Journal of Mathematical Extension Vol. 8, No. 2, (2014), 25-31

Best Proximity Point and Geometric Contraction Maps

M. R. Haddadi

Ayatollah Boroujerdi University

Abstract. In this paper we introduce geometric contraction map and give a new condition for the existence and uniqueness of best proximity point of geometric contractions. We also consider the convergence of iterates to proximity points in metric spaces.

AMS Subject Classification: 54E15; 46A03; 54E50; 41A17 **Keywords and Phrases:** Best proximity pair, best proximity point, fixed point, geometric contraction.

1. Introduction

Fixed point theory is an important tool for solving the equation T(x) = x. However, if T does not have any fixed point, then one often tries to find an element x which is in some sense closest to T(x). A classical result in this direction is a best approximation theorem due to Ky Fan [1].

A best proximity pair evolves as a generalization of the best approximation considered in [1-5], of exploring the sufficient conditions for the existence of the best proximity point.

In this paper we consider sufficient conditions that ensure the existence of an element $x \in X$ for two subsets A, B in metric space (X, d) such that d(x, Tx) = dist(A, B) for $T : A \cup B \to A \cup B$, where

$$dist(A,B) = \inf_{(a,b)\in A\times B} d(a,b).$$

Received: July 2013; Accepted: May 2014

In this case, we say that x is a best proximity point of T with respect to A and B. It is clear that if x is a best proximity point of T, then dist(A, B) = 0 if and only if x is a fixed point of T.

2. Main Results

In this section at first we give a new definition and use it to present new results.

Definition 2.1. Let A and B be nonempty subsets of a metric space X. A map $T: A \cup B \to A \cup B$ is a geometric contraction map if

- i) $T(A) \subset B$ and $T(B) \subset A$.
- ii) For some $\alpha \in (0,1)$ and all $x \in A$ and $y \in B$ we have

$$d(Tx, Ty) \leq d(x, y)^{\alpha} dist(A, B)^{1-\alpha}.$$

For example, if

$$A = \{(x,0) : x \ge 1\}, \ B = \{(0,y) : y \ge 1\},\$$

and $T(x,y) = (\sqrt{y}, \sqrt{x})$. Then $dist(A, B) = \sqrt{2}$ and $\alpha = \frac{1}{2}$,

$$\begin{aligned} \|T(x,0) - T(0,y)\| &= \|(0,\sqrt{x}) - (\sqrt{y},0)\| \\ &= \|(\sqrt{y},\sqrt{x})\| \\ &= \sqrt{x+y} \\ &\leqslant \sqrt{\sqrt{2}\sqrt{x^2+y^2}} \\ &= \sqrt{dist(A,B)}\|(x,0) - (0,y)\|. \end{aligned}$$

Hence T is a geometric contraction map with respect to $\alpha = \frac{1}{2}$.

Proposition 2.2. Let A and B be nonempty subsets of a metric space $X, T: A \cup B \to A \cup B$ be a geometric contraction map and $x_n = T^n x_0$ for $x_0 \in A \cup B$. Then $d(x_n, Tx_n) \to dist(A, B)$.

Proof. By definition of geometric contraction map we have

$$d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n)^{\alpha} dist(A, B)^{1-\alpha}$$
$$\leq d(x_{n-2}, x_{n-1})^{\alpha^2} dist(A, B)^{1-\alpha^2}$$
$$\vdots$$
$$\leq d(x_0, x_1)^{\alpha^n} dist(A, B)^{1-\alpha^n}.$$

Thus $d(x_n, x_{n+1}) \rightarrow dist(A, B)$. \Box

Theorem 2.3. Let A and B be nonempty subsets of a metric space X and $T : A \cup B \to A \cup B$ be a geometric contraction map. Let $x_0 \in A$ and define $x_{n+1} = Tx_n$. Suppose $\{x_{2n}\}$ has a convergent subsequence to $x \in A$. Then d(x, Tx) = dist(A, B).

Proof. Suppose $\{x_{2n_k}\}$ is a subsequence of $\{x_{2n}\}$ converges to some $x \in A$. Now

$$dist(A,B) \leq d(x, x_{2n_k-1}) \leq d(x, x_{2n_k}) + d(x_{2n_k}, x_{2n_k-1}).$$

Thus, by Proposition 2.2, we have $d(x, x_{2n_k-1})$ converges to d(A, B). Since

$$dist(A, B) \leq d(x_{2n_k}, Tx) \leq d(x_{2n_k-1}, x)^{\alpha} dist(A, B)^{(1-\alpha)} \leq d(x_{2n_k-1}, x)^{\alpha} dist(A, B)^{(1-\alpha)}$$

so d(x, Tx) = dist(A, B). \Box

Proposition 2.4. Let A and B be nonempty subsets of a metric space $X, T : A \cup B \rightarrow A \cup B$ a geometric contraction map, $x_0 \in A \cup B$ and $x_{n+1} = Tx_n, n = 0, 1, 2, \cdots$. Then the sequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ are bounded.

