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equations f(x+ 1) = g(x)f(x) and limit summability of functions were
studied and introduced by R.J. Webster and M.H. Hooshmand, respec-
tively. It is shown that the topic of gamma type functions can be consid-
ered as a subtopic of limit summability. Indeed, if ln f is limit summable,
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paper, we introduce and study limit summability of order two, 2-limit
summand function fσ2 and its results as gamma type functions of order
two and also limit summand of multipliers. Finally, as an application of
the study, we obtain a criteria for existence of gamma type function of
the function f(x)x and give some related examples and corollaries.
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1. Introduction and Preliminaries

Gamma type functions satisfying the functional equation f(x + 1) =
g(x)f(x) were studied by Webster in 1997. Since in the special case
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f(x) = x, the gamma type function is the same Γ(x), through his study
[11] some generalizations of the Bohr-Mollerup Theorem (see [3]) are ob-
tained. On the other hand, in order to study ultra exponential functions,
Hooshmand in 2001 is directed toward a topic which he called “limit
summability of functions”. In [5] it is shown that the topic of gamma
type functions can be considered as a subtopic of limit summability and
its relations are explained. The limit summand function of a real or
complex function f (introduced in [5]) satisfies the difference functional
equation F (x) − F (x − 1) = f(x). Limit summability of functions was
extended in [6]. In 2010, Muller and Schleicher introduced the concept
of fractional sums and euler-like identities in [9]. In fact, they arrived at
the functional sequence fσn(x) introduced by Hooshmand (of course in
the special case σ = 0) while they were not aware of the limit summabil-
ity topic, even though they did not notice at theorems or conditions of
convergence of the functional sequence. In this paper, limit summability
of order two is desired. Let us present a summary of limit summability
of functions and state motivation of the topic.

Recall from [5, 6] some basic definitions and properties of limit summa-
bility (of order one). For a real or complex function f with domain Df
we set

Σf = {x|x+ N∗ ⊆ Df},
where N∗ is the set of posetive integers and N = {0} ∪ N∗. It is easy to
see that Σf =

∞
k=1Df − k, Σf ∩Df = Σf + 1 and

Df ⊆ Σf ⇐⇒ Df ⊆ Df − 1⇐⇒ Σf = Df − 1 (1)

If N∗ ⊆ Df , then for any positive integer n and x ∈ Σf we set

Rn(f, x) = Rn(x) = f(n)− f(x+ n) , fσn(x) = xf(n) +
n

k=1

Rk(x).

Definition 1.1. The function f is called limit summable at x0 ∈ Σf
if the sequence {fσn(x0)} is convergent. The function f is called limit
summable on the set S ⊆ Σf if it is limit summable at all points of
S. Now we set

Dfσ = {x ∈ Σf |f is summable at x},
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Also the function fσ(x) is the same limit function fσn with domain Dfσ
and it is referred to as the limit summand function of f . If x ∈ Df , we
may use the notation σn(f(x)) instead of σn(f, x).

It is proved in [5] that if Rn(f, 1) is convergent then Dfσ ∩Df = Dfσ +1
which is similar to the identity Σf ∩Df = Σf + 1.

Note that in general {0} ⊆ Dfσ ⊆ Σf , fσ(0) = 0 and if 0 ∈ Df then
{−1, 0} ⊆ Dfσ ⊆ Σf , fσ(−1) = −f(0). But 1 ∈ Dfσ if and only if
Rn(f, 1) is convergent. Now, if Dfσ = Σf (i.e., Dfσ takes the maximum
own amount), then f is called “weak limit summable”. As it is explained
in [5], a necessary condition for the summability of f at x is

lim
n→∞

Rn(f, x) := lim
n→∞

Rn(f, x)− xRn−1(f, 1) = 0.

Also, if 1 ∈ Dfσ , then the functional sequence Rn(f, x) is convergent on
Dfσ and R(f, x) := limn→∞Rn(f, x) = R(f, 1)x (for all x ∈ Dfσ), and

fσ(x) = f(x) + fσ(x− 1) +R(1)x ; x ∈ Dfσ + 1 (2)

So if R(1) = 0, then

fσ(m) = f(1) + · · ·+ f(m) =
m

j=1

f(j) ; m ∈ N∗. (3)

It is proved that the followings are equivalent:
(a) Df ⊆ Dfσ , R(f, 1) = 0;
(b) Σf = Dfσ , Df ⊆ Df − 1 , R(f, 1) = 0;
(c) f satisfies the functional equation (e.g., see [4])

fσ(x) = f(x) + fσ(x− 1) ; x ∈ Df . (4)

Every function satisfying the above equivalent conditions is called “limit
summable”. Hence, if f is limit summable then Dfσ = Df − 1 = Σf .

