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1. Introduction

In 1976, the notion of coincidence and common fixed point of commut-
ing mappings are introduced by G. Jungck [6]. Several authors have
contributed to the development of the existence and uniqueness of coin-
cidence points of operators in different spaces [2, 3, 5, 12, 14]. Khojaste
et al. [7], introduced simulation function and new contraction depending
simulation function. Recently, Roldan et a.l [13], modified this concept
and proved the existence and uniqueness of coincidence points of two
operators in the setting of complete metric spaces.
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On the other hand, in 1992, G. Mathews [8] introduced the notion of
the partial metric which can be applied to the study of denotational
semantics of data for network. In [9], A. Nastasi et. al proved the ex-
istence and uniqueness of fixed points by using R-functions and lower
semi-continuous functions in the setting of metric spaces and partial
metric spaces.

In this paper, inspired by [6, 9, 13] we deduce some coincidence point re-
sults in the setting of ordered partial metric spaces by using R-functions
and an application to integral equations is given.

2. Preliminaries

We start by recalling some definitions and properties of partial metric
spaces which will be needed during the paper.

Definition 2.1. [8] A partial metric on a nonempty set X is a function
p : X ×X → R such that for all x, y, z ∈ X;
(i) p(x, x) = p(x, y) = p(y, y)⇔ x = y.
(ii) p(x, x)  p(x, y).
(iii) p(x, y) = p(y, x).
(iv) p(x, z)  p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X. Clearly, a metric p on a set X is a partial
metric such that p(x, x) = 0 for all x ∈ X.

Each partial metric p on X generates a T0−topology τp on X which has
as a base, the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Let (X, p) be a partial metric space. Then
(i) (X, τp) is first countable.

(ii) A sequence {xn}n∈N in a partial metric space (X, p) converges to
a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn). A sequence
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{xn}n∈N in a partial metric space (X, p) is called a Cauchy sequence if
there exists limn,m→∞ p(xn, xm).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn}n∈N in X converges, with respect to τp, to a point x ∈ X
such that p(x, x) = limn,m→∞ p(xn, xm).

Every partial metric p on X, induces a metric ps : X×X −→ R+ defined
by ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X, such that τ(p)
is finer than τ(ps) [8].

To see some examples of partial metric spaces refer to [8, 11].

Lemma 2.2. [10] A partial metric space (X, p) is complete if and only if
the metric space (X, ps) is complete. Furthermore, limn−→∞ ps(a, xn) =
0 if and only if p(a, a) = limn−→∞ p(a, xn) = limn,m−→∞ p(xn, xm).

Lemma 2.3. [8] Let (X, p) be a partial metric space. Then the following
hold:
(i) If p(x, y) = 0, then x = y.
(ii) If x = y, then p(x, y) > 0 .

Lemma 2.4.[13] Let (X, p) be a partial metric space and let λ : X −→
[0,∞) be defined by λ(x) = p(x, x) for all x ∈ X. Then the function λ

is continuous in the metric space (X, ps).

Recently, fixed point theory has developed in metric spaces and partial
metric spaces endowed with a partial ordering [5, 1].

Definition 2.5. Let X be a nonempty set. Then (X,, p) is called
an ordered partial metric space if (X,) is a partially ordered set, and
(X, p) is a partial metric space.

Two elements x and y of X are called comparable if x  y or y  x

holds.

Definition 2.6. [3] Two self mappings f and g on a set X have a
coincidence point, say x, if y = f(x) = g(x) and y is called a point of
coincidence of f and g. Also f and g are said to be weakly compatible if
f(g(x)) = g(f(x)) whenever f(x) = g(x).
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Lemma 2.7. [3] Let X be a nonempty set and the mappings f, g :
X −→ X have a unique point of coincidence y in X. If f and g are
weakly compatible, then f and g have a unique common fixed point.

Definition 2.8. [1] Let (X,) be a partially ordered set and f, g : X −→
X. Then f is said to be g-nondecreasing if for x, y ∈ X,

g(x)  g(y) =⇒ f(x)  f(y).

3. Main Results

We begin this section by giving the concept of R-function ( see [13]).

Definition 3.1.A function ϕ : [0,∞)×[0,∞) −→ R is called R−function
if the following conditions hold:
(i) for each sequence {an}n∈N ⊆ (0,∞) with ϕ(an+1, an) > 0, for all
n ∈ N, then limn−→∞ an = 0;
(ii) for every two sequences {an}n∈N, {bn}n∈N in (0,∞) converging to
the same limit L  0, then L = 0 whenever L < an and ϕ(an, bn) > 0
for all n ∈ N.