Proof. Suppose $x_0 \in A$ then since by Proposition 2.2, $d(x_{2n}, x_{2n+1})$ converges to dist(A, B), it is enough to prove that $\{x_{2n+1}\}$ is bounded. Suppose $\{x_{2n+1}\}$ is not bounded, then for M > dist(A, B) there exists $n_0 \in \mathbb{N}$ such that

$$d(x_2, x_{2n_0+1}) > M, \ d(x_0, x_{2n_0-1}) < M.$$

M. R. HADDADI

Hence by the geometric contraction property of T,

$$M < d(x_2, x_{2n_0+1}) \leq d(x_0, x_{2n_0-1})^{\alpha^2} dist(A, B)^{1-\alpha^2},$$

and so

$$M^{\frac{1}{\alpha^2}} dist(A,B)^{1-\frac{1}{\alpha^2}} < d(x_0, x_{2n_0-1}) < M.$$

Therefore M < dist(A, B) which is a contradiction. The proof is similar when $x_0 \in B$. \Box

The Proposition 2.4 leads us to an existence result when one of the sets A or B is boundedly compact. We remember that a subset A of a metric space is boundedly compact if every bounded sequence in A has a convergent subsequence.

Corollary 2.5. Let A and B be nonempty closed subsets of a metric space X and $T : A \cup B \to A \cup B$ a geometric contraction map. If either A or B is boundedly compact, then there exists $x \in A \cup B$ with d(x, Tx) = dist(A, B).

Proof. It follows directly from Theorem 2.3 and Proposition 2.4. \Box In continue, we will give some new results of the existence of the best proximity points.

Theorem 2.6. Let A and B be nonempty closed subsets of a metric space X. Suppose that the mapping $T : A \cup B \to A \cup B$ satisfying $T(A) \subset B, T(B) \subset A$ and

$$d(Tx,Ty) \leqslant d(x,y)^{\alpha} [d(x,Tx)d(y,Ty)]^{\beta} dist(A,B)^{\gamma},$$

for all $x, y \in A \cup B$, where $\alpha, \beta, \gamma \ge 0$ and $\alpha + 2\beta + \gamma = 1$. If A (or B) is boundedly compact, then there exists $x \in A \cup B$ with d(x, Tx) = dist(A, B).

Proof. Suppose x_0 is an arbitrary point of $A \cup B$ and define $x_{n+1} = Tx_n$. Now

$$\begin{aligned} d(x_{n+1}, x_{n+2}) &= d(Tx_n, Tx_{n+1}) \\ &\leqslant d(x_n, x_{n+1})^{\alpha} [d(x_n, Tx_n) d(x_{n+1}, Tx_{n+1})]^{\beta} dist(A, B)^{\gamma}. \end{aligned}$$

28

 So

$$d(x_{n+1}, x_{n+2}) \leq d(x_n, x_{n+1})^{\frac{\alpha+\beta}{1-\beta}} dist(A, B)^{\frac{\gamma}{1-\beta}},$$

which implies that

$$d(x_{n+1}, x_{n+2}) \leq d(x_n, x_{n+1})^k dist(A, B)^{1-k},$$

where $k = \frac{\alpha + \beta}{1 - \beta} < 1$. Hence inductively we have

$$d(x_{n+1}, x_n) \leq d(x_1, x_0)^{k^n} dist(A, B)^{1-k^n},$$

and so

$$d(x_{n+1}, x_n) \rightarrow dist(A, B).$$

Therefore, by repeat the technique of the proof of Proposition 2.4, both sequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ are bounded. Now since A (or B) is boundedly compact then $\{x_{2n}\}$ has a convergent subsequence and so by repeat the technique of the proof of Proposition 2.3, there exists $x \in A$ such that d(x, Tx) = dist(A, B). \Box

Theorem 2.7. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping $T : A \cup B \to A \cup B$ satisfying $T(A) \subset B, T(B) \subset A$ and

$$d(Tx, T^2x) \leqslant d(x, Tx)^k dist(A, B)^{1-k},$$

for all $x \in A \cup B$, where $0 \leq k < 1$. If there are $u \in A \cup B$ and $n \in \mathbb{N}$ such that $T^n u = u$, then d(u, Tu) = dist(A, B).