Remark 1.2. Since most of the functions which are used in this topic are
defined on [M,+∞) or (M,+∞) where M  1 is a fixed real number.
We note that for these functions, the initial condition Df ⊆ Df − 1
(or equivalently Df ⊆ Σf ) holds, indeed, if Df = [M,+∞) then Σf =
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[M − 1,+∞). Hence, these functions are limit summable if and only if
fn − fn−1 → 0 and Dfσ = [M − 1,+∞) (i.e., the functional sequence
fσn(x) is convergent at all defined points), so we have

fσ(x) = f(x) + fσ(x− 1) ; x M − 1.

Example 1.3. The real functions f(x) = x
−3
2 and g(x) = 1

x + ln(x)
are limit summable with Df = Dg = (0,+∞), Σf = Σg = (−1,+∞) =
Dfσ = Dgσ , and

fσ(x) = ζ(
3
2
)− ζ(3

2
, x+ 1) ; x  −1

gσ(x) = ψ(x+ 1) + γ + lnΓ(x+ 1) ; x  −1
where γ = 0.577215664901532... denotes the Euler-Mascheroni constant,
ψ di-gamma function, ζ(s) and ζ(s, a) are Riemann and Hurwits zeta
functions, respectively (see [2, 8]).

In [5], the same connections between limit summand and gamma type
functions (if there exist) are stated. Also, it is shown that gamma type
functions can be considered as a subtopic of limit summability. A main
theorem in [11] states existence of gamma type functions as limit func-
tion of the following functional sequence f∗n.

Theorem 1.4. Let the function f : R+ → R+ have the property that
for each w > 0, limx→∞

f(x+w)
f(x) = 1. Suppose that F : R+ → R+ is an

eventually log-convex function satisfying the functional equation F (x +
1) = f(x)F (x) for x > 0 and the initial condition F (1) = 1. Then F
is uniquely determined by f through the equation F (x) = limn→∞ f

∗
n(x)

where

f∗n(x) =
f(n)...f(1)fx(n)
f(n+ x)...f(x)

; x > 0 (5)

Proof. See Theorem 3.1 of [11]. 

The limit function f∗ defined by the following equation is called “gamma
type function of f”

f∗(x) := lim
n→∞

f∗n(x) = lim
n→∞

f(n)...f(1)f(n)x

f(n+ x)...f(x)
; x > 0. (6)
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Hence, the above theorem shows that the unique solution is the same
gamma type function f∗ respect to f . It is proved that Theorem 1.4 is
a result of Corollary 3.3 of [5] for the special case M = 0. Moreover, a
main relation between gamma type function of f : R+ → R+ and limit
summand function of ln f is proved as follow

f∗(x+ 1) = e(ln f)σ(x) ; x > 0

Indeed, By using the identity f∗n(x+ 1) = f(n)
f(n+x+1)f(x)f

∗
n(x) (for every

function f : R+ → R+) we have

f∗n(x) =
1
f(x)

e(ln f)σn (x) , f∗n(x+ 1) =
f(n)

f(n+ x+ 1)
e(ln f)σn (x) ;x > 0. (7)

Thus, the limit summability of ln f is equivalent to the existence of
gamma type function of f . Therefore, we can restate the gamma type
function of f as a definition.

Definition 1.5. We say a function f : R+ → R+ has gamma type
function if the functional sequence f∗n(x) (defined by (5)) is convergent
on R+, and we call f∗ (limit function of f∗n) gamma type function of f .

If f has gamma type function, then f satisfies the following functional
equation

f∗(x+ 1) = f(x)f∗(x) ; x > 0. (8)

Example 1.6. The real functions f(x) = x and g(x) = 1 + 1
x have

gamma type functions on (0,+∞) as follow

f∗(x) = e(lnx)σ(x−1) = Γ(x) = (x− 1)! , g∗(x) = x ; x > 0

2. Limit Summability of Order Two and 2-Gamma
Type Functions

Let f be a real or complex function such that Df ⊇ N∗. We know that its
limit summand function fσ with the domain Dfσ ⊇ {0} exists. Now by
putting fσ = g, a natural question which is arisen here is that whether g
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is summable or not (the idea for limit summability of order two). Thus,
the initial condition is that N∗ ⊆ Dg which is equivalent to 1 ∈ Dfσ
or equivalently Rn(f, 1) is convergent. Hence, the minimum necessary
condition to study limit summability of order two is convergence of the
sequence Rn(f, 1) = fn − fn+1 (that in the case we have Dgσ = ∅). But
it is not necessary that 1 ∈ Dgσ even though 1 ∈ Dfσ (see example of
page 76 of [6]). Therefore, we arrive at the following basic definitions.

