}, x_{n-1}\right)^{\alpha^{2}} \operatorname{dist}(A, B)^{1-\alpha^{2}} \\
& \vdots \\
& \leqslant d\left(x_{0}, x_{1}\right)^{\alpha^{n}} \operatorname{dist}(A, B)^{1-\alpha^{n}} .
\end{aligned}
$$

Thus $d\left(x_{n}, x_{n+1}\right) \rightarrow \operatorname{dist}(A, B)$.
Theorem 2.3. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow A \cup B$ be a geometric contraction map. Let $x_{0} \in A$ and define $x_{n+1}=T x_{n}$. Suppose $\left\{x_{2 n}\right\}$ has a convergent subsequence to $x \in A$. Then $d(x, T x)=\operatorname{dist}(A, B)$.

Proof. Suppose $\left\{x_{2 n_{k}}\right\}$ is a subsequence of $\left\{x_{2 n}\right\}$ converges to some $x \in A$. Now

$$
\operatorname{dist}(A, B) \leqslant d\left(x, x_{2 n_{k}-1}\right) \leqslant d\left(x, x_{2 n_{k}}\right)+d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right) .
$$

Thus, by Proposition 2.2, we have $d\left(x, x_{2 n_{k}-1}\right)$ converges to $d(A, B)$. Since
$\operatorname{dist}(A, B) \leqslant d\left(x_{2 n_{k}}, T x\right) \leqslant d\left(x_{2 n_{k}-1}, x\right)^{\alpha} \operatorname{dist}(A, B)^{(1-\alpha)} \leqslant d\left(x_{2 n_{k}-1}, x\right)$, so $d(x, T x)=\operatorname{dist}(A, B)$.

Proposition 2.4. Let A and B be nonempty subsets of a metric space $X, T: A \cup B \rightarrow A \cup B$ a geometric contraction map, $x_{0} \in A \cup B$ and $x_{n+1}=T x_{n}, n=0,1,2, \cdots$. Then the sequences $\left\{x_{2 n}\right\}$ and $\left\{x_{2 n+1}\right\}$ are bounded.

Proof. Suppose $x_{0} \in A$ then since by Proposition 2.2, $d\left(x_{2 n}, x_{2 n+1}\right)$ converges to $\operatorname{dist}(A, B)$, it is enough to prove that $\left\{x_{2 n+1}\right\}$ is bounded. Suppose $\left\{x_{2 n+1}\right\}$ is not bounded, then for $M>\operatorname{dist}(A, B)$ there exists $n_{0} \in \mathbb{N}$ such that

$$
d\left(x_{2}, x_{2 n_{0}+1}\right)>M, d\left(x_{0}, x_{2 n_{0}-1}\right)<M .
$$

Hence by the geometric contraction property of T,

$$
M<d\left(x_{2}, x_{2 n_{0}+1}\right) \leqslant d\left(x_{0}, x_{2 n_{0}-1}\right)^{\alpha^{2}} \operatorname{dist}(A, B)^{1-\alpha^{2}}
$$

and so

$$
M^{\frac{1}{\alpha^{2}}} \operatorname{dist}(A, B)^{1-\frac{1}{\alpha^{2}}}<d\left(x_{0}, x_{2 n_{0}-1}\right)<M
$$

Therefore $M<\operatorname{dist}(A, B)$ which is a contradiction. The proof is similar when $x_{0} \in B$.
The Proposition 2.4 leads us to an existence result when one of the sets A or B is boundedly compact. We remember that a subset A of a metric space is boundedly compact if every bounded sequence in A has a convergent subsequence.

Corollary 2.5. Let A and B be nonempty closed subsets of a metric space X and $T: A \cup B \rightarrow A \cup B$ a geometric contraction map. If either A or B is boundedly compact, then there exists $x \in A \cup B$ with $d(x, T x)=\operatorname{dist}(A, B)$.

Proof. It follows directly from Theorem 2.3 and Proposition 2.4.
In continue, we will give some new results of the existence of the best proximity points.