Proof. Let $u \in A \cup B$ and $n \in \mathbb{N}$ be such that $T^n u = u$. If dist(A, B) < d(u, Tu), we have

$$\begin{array}{lcl} d(u,Tu) &=& d(T(T^{n-1}u),T^2(T^{n-1}u)) \\ &\leqslant& d(T^{n-1}u,T(T^{n-1}u))^k \; dist(A,B)^{1-k} \\ &\leqslant& d(T^{n-2}u,T^{n-1}u)^{k^2} dist(A,B)^{1-k^2} \\ &\vdots& \\ &\leqslant& d(u,Tu)^{k^n} dist(A,B)^{1-k^n} \\ &<& d(u,Tu), \end{array}$$

M. R. HADDADI

which is a contradiction, so d(u, Tu) = dist(A, B). \Box In the following, we give some new conditions on the mapping T to find uniqueness of best proximity points. Remember that if X is a uniformly convex Banach space with modulus of convexity δ . Then $\delta(\epsilon) > 0$ for $\epsilon > 0$, and $\delta(.)$ is strictly increasing. Moreover, if $x, y, z \in X, d > 0$, and $r \in [0, 2d]$ such that $||x - z|| \leq d$, $||y - z|| \leq d$ and $||x - y|| \geq r$, then

$$\left\|\frac{x+y}{2} - z\right\| \leqslant (1 - \delta(\frac{r}{d}))d. \tag{*}$$

Theorem 2.8. Let A and B be two nonempty closed and convex subsets of a Banach space X and $T : A \cup B \to A \cup B$ a geometric contraction map. Then there exists unique $x \in A$ with ||x - Tx|| = dist(A, B).

Proof. Suppose $x_0 \in A$ and $x_{n+1} = Tx_n$, $n = 0, 1, 2, \cdots$. By Proposition 2.4, the sequence $\{x_{2n}\}$ is bounded. Hence since X is uniformly convex, $\{x_{2n}\}$ has a subsequence $\{x_{2n_k}\}$ that weakly converges to x and so $||x - Tx|| \leq \liminf_{k \to \infty} ||x_{2n_k} - Tx_{2n_k}||$. Therefore by Proposition 2.2,

$$||x - Tx|| = dist(A, B).$$

If there exist $x, y \in A$ and $x \neq y$ such that ||x - Tx|| = ||y - Ty|| = dist(A, B) where necessarily, $T^2x = x$ and $T^2y = y$. Therefore

$$||Tx-y|| = ||Tx-T^2y|| \le ||x-Ty|| \text{ and } ||Ty-x|| = ||Ty-T^2x|| \le ||y-Tx||,$$

then

$$||Ty - x|| = ||y - Tx||.$$
 (**)

On the other hands, ||y - Tx|| > dist(A, B). If ||y - Tx|| = dist(A, B), since X is uniformly convex by (*) we have

$$\left\|\frac{x+y}{2} - Tx\right\| \leq (1 - \delta(\frac{r}{d}))dist(A, B) < dist(A, B),$$

since A is convex, $\frac{x+y}{2} \in A$ and it is a contradiction. Hence ||y - Tx|| > dist(A, B), and so $||y - Tx|| = ||T^2y - Tx|| < ||Ty - x||$ which is a contradiction by (**). Therefore x = y. \Box

Theorem 2.9. Let A and B be two nonempty closed and convex subsets of a uniformly convex Banach space X. Suppose that the mapping T : $A \cup B \to A \cup B$ satisfying $T(A) \subset B$, $T(B) \subset A$ and

$$d(Tx, Ty) \leqslant d(x, y)^{\alpha} [d(x, Tx)d(y, Ty)]^{\beta} dist(A, B)^{\gamma},$$

for all $x, y \in A \cup B$, where $\alpha, \beta, \gamma \ge 0$ and $\alpha + 2\beta + \gamma = 1$. Then there exists a unique element $x \in A$ such that ||x - Tx|| = dist(A, B). Further, if $x_0 \in A$ and $x_{n+1} = Tx_n$, then $\{x_{2n}\}$ converges to the above unique element.

Proof. One can prove this theorem by the method of the Proposition 2.8. \Box

References

- K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Zeit., 112 (1969), 234-240.
- [2] M. R. Haddadi and S. M. Moshtaghioun, Some results on the best proximity pair, Abstract and Applied Analysis, (2011), ID 158430, 9 pages.
- [3] S. Sadiq Basha, Best proximity points: global optimal approximate solutions, J. Global Optimization, 49 (1) (2011), 15-21.
- [4] M. A. Shahzad Naseer, Best proximity pairs and equilibrium pairs for Kakutani multimaps, *Nonlinear Anal.*, 70 (3) (2009), 1209-1216.
- [5] I. Singer, Best Approximations Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, 1970.

Mohammad Reza Haddadi

Department of Mathematics Assistant Professor of Mathematics Ayatollah Boroujerdi University Boroujerd, Iran E-mail: haddadi@abru.ac.ir