Definition 2.1. Let f be a real or complex function with domain Df ⊇
N∗ such that Rn(f, 1) is convergent. Then, we call f limit summable
of order two at x0 if fσ (i.e., the limit sumand function of f) is limit
summable at x0, and denote the limit by fσ2(x0). We say that f is limit
summable of order two on a set E ⊆ Σfσ if fσ is limit summable at all
points of E.

It is worth noting that if f is limit summable of order two at x0, then

fσ2(x0) := lim
n→∞

fσ2n(x0) = lim
n→∞

(fσ)σn(x0)

= lim
n→∞


x0fσ(n) +

n

k=1

fσ(k)− fσ(k + x0)

. (9)

Note that with the condition Rn(f, 1) → R(f, 1), the function f is
limit summable of order two at least at the points −1 and 0. Thus
{−1, 0} ⊆ Dfσ2 ⊆ Dfσ − 1. Also, since fσ(0) = 0 then we can write

fσ2(x) =
∞

n=1

Rn(fσ, x) =
∞

n=1


Rn(fσ, x)− xRn−1(fσ, 1)


; x ∈ Dfσ2 (10)

and fσ2 is the 2-limit summand function of f .

Definition 2.2. We say that f is weak limit summable (resp. limit
summable) of order two if both f and fσ are weak limit summable (resp. limit
summable).

Note that if f is limit summable of order two, then we also call it 2-limit
summable and we have

fσ2(x) = fσ(x) + fσ2(x− 1) ; x ∈ Dfσ2 .
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Example 2.3. The function f(x) =
√
x is limit summable, but it is not

weak limit summable of order two (indeed, Dfσ2 = {−1, 0} that is the
least case).

Proposition 2.4. For every real or complex function f , the followings
are equivalent:
(a) f is weak limit summable of order two;
(b) Dfσ2 = Dfσ − 1 = Σf − 1;
(c) f is weak limit summable and fσ is limit summable on Σf − 1.

Moreover, each the above equivalent conditions follows that Rn(f, 1) and
Rn(fσ, 1) are convergent and

lim
n→∞

f(n+ 1) +R(f, 1)(n+ 1) = −R(fσ, 1).

Hence, if R(f, 1) = 0 then a necessary condition for weak limit summa-
bility of order two is convergence of the sequence fn.

Proof. First, note that if 1 ∈ Dfσ then Rn(f, 1) is convergent and
Dfσ ⊆ Dfσ − 1 (by Lemma 1.2 of [5]), hence

Σfσ = Dfσ − 1. (11)

(a) ⇒ (b) Since f is weak limit summable of order two, both f and
fσ are weak limit summable and by using (11) we have Dfσ2 = Σfσ =
Dfσ − 1 = Σf − 1. (b)⇒ (c) Obviously Dfσ = Σf and so Dfσ2 = Σf − 1.
(c) ⇒ (a) Since fσ is limit summable on Σf − 1 and according to (11)
we have Dfσ2 = Σf − 1, so fσ is weak limit summable.
Finally note that (2) implies that

Rn(fσ, 1) = fσ(n)− fσ(n+ 1) = −

f(n+ 1) +R(f, 1)(n+ 1)


(12)

and this identity completes the proof. 

Corollary 2.5. For every real or complex function f , the followings are
equivalent:
(a) f is limit summable of order two;
(b) Dfσ2 = Dfσ − 1 = Σf − 1 = Df − 2 and fn → 0;
(c) f is weak limit summable of order two, fn → 0 and Df ⊆ Df − 1.
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Proof. (a) ⇒ (b) Since both f and fσ are limit summable, Σf = Dfσ ,
Dfσ = Df − 1 and Dfσ2 = Dfσ − 1, thus by applying (11) and (12) we
get the result.

(b)⇒ (c) The assumption follows that Σf = Dfσ and Σf = Df−1, so by
using (1) we conclude that Df ⊆ Df − 1 and Proposition 2.4 completes
the proof.