In the sequel (X,, p) is an ordered partial metric space where (X,)
is a partially ordered set and (X, p) is a partial metric space.

In the main result, we suppose that the following property holds.

Property (C). If {xn}n∈N ⊆ X is a nondecreasing (noncreasing) se-
quence with xn −→ x in X, then xn  x (x  xn) for all n ∈ N. Also,
assume that f and g are two self mappings on X such that f, g are com-
parable at some x0 ∈ X and f is g-nondecreasing, f(X) ⊆ g(X) and
one of the sets f(X) or g(X) is closed.

Theorem 3.2. Let f, g be two self mappings on an ordered complete
partial metric space (X,, p) and the Property (C) be fulfilled. Suppose
that f satisfying

ϕ(p(f(x), f(y)), p(g(x), g(y))) > 0, (1)
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for all comparable g(x), g(y) with g(x) = g(y), x, y ∈ X and some R-
function ϕ. Also assume that for any two sequences {an}n∈N, {bn}n∈N in
(0,∞) such that limn−→∞ bn = 0 and ϕ(an, bn) > 0 for all n ∈ N, then
limn−→∞ an = 0. Then f and g have a coincidence point x ∈ X such
that p(g(x), g(x)) = 0.

Moreover, if all the points of coincidence of f and g are comparable and
f, g are weakly compatible, then f and g have a unique common fixed
point.

Proof. By Property (C), g(x0)  f(x0) or f(x0)  g(x0). Without lose
of generality, suppose g(x0)  f(x0) and choose {xn}n∈N in X such that
f(xn) = g(xn+1) and

g(x0)  f(x0) = g(x1)  f(x1) = g(x2)  · · ·  f(xn)  g(xn+1),

for all n ∈ N ∪ {0}. If {xn}n∈N contains a coincidence point xj , j ∈ N ∪
{0}, of f and g, then g(xj+1) = f(xj) = g(xj). So an = p(g(xj), g(xj)) =
0. If not, then by cotractive condition

ϕ(p(f(xj), f(xj)), p(g(xj), g(xj))) > 0

with an = p(g(xj), g(xj)) = 0, n ∈ N. By Definition 3.1 (i) and f(xj) =
g(xj), we have limn−→∞ an = 0 and then p(g(xj), g(xj)) = 0.

Now, assume that {xn}n∈N does not contain any coincidence point of
f and g, that is g(xn) = f(xn) = g(xn+1) for all n  0. Then an =
p(g(xn), g(xn+1)) > 0 for all n  0 and so by contraction condition, for
all n  0

ϕ(an+1, an) = ϕ(p(g(xn+1), g(xn+2)), p(g(xn), g(xn+1)))

= ϕ(p(f(xn), f(xn+1)), p(g(xn), g(xn+1)))

> 0.

Therefore limn−→∞ an = limn−→∞ p(g(xn), g(xn+1)) = 0.
But limn−→∞ p(g(xn+1), g(xn+1)) = 0 and then

lim
n−→∞

ps(g(xn), g(xn+1)) = 0.
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Claim. The sequence {g(xn)}n∈N is a Cauchy sequence. Suppose not,
then there exists subsequences {g(xm(k))}k∈N, {g(xn(k))}k∈N of {g(xn)}n∈N
such that k  n(k) < m(k) and

ps(g(xn(k)), g(xm(k)−1))  ε0  ps(g(xn(k)), g(xm(k))

for all k ∈ N. But limn−→∞ ps(g(xn+1), g(xn)) = 0, then

lim
k−→∞

ps(g(xn(k)), g(xm(k))) = lim
n−→∞

ps(g(xn(k)−1), g(xm(k)−1)) = ε0.

Suppose that p(g(xn(k)−1), g(xm(k)−1)) > 0 for all k ∈ N. By the contrac-
tion condition (1), for sequences {ak}k∈N = {p(g(xn(k)), g(xm(k)))}k∈N
and {bk}k∈N = {p(g(xn(k)−1), g(xm(k)−1))}k∈N, we have

ϕ(ak, bk) = ϕ(p(g(xn(k)−1), g(xm(k))), p(g(xn(k)−1), g(xm(k)−1))) > 0

for all k ∈ N. But for all k ∈ N,

ε0 < p(g(xn(k)), g(xm(k))) = ak

then by Definition 3.1 (ii),

lim
n−→∞

an = lim
n−→∞

bn = 0

and so ε0 = 0, which is a contracdiction. Therefore {g(xn)}n∈N is a
Cauchy sequence in complete metric space (X, ps). By closedness of f(X)
or g(X), there exists x ∈ X such that

lim
n−→∞

ps(g(xn), g(x)) = 0.