Theorem 2.6. Let A and B be nonempty closed subsets of a metric space X. Suppose that the mapping $T: A \cup B \rightarrow A \cup B$ satisfying $T(A) \subset B, T(B) \subset A$ and

$$
d(T x, T y) \leqslant d(x, y)^{\alpha}[d(x, T x) d(y, T y)]^{\beta} \operatorname{dist}(A, B)^{\gamma}
$$

for all $x, y \in A \cup B$, where $\alpha, \beta, \gamma \geqslant 0$ and $\alpha+2 \beta+\gamma=1$. If A (or $B)$ is boundedly compact, then there exists $x \in A \cup B$ with $d(x, T x)=$ $\operatorname{dist}(A, B)$.

Proof. Suppose x_{0} is an arbitrary point of $A \cup B$ and define $x_{n+1}=T x_{n}$. Now

$$
\begin{aligned}
d\left(x_{n+1}, x_{n+2}\right) & =d\left(T x_{n}, T x_{n+1}\right) \\
& \leqslant d\left(x_{n}, x_{n+1}\right)^{\alpha}\left[d\left(x_{n}, T x_{n}\right) d\left(x_{n+1}, T x_{n+1}\right)\right]^{\beta} \operatorname{dist}(A, B)^{\gamma}
\end{aligned}
$$

So

$$
d\left(x_{n+1}, x_{n+2}\right) \leqslant d\left(x_{n}, x_{n+1}\right)^{\frac{\alpha+\beta}{1-\beta}} \operatorname{dist}(A, B)^{\frac{\gamma}{1-\beta}}
$$

which implies that

$$
d\left(x_{n+1}, x_{n+2}\right) \leqslant d\left(x_{n}, x_{n+1}\right)^{k} \operatorname{dist}(A, B)^{1-k}
$$

where $k=\frac{\alpha+\beta}{1-\beta}<1$. Hence inductively we have

$$
d\left(x_{n+1}, x_{n}\right) \leqslant d\left(x_{1}, x_{0}\right)^{k^{n}} \operatorname{dist}(A, B)^{1-k^{n}}
$$

and so

$$
d\left(x_{n+1}, x_{n}\right) \rightarrow \operatorname{dist}(A, B) .
$$

Therefore, by repeat the technique of the proof of Proposition 2.4, both sequences $\left\{x_{2 n}\right\}$ and $\left\{x_{2 n+1}\right\}$ are bounded. Now since A (or B) is boundedly compact then $\left\{x_{2 n}\right\}$ has a convergent subsequence and so by repeat the technique of the proof of Proposition 2.3, there exists $x \in A$ such that $d(x, T x)=\operatorname{dist}(A, B)$.

Theorem 2.7. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping $T: A \cup B \rightarrow A \cup B$ satisfying $T(A) \subset$ $B, T(B) \subset A$ and

$$
d\left(T x, T^{2} x\right) \leqslant d(x, T x)^{k} \operatorname{dist}(A, B)^{1-k},
$$

for all $x \in A \cup B$, where $0 \leqslant k<1$. If there are $u \in A \cup B$ and $n \in \mathbb{N}$ such that $T^{n} u=u$, then $d(u, T u)=\operatorname{dist}(A, B)$.

Proof. Let $u \in A \cup B$ and $n \in \mathbb{N}$ be such that $T^{n} u=u$. If $\operatorname{dist}(A, B)<$ $d(u, T u)$, we have

$$
\begin{aligned}
d(u, T u) & =d\left(T\left(T^{n-1} u\right), T^{2}\left(T^{n-1} u\right)\right) \\
& \leqslant d\left(T^{n-1} u, T\left(T^{n-1} u\right)\right)^{k} \operatorname{dist}(A, B)^{1-k} \\
& \leqslant d\left(T^{n-2} u, T^{n-1} u\right)^{k^{2}} \operatorname{dist}(A, B)^{1-k^{2}} \\
& \vdots \\
& \leqslant d(u, T u)^{k^{n}} \operatorname{dist}(A, B)^{1-k^{n}} \\
& <d(u, T u),
\end{aligned}
$$

which is a contradiction, so $d(u, T u)=\operatorname{dist}(A, B)$.
In the following, we give some new conditions on the mapping T to find uniqueness of best proximity points. Remember that if X is a uniformly convex Banach space with modulus of convexity δ. Then $\delta(\epsilon)>0$ for $\epsilon>0$, and $\delta($.$) is strictly increasing. Moreover, if x, y, z \in X, d>0$, and $r \in[0,2 d]$ such that $\|x-z\| \leqslant d,\|y-z\| \leqslant d$ and $\|x-y\| \geqslant r$, then

$$
\begin{equation*}
\left\|\frac{x+y}{2}-z\right\| \leqslant\left(1-\delta\left(\frac{r}{d}\right)\right) d \tag{*}
\end{equation*}
$$

Theorem 2.8. Let A and B be two nonempty closed and convex subsets of a Banach space X and $T: A \cup B \rightarrow A \cup B$ a geometric contraction map. Then there exists unique $x \in A$ with $\|x-T x\|=\operatorname{dist}(A, B)$.