(c)⇒ (a) It is obvious that f is limit summable, now according to (12),
R(fσ, 1) = 0 and consequently fσ is limit summable. 
If f is limit summable of order two then

fσ2(x) = f(x) + fσ(x− 1) + fσ2(x− 1) ; x ∈ Df ∩Dfσ = Dfσ + 1 (13)

But, if f is weak limit summable of order two then

fσ2(x) = f(x) + fσ(x− 1) + fσ2(x− 1) +R(f, 1)x

+R(fσ, 1)x ; x ∈ (Σf ∩ Σfσ) + 1 (14)

Conversely, if the equation (13) (resp. (14)) holds then f is limit summable
(resp. weak limit summable) of order two. Also, if f is 2-limit summable
then by using (10) and the identity

Rn(fσ, x) = fσ(n)− fσ(n+ x) =
n

k=1

f(k)−
n

k=1

f(k + x)− fσ(x)

=
n

k=1

Rk(f, x)− fσ(x)

We arrive at

fσ2(x) =
∞

n=1

Rn(fσ, x) = lim
n→∞

 n

k=1

fσk(x)− nfσ(x)


=
∞

n=1


fσn(x)− fσ(x)


; x ∈ Df − 2 = Dfσ − 1. (15)

Example 2.6. The signum function sign(x) is limit summable and we
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using (1) we conclude that Df ⊆ Df − 1 and Proposition 2.4 completes
the proof.

(c)⇒ (a) It is obvious that f is limit summable, now according to (12),
R(fσ, 1) = 0 and consequently fσ is limit summable. 
If f is limit summable of order two then

fσ2(x) = f(x) + fσ(x− 1) + fσ2(x− 1) ; x ∈ Df ∩Dfσ = Dfσ + 1 (13)

But, if f is weak limit summable of order two then

fσ2(x) = f(x) + fσ(x− 1) + fσ2(x− 1) +R(f, 1)x

+R(fσ, 1)x ; x ∈ (Σf ∩ Σfσ) + 1 (14)

Conversely, if the equation (13) (resp. (14)) holds then f is limit summable
(resp. weak limit summable) of order two. Also, if f is 2-limit summable
then by using (10) and the identity

Rn(fσ, x) = fσ(n)− fσ(n+ x) =
n

k=1

f(k)−
n

k=1

f(k + x)− fσ(x)

=
n

k=1

Rk(f, x)− fσ(x)

We arrive at

fσ2(x) =
∞

n=1

Rn(fσ, x) = lim
n→∞

 n

k=1

fσk(x)− nfσ(x)


=
∞

n=1


fσn(x)− fσ(x)


; x ∈ Df − 2 = Dfσ − 1. (15)

Example 2.6. The signum function sign(x) is limit summable and we
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have

signσ(x) =






x ;x > −1
−x− 1 ;x  −1 and x ∈ Z−

x+ 2[x] ;x  −1 and x /∈ Z−.

Also, sign(x) is weak limit summable of order two, but not 2-limit
summable.

For every real number 0 < a < 1, the real function f(x) = ax is limit
summable of order two. Since fσ(x) = a

a−1a
x − a

a−1 , by applying the
linearity property of σ-oprator (see Lemma 2.6 of [5]) we can write

fσ2(x) =
a

a− 1
σ(ax) +

a

a− 1
σ(1) = (

a

a− 1
)
2
(ax − 1)− a

a− 1
x.

Since, gamma type function is a subtopic of limit summability, the idea
of gamma type function of order two is induced as follow.

Definition 2.7. A function f : R+ → R+ has gamma type function of
order two (or 2-gamma type function) if both f∗ = g (i.e., gamma type
function of f) and (f∗)∗ = g∗ exist. If this is the case, we denote (f∗)∗

by f∗∗.

Note that f∗∗ is the limit function of

f∗∗n (x) := (f∗)∗n(x) =
f∗(n)...f∗(1)f∗(n)x

f∗(n+ x)...f∗(x)
,

if f has gamma type function of order two, then f∗ satisfies the func-
tional equation

f∗∗(x+ 1) = f∗(x)f∗∗(x) ; x > 0. (16)

Example 2.8. For every real numbers 0 < a < 1 and 0 < b = 1 the real
function f(x) = ba

x
has 2-gamma type function and

f∗(x) = lim
n→∞

baba
2
...ba

n
(ba

n
)x

baxbax+1 ...bax+n
= b

1
a−1

ax− a
a−1 , f∗∗(x) = b

ax+a2−2a

(a−1)2
− ax

(a−1) .

But the function f(x) = x does not have 2-gamma type function, be-
cause the functional sequence Γ∗n(x) is divergent.
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Remark 2.9. Note that the gamma type functions of order two are
obtainable from the topic and so all of conclusions and properties for
limit summability of order two can be concluded for them. Indeed, by
using (7) we get

ln f∗n(x) = (ln f)σn(x)− ln f(x) ; x > 0.