Using Lemma 2.4 and Lemma 2.2, then

0  p(g(x), g(x))  lim inf
n−→∞

p(g(xn), g(xn))  lim
n−→∞

p(g(xn), g(xn)) = 0.

Therefore p(g(x), g(x)) = 0 and this implies that

lim
n−→∞

p(g(x), g(xn)) = 0.

At last, we show that x is a coincidence point of f and g.
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If {g(xn)}n∈N has a subsequence {g(xn(k))}k∈N such that g(xn(k)) = f(x)
for all k ∈ N, then by uniqueness of the limit in (X, ps), we have f(x) =
g(x). Otherwise, if there exists subsequence {g(xn(k))}k∈N of {g(xn)}n∈N
such that g(xn(k)) = g(x) for all k ∈ N and g(xn(k0)+1) = g(xn(k0)) for
some k0 ∈ N, then f(xn(k0)) = g(xn(k0)).

If for all k ∈ N, g(xn(k)+1) = g(xn(k)), then we can consider the sequence
{g(xn)}n∈N \ {g(x)}n∈N instead of {g(xn)}n∈N. Assume g(xn) = g(x)
and g(xn) = f(x) for all n ∈ N. Put an = p(g(xn), g(x)) and bn =
p(f(xn), f(x)) for all n ∈ N. Clearly {an}n∈N, {bn}n∈N ⊆ (0,∞) and

lim
n−→∞

an = lim
n−→∞

p(g(xn), g(x)) = 0.

By using Property (C), we have g(xn)  g(x) for all n ∈ N and by
contraction condition

ϕ(bn, an) = ϕ(p(f(xn), f(x)), p(g(xn), g(x))) > 0.

Then by Definition 3.1 (ii), limn−→∞ bn = p(f(xn), f(x)) = 0. Therefore
by partial metric property we have

lim
n−→∞

ps(f(xn), f(x)) = 0.

But f(xn) = g(xn+1) for all n ∈ N∪{0}, then limn−→∞ ps(g(xn), f(x)) =
0 and by uniqueness of the limit in the metric space (X, ps), we have
f(x) = g(x).

Now assume all the points of coincidence of f and g are comparable and
f and g are weakly compatible. Then for y ∈ X with f(y) = g(y) we
have g(y) = g(x). If not, then for all n ∈ N , an = p(g(y), g(x)) > 0 and

ϕ(an+1, an) = ϕ(p(f(y), f(x)), p(g(y), g(x))) > 0.

Thus limn−→∞ an = 0 and g(y) = g(x).

Finally, Lemma 2.7 implies that f and g have a unique common fixed
point. 

Following example illustrates Theorem 3.2.
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Example 3.3. Let X = R+ with natural ordering  and define the
partial metric p on X by p(x, y) = max{x, y} for all x, y ∈ X. So
(X,, p) is an ordered partial metric space. Consider the R-function
ϕ : [0,∞)×[0,∞) −→ R defined by ϕ(t, s) = s−2t for all t, s ∈ R. Clearly
ϕ(t, s)  s− t. Define two mappings f, g : X −→ X by

f(x) =


x, 0  x  1√
x, x > 1.

, g(x) = 3x.

Obviously, f, g are comparable on R+, mapping f is g-nondecreasing,
f(X) ⊆ g(X) and f(X) is closed. For all x = y in X, (except x = 0 or
y = 0 ) g(x) and g(y) are comparable and the contraction condition

ϕ(p(f(x), f(y)), p(g(x), g(y))) > 0

holds. In fact, for 0  x  1 with x  y we have ϕ(x, 3x) = x > 0 and
for x > 1, we have ϕ(

√
x, 3x) = 3x −

√
x > 0. So all the conditions

of Theorem 3.2 hold and f, g have a unique coincidence point. In fact,
f(0) = g(0) = 0 and p(f(0), g(0)) = 0.

The fact that, for any R-function ϕ which satisfies the relation

ϕ(t, s)  s− t

for any t, s ∈ [0,∞) Theorem 3.2 holds, assures that Theorem 3.2 is an
extension of Geraghty’s fixed point theorem [4] to the coincidence point
in the setting of ordered partial metric spaces.