Proof. Suppose $x_{0} \in A$ and $x_{n+1}=T x_{n}, n=0,1,2, \cdots$. By Proposition 2.4, the sequence $\left\{x_{2 n}\right\}$ is bounded. Hence since X is uniformly convex, $\left\{x_{2 n}\right\}$ has a subsequence $\left\{x_{2 n_{k}}\right\}$ that weakly converges to x and so $\|x-T x\| \leqslant \liminf _{k \rightarrow \infty}\left\|x_{2 n_{k}}-T x_{2 n_{k}}\right\|$. Therefore by Proposition 2.2,

$$
\|x-T x\|=\operatorname{dist}(A, B)
$$

If there exist $x, y \in A$ and $x \neq y$ such that $\|x-T x\|=\|y-T y\|=$ $\operatorname{dist}(A, B)$ where necessarily, $T^{2} x=x$ and $T^{2} y=y$. Therefore

$$
\|T x-y\|=\left\|T x-T^{2} y\right\| \leqslant\|x-T y\| \text { and }\|T y-x\|=\left\|T y-T^{2} x\right\| \leqslant\|y-T x\|
$$

then

$$
\begin{equation*}
\|T y-x\|=\|y-T x\| \tag{**}
\end{equation*}
$$

On the other hands, $\|y-T x\|>\operatorname{dist}(A, B)$. If $\|y-T x\|=\operatorname{dist}(A, B)$, since X is uniformly convex by ($*$) we have

$$
\left\|\frac{x+y}{2}-T x\right\| \leqslant\left(1-\delta\left(\frac{r}{d}\right)\right) \operatorname{dist}(A, B)<\operatorname{dist}(A, B)
$$

since A is convex, $\frac{x+y}{2} \in A$ and it is a contradiction. Hence $\|y-T x\|>$ $\operatorname{dist}(A, B)$, and so $\|y-T x\|=\left\|T^{2} y-T x\right\|<\|T y-x\|$ which is a contradiction by $(* *)$. Therefore $x=y$.

Theorem 2.9. Let A and B be two nonempty closed and convex subsets of a uniformly convex Banach space X. Suppose that the mapping T : $A \cup B \rightarrow A \cup B$ satisfying $T(A) \subset B, T(B) \subset A$ and

$$
d(T x, T y) \leqslant d(x, y)^{\alpha}[d(x, T x) d(y, T y)]^{\beta} \operatorname{dist}(A, B)^{\gamma},
$$

for all $x, y \in A \cup B$, where $\alpha, \beta, \gamma \geqslant 0$ and $\alpha+2 \beta+\gamma=1$. Then there exists a unique element $x \in A$ such that $\|x-T x\|=\operatorname{dist}(A, B)$. Further, if $x_{0} \in A$ and $x_{n+1}=T x_{n}$, then $\left\{x_{2 n}\right\}$ converges to the above unique element.

Proof. One can prove this theorem by the method of the Proposition 2.8.

References

[1] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Zeit., 112 (1969), 234-240.
[2] M. R. Haddadi and S. M. Moshtaghioun, Some results on the best proximity pair, Abstract and Applied Analysis, (2011), ID 158430, 9 pages.
[3] S. Sadiq Basha, Best proximity points: global optimal approximate solutions, J. Global Optimization, 49 (1) (2011), 15-21.
[4] M. A. Shahzad Naseer, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70 (3) (2009), 1209-1216.
[5] I. Singer, Best Approximations Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, 1970.

Mohammad Reza Haddadi
Department of Mathematics
Assistant Professor of Mathematics
Ayatollah Boroujerdi University
Boroujerd, Iran
E-mail: haddadi@abru.ac.ir

[^0]: Received: July 2013; Accepted: May 2014