Now, putting f∗ instead of f in the above equality yields the relation
between 2-gamma type function of f and (ln f)σ2 (the second limit sum-
mand function of ln f) as follow

ln f∗∗n (x) = (ln f∗)σn(x)− ln f∗(x) =

(ln f)σ − ln f



σn
(x)− ln f∗(x)

= (ln f)σ2
n
(x)− (ln f)σn(x)− ln f∗(x) ; x > 0

So, we have

f∗∗n (x) =
1

f∗(x)
e
(ln f)

σ2n
(x)−(ln f)σn (x) =

f∗(n+ x+ 1)
f∗(n)f∗(x)

f∗∗n (x+ 1) ; x > 0

Thus

f∗∗n (x+ 1) =
f∗(n)

f∗(n+ x+ 1)
e
(ln f)

σ2n
(x)−(ln f)σn (x) ; x > 0. (17)

Hence, if ln f is limit summable of order two, then by letting n→∞ we
get

f∗∗(x+ 1) = e(ln f)σ2 (x)−(ln f)σ(x) ; x > 0. (18)

This important and fundamental relation shows that every conclusion
for limit summability of order two could be also used in 2-gamma type
functions and vice versa, if f : R+ → R+. For example, the logarithm of
function f(x) = ba

x
is 2-limit summable and

f∗∗(x+ 1) = e(ln f)σ2 (x)−(ln f)σ(x) = b
a

(a−1)2
ax− a

(a−1)
x− a

(a−1)2

Hence

f∗∗(x) = b
ax+a2−2a

(a−1)2
− ax

(a−1)

that is the same solution of Example 2.8.
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2.1 Some criteria for limit summability of order two

In [6], it is shown that the convexity, concavity and monotonic conditions
play important roles in limit summability of real functions. Our aim is to
show that they can be also used for limit summability of order two (and
consequently the existence of 2-gamma type functions), but it happens
by adding some suitable conditions. Firstly, for this purpose, we state
two results of Theorems 3.1 and 3.3 of [6] by which we will prove some
tests to examine 2-limit summablity.

Theorem 2.1.1. Let M  1 be a fixed real number and f : [M,+∞)→
R be a function such that the sequence fn := f(n) is bounded.

(a) If f is increasing (resp. decreasing) on [M,+∞) from a number on,
then f is limit summable. In addition, f is uniformly limit summable on
every bounded subset of [M − 1,+∞) .

(b) If f is increasing (resp. decreasing) on [M,+∞) and f(∞)  0(resp.
f(∞)  0) then fσ is decreasing (resp. increasing) (on its domain Dfσ =
[M − 1,+∞)).

Theorem 2.1.2. Let M  1 be a fixed real number and f : [M,+∞)→
R be a function such that the sequence Rn(f, 1) is bounded.

(a) If f is convex (resp. concave) on [M,+∞) from a number on, then
f is weak limit summable. Moreover, f is uniformly limit summable on
every bounded subset of [M − 1,+∞).

(b) If f is convex (resp. concave) on [M,+∞) then the summand func-
tion of f (i.e., fσ) is concave (resp. convex) on its domain [M −1,+∞)
and fσ is the only function (with the domain) that is concave (resp. con-
vex) on [M,+∞) (from a number on), fσ(0) = 0 and satisfies the func-
tional equation

fσ(x) = f(x) + fσ(x− 1) +R(f, 1)x ; x M.

Now, we can present some similar tests to examine limit summability
of order two for monoton and convex (concave) functions as follow.

Theorem 2.1.3. Let M  1 be a fixed real number and f : [M,+∞)→
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R a function such that the sequence fn is convergent and the partial sum
sequence of fn is bounded.

(a) If f is increasing (resp. decreasing) on [M,+∞) from a number on
and f(∞)  0(resp. f(∞)  0), then f is 2-limit summable and fσ is
uniformly summable on every bounded subset of [M − 2,+∞).

(b) If f is increasing (resp. decreasing) on [M,+∞) and fσ(∞) :=
limn→∞ fσ(n)  0 (resp. fσ(∞)  0) then fσ2 is increasing (resp. de-
creasing) on its domain Dfσ2 = [M − 2,+∞).

Proof. (a) Firstly, Theorem 2.1.1 causes that f is limit summable. Since
R(f, 1) = 0 and the sequence fσ(n) ( i.e., the partial sum sequence of
fn ) is bounded, then according to Theorem 2.1.1 (b), fσ is decreasing
(resp, increasing) on [M − 1,+∞). So by using part (a) of Theorem
2.1.1, fσ is limit summable on [M − 2,+∞). Now, Corollary 2.5 follows
that f is limit summable of order two.

(b) Regarding part (a), and Putting fσ instead of f in Theorem 2.1.1(b)
yield the result. 

Corollary 2.1.4. If f : R+ → R+ is an increasing function such that∞
n=1 fn is convergent, then f has the 2-gamma type function. Moreover,

f∗∗n is uniformly convergent on every bounded subset of R+ (the similar
conclusion is obtained for decreasing functions).

Proof. In order to get the result, we apply Theorem 2.1.3 for the func-
tion ln f and relation (17). 

Example 2.1.5. For a given real number 0 < a < 1 the function f(x) =
ln(ax + 1) is limit summable of order two (by Theorem 2.1.3). Now, by
using q-pochhammer symbol, defined by

(a; q)0 := 1,

(a; q)k := (1− a)(1− aq)(1− a q2)...(1− a qk−1) ; k = 1, 2, 3, ...,

(a; q)∞ := lim
k→∞

(a; q)k =
∞

j=0

(1− a qj),
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We have the identity

(a; q)∞
(a qt; q)∞

= (a; q)t ; t ∈ R

(see [1, 7]). Therefore

fσ(x) = ln
 ∞

n=1(1 + an)∞
n=1(1 + an+x)


= ln


(−a; a)∞

(−ax+1; a)∞


= ln((−a; a)x).

Hence, by (9) we obtain

fσ2
n
(x) = x ln

 ∞

k=1

(1 + ak)
(1 + ak+n)


+

n

t=1

ln

 ∞

k=1

(1 + ak)
(1 + ak+t)



− ln

 ∞

k=1

(1 + ak)
(1 + ak+t+x)



= x ln((−a; a)n) +
n

t=1

ln

 ∞

k=1

(1 + ak+t+x)
(1 + ak+t)



= ln


n

t=1


1

(−at+1; a)x


(−a; a)nx



then by letting n→∞ we obtain

fσ2(x) = ln

 ∞

n=1


1

(−an+1; a)x


(−a; a)∞x


.

Theorem 2.1.6. Let M  1 be a fixed real number and f : [M,+∞)→
R a function such that R(f, 1) = 0 and fn is bounded

(a) If f is concave (resp. convex) on [M,+∞) then f is weak limit
summable of order two and fσ is uniformely summable on every bounded
subset of [M − 2,+∞)

(b) If the concavity (resp. convexity) of f holds on [M,+∞) then fσ2 is
the only function (with domain [M−2,+∞)) that is concave (resp. con-
vex) on [M − 1,+∞), fσ2(0) = 0 and satisfies the functional equation

fσ2(x) = f(x) + fσ2(x− 1) +R(fσ, 1)x ; x M − 1.
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Proof. (a) Firstly, Theorem 2.1.2 makes f limit summable. Since
R(f, 1) = 0 and sequence Rn(fσ, 1) is bounded. Also, according to The-
orem 2.1.2 (b) fσ is concave (resp. convex) on [M − 1,+∞). Hence, by
part (a) of Theorem 2.1.2 fσ is weak limit summable of order two.

(b) Applying part (a) and Putting fσ instead of f in Theorem 2.1.2 (b)
yield the result. 

Corollary 2.1.7. Let f : R+ → R+ be a function such that fn → 1.
(a) If f is log-concave (resp. log-convex) on (0,+∞) then f is 2-gamma
type function and f∗∗n is uniformely convergent on every bounded subset
of (0,+∞). Also, if the log-concavity (resp. log-convexity) of f holds on
(0,+∞) then f∗∗ is the only function (with domain (0,+∞) ) that is
log-concave (resp. log-convex) on (0,+∞), f∗∗(1) = 1 and satisfies (16).

Proof. We get the result, by using Theorem 2.1.6 for ln f and using
(17). 

Example 2.1.8. The function f(x) = Γ(x+ 1
2
)√

xΓ(x)
, is log-concave from (0,+∞)

onto (0, 1) (see Theorem 1.12 of [10]). Hence, by applying Corollary 2.1.7,
f has 2-gamma type function and f∗∗n is uniformly convergent on every
bounded subset of (0,+∞). Also, the function g(x) = 1 + ax where
0 < a < 1 has 2-gamma type function and by applying Example 2.1.5
we get

g∗∗(x+ 1) =
(−a; a)∞

x

(−a; a)x

∞

n=1

1
(−an+1; a)x

.

Example 2.1.9. According to Example 3.7 of [6], the function p(x) =
xr with the domain Dp = (0,+∞) is limit summable if and only if
r < 1. But, if 0 < r < 1 then p is not 2-limit summable (because
Rn(pσ, 1) = nr) is divergent. Now, if r < 0, then p is 2-limit summable,
Dpσ = (−1,+∞), Dpσ2 = (−2,+∞) and we have

pσ(x) =






∞
n=1


nr − (n+ x)r


;−1 < r < 0

ψ(x+ 1) + γ ; r = −1
ζ(−r)− ζ(−r, x+ 1) ; r < −1.

Now by (10) if −1 < r < 0, we have
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pσ2(x) =
∞

n=1

∞

N=1

(N + n+ x)r − (N + n)r + xnr

= (1 + x)

ζ(−r)− ζ(−r, x+ 2)


−


ζ(r)− ζ(r, x+ 2)


.

If r = −1, then

pσ2(x) =
∞

n=1


ψ(n+ 1)− ψ(n+ x+ 1) + xnr


.

and if r < −1, then

pσ2(x) =
∞

n=1


ζ(−r, n+ x+ 1)− ζ(−r, n+ 1) + xnr


.

3. Relationships Between 2-Limit Summability
and Limit Summability of Multipliers: Ap-
plications for 2-Gamma Type Functions

In this section we show that there exist some interesting relations be-
tween the limit summability of order two and limit summability of
the multiplier of f (i.e., ι · f) where ι is the identity function and
(ι · f)(x) = xf(x)). As a result of the study, we obtain a formula for
gamma type function of f(x)x and f∗∗(x).

Theorem 3.1. Let f be a real or complex function such that R(f, 1) =
0. If f is limit summable at x ∈ Σf and the functional sequence

δn(f, x) := δn(x) = n

fσn(x)− fσ(x)


− (x2 + x)f(n)

= nRn(fσ, x)− (x2 + x)f(n),

is convergent, then 2-limit summability of f and limit summability of
ι · f at x are equivalent, and we have

fσ2(x) = (x+ 1)fσ(x)− (ι · f)σ(x) + δ(x), (19)
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where δ(x) = limn→∞ δn(x).
If f : [1,+∞) → C is a limit summable function such that δn(f, x) is
convergent and fn → 0, then 2-limit summabalitiy of f(x) is equivalent
to limit summabality of xf(x) and we have

fσ2(x) = (x+ 1)fσ(x)− (ι · f)σ(x) + lim
n→∞

n

fσ(x)− fσn(x)


; x  1. (20)

Proof. Since R(f, 1) = 0, then (3) implies that

fσ(k) =
k

j=1

f(j) , fσ(k + x) =
k

j=1

f(j + x) + fσ(x)

and

(fσ)σn(x) = xfσ(n) +
n

k=1

fσ(k)− fσ(k + x)

= xfσ(n) +
n

k=1

k

j=1

f(j)− f(j + x)− fσ(x)

= xfσ(n)− nfσ(x) +
n

k=1

k

j=1

Rj(x)

= xfσ(n)− nfσ(x) +
n

j=1

(n+ 1− j)Rj(x)

Therefore

(fσ)σn(x) = x

fσ(n)− nf(n)


− n


fσ(x)− fσn(x)


+

n

j=1

(1− j)Rj(x) (21)

On the other hand, we have

(ι · f)σn(x) = xnf(n) +
n

j=1

jf(j)− (j + x)f(j + x)

= xnf(n)− x
n

j=1

f(j + x) +
n

j=1

jRj(x)

= xnf(n)− x

fσ(x+ n)− fσ(x)


+

n

j=1

jRj(x)
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So

(ι · f)σn(x) = x

nf(n)− fσ(x+ n) + fσ(x)


+

n

j=1

jRj(x) (22)

Combining (21) and (22), we get

(fσ)σn(x) + (ι · f)σn(x) = x

fσ(n) + fσ(x)− fσ(x+ n)



− n

fσ(x)− fσn(x)


+ fσn(x)− xf(n)

= (x+ 1)fσn(x) + n

fσn(x)− fσ(x)



− (x2 + x)f(n). (23)

Now letting n→∞ in the above equality yeilds the result. 

Example 3.2. If |a| < 1 then the complex function xax is limit summable
and

σ(xax) = (x+ 1)
a

a− 1
(ax − 1)− (

a

a− 1
)
2
(ax − 1) + x

a

a− 1

=
a

a− 1
xax − a

(a− 1)2
(ax − 1).

Corollary 3.3. Suppose that f : R+ → R+ is a function such that
fn → 1 and f has gamma type function, and put

µn(f, x) := eδn(ln f,x) ; x > 0

(where δn is defined as in Theorem 3.1). If δn(ln f, x) is convergent,
then f has gamma type function of order two if and only if f ι (where
f ι(x) := f(x)x) has gamma type function and we have

f∗∗(x+ 1) =
f∗(x+ 1)x

(f ι)∗(x+ 1)
µ(f, x) (24)

Proof. Applying Theorem 3.1 for the function ln f and relation (17),
we get the result as follow

f∗∗n (x+ 1) =
f∗(n)

f∗(n+ x+ 1)
e(x+1)(ln f)σn (x)−(ι. ln f)σn (x)+δn(ln f,x)−(ln f)σn (x)
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Now, by using (7) we have

µn(f, x) = eδn(ln f,x) =
f∗n(x+ 1)f(n+ x+ 1)

f∗(x+ 1)f(n)

n 1

f(n)x
2+x

; x > 0

and

f∗∗n (x+ 1) =
f∗(n)

f∗(n+ x+ 1)

f∗n(x+ 1)f(n+ x+ 1)
f(n)

x

(f ι)∗n(x+ 1)f ι(n+ x+ 1)
f ι(n)

−1
µn(f, x) ; x > 0. (25)

Letting n→∞ yields the result. 

Example 3.4. Consider the real function f(x) = 1 + 1
x on (0,+∞). It

is easy to see that f∗(x) = x for all x > 0. Since fn → 1, µn → 1
and f∗∗(x) = Γ(x), then Corollary 3.3 implies that the function f(x)x =
(1 + 1

x)
x has gamma type function and we have

(f ι)∗(x+ 1) =
(x+ 1)x

Γ(x+ 1)
=

(x+ 1)x

x!
; x > 0.

Theorem 3.5. Let f be a function such that f and ι · f are summable
at x ∈ Σf and fn is convergent. Then

(a) We have

lim
n→∞

 n

k=1

fσk(x)−nfσn(x)

= (x+1)fσ(x)− (ι ·f)σ(x)− (x2+x)f(∞).

(b) If δ(x) = 0, then f is 2-limit summable and

fσ2(x) = (x+ 1)fσ(x)− (ι · f)σ(x)

= lim
n→∞

 n

k=1

fσk(x)− nfσ(x)


= lim
n→∞

 n

k=1

fσk(x)− nfσn(x)

+ (x2 + x)f(∞).
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Proof. By computing (fσ)σn(x) in another method we have

(fσ)σn(x) = xfσ(n)− nfσ(x) +
n

k=1

k

j=1

Rj(x)

= xfσ(n)− nfσ(x) +
n

k=1

fσk(x)−
n

k=1

xf(k)

= (
n

k=1

fσk(x))− nfσ(x). (26)

Now combining relations (26) and (23), then letting n → ∞ get the
result. 

Corollary 3.6. Let f : R+ → R+ be a function such that both f and f ι

have gamma type function, and fn → 1 then

(a) We have

f∗(x+ 1)x+1

(f ι)∗(x+ 1)
= lim

n→∞

n
k=1 f

∗
k (x+ 1)

f∗n(x+ 1)n
.

(b) If µ(x) = 1, then f has 2-gamma type function and

f∗∗(x+ 1) =
f∗(x+ 1)x

(f ι)∗(x+ 1)
= lim

n→∞

n
k=1 f

∗
k (x+ 1)

f∗(x+ 1)n

= lim
n→∞

n
k=1 f

∗
k (x+ 1)

f∗n(x+ 1)nf∗(x+ 1)
.

Proof. By using relations (17) and (26) we have

f∗∗n (x+ 1) =
f∗(n)

f∗(n+ x+ 1)
e
n
k=1(ln f)σk (x)−n(ln f)σ(x)−(ln f)σn(x)

=
f∗(n)

f∗(n+ x+ 1)


e
n
k=1(ln f)σk (x)


e(ln f)σ(x)

−n
e(ln f)σn (x)

−1

=
f∗(n)

f∗(n+ x+ 1)


e
ln
n
k=1 f

∗
k (x+1)

f(k+x+1)
f(k)

 f∗(x+ 1)−nf(n)
f∗n(x+ 1)f(n+ x+ 1)

;x > 0
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Therefore

f∗∗n (x+ 1) =
f(n)f∗(n)

f(n+ x+ 1)f∗(n+ x+ 1)f∗n(x+ 1)f∗(x+ 1)n
n

k=1

f∗k (x+ 1)f(k + x+ 1)
f(k)

; x > 0 (27)

Now, Combining relations (27) and (25), then letting n → ∞ get the
result. 

Example 3.7. If 0 < a < 1 then the real function g(x) = bxa
x
has

gamma type function, for all 0 < b = 1. Because by putting f(x) = ba
x

we have µ(f, x) = 1, g = f ι and

g∗(x+ 1) = (f ι)∗(x+ 1) =
f∗(x+ 1)x

f∗∗(x+ 1)
=


b

a
a−1

ax− a
a−1

x

b
a

(a−1)2
ax− a

(a−1)
x− a

(a−1)2

= b
a

(a−1)
xax− a

(a−1)2
(ax−1)

.
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