Corollary 3.4. Let f, g be two self mappings on an ordered complete
partial metric space (X,, p) and Prpperty (C) be fulfiled. Suppose that

p(f(x), f(y))  ψ(p(g(x), g(y))) · p(g(x), g(y)),

for all comparable g(x), g(y) with g(x) = g(y), x, y ∈ X and ψ : [0,∞) −→
[0, 1) is a function with the property that limn−→∞ αn = 0, {αn}n∈N ⊆
[0,∞) whenever limn−→∞ ψ(αn) = 1. Then f and g have a coincidence
point x ∈ X such that p(g(x), g(x)) = 0.

Proof. Define ϕ : [0,∞)× [0,∞) −→ R by

ϕ(t, s) = ψ(s)s− t (t, s ∈ R).
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Clearly ϕ(t, s)  s − t for all t, s ∈ [0,∞) and ϕ is a R-function. The
desired result can be concluded by Theorem 3.2. 

The following corollary is also valid whenever we define the function ϕ
by ϕ(t, s) = ψ(s)s− t.

Corollary 3.4. Let f, g be two self mappings on an ordered complete
partial metric space (X,, p) and Prpperty (C) be fulfiled. Suppose that

p(f(x), f(y))  ψ(p(g(x), g(y))) · p(g(x), g(y)),

for all comparable g(x), g(y) with g(x) = g(y), x, y ∈ X and ψ : [0,∞) −→
[0, 1) is a function that lim supt−→r+ ψ(t) < 1 for all r ∈ (0,∞). Then
f and g have a coincidence point x ∈ X such that p(g(x), g(x)) = 0.

Proof. Define ϕ : [0,∞)× [0,∞) −→ R by

ϕ(t, s) = ψ(s)s− t (t, s ∈ R).

Clearly ϕ(t, s)  s − t for all t, s ∈ [0,∞) and ϕ is a R-function. The
desired result can be concluded by Theorem 3.2. 

The following corollary is also valid whenever we define the function ϕ
by ϕ(t, s) = ψ(s)s− t.

Corollary 3.5. Let f, g be two self mappings on an ordered complete
partial metric space (X,, p) and Prpperty (C) be fulfiled. Suppose that

p(f(x), f(y))  ψ(p(g(x), g(y))) · p(g(x), g(y)),

for all comparable g(x), g(y) with g(x) = g(y), x, y ∈ X and ψ : [0,∞) −→
[0, 1) is a function that lim supt−→r+ ψ(t) < 1 for all r ∈ (0,∞). Then
f and g have a coincidence point x ∈ X such that p(g(x), g(x)) = 0.

By considering the function ψ : [0,∞) −→ [0, 1) which is a right con-
tinuous function and ψ(t) > 0 for all t ∈ (0,∞), Corollary 3.5 again is
valid.
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4. An Application

In this section, by using Theorem 3.2, we prove the existence and the
uniqueness of the solution of the system of integral equations

u(x) =
 b

a
λ1k1(x, t)F1(t, u(t))dt (2)

v(x) =
 b

a
λ2k2(x, t)F2(t, v(t))dt

in the space of real continous functions X = C(I), I = [a, b], where
x ∈ I; λi ∈ R; ki : I × I −→ R, Fi : I × R −→ R, i = 1, 2 and for
u ∈ C(I), u = supt∈I |u(t)|. Consider X = C(I) with the following
order

u1  u2 ⇐⇒ u1(t)  u2(t) (t ∈ I).

The space (X, p) with p(u1, u2) = 1
2(u1−u2+u1+u2) is a partial

metric space. Consider the following assumptions on the system (2):

(1) For all u ∈ X, there exists v ∈ X such that for all x ∈ I

 b

a
λ1k1(x, t)F1(t, u(t))dt =

 b

a
λ2k2(x, t)F2(t, v(t))dt

(2) For all u1, u2 ∈ X, if

 b

a
λ2k2(x, t)F2(t, u1(t))dt 

 b

a
λ2k2(x, t)F2(t, u2(t))dt,

then

 b

a
λ1k1(x, t)F1(t, u1(t))dt 

 b

a
λ1k1(x, t)F1(t, u2(t))dt.

(3) There exists α ∈ (0, 1) such that |λ1|  α|λ1|.



ON THE COINCIDENCE POINT IN ORDERED PARTIAL ... 11

(4) For all u1, u2 ∈ X

(i) |
 b

a
k1(x, t)[F1(t, u1(t))− F1(t, u2(t))]dt|  |

 b

a
k2(x, t)[F2(t, u1(t))− F2(t, u2(t))]dt|

(ii) |
 b

a
k1(x, t)F1(t, ui(t))dt|  |

 b

a
k2(x, t)F2(t, ui(t))dt| (i = 1, 2)

for all comparable
 b

a k2(x, t)F2(t, u1(t))dt =
 b

a k2(x, t)F2(t, u2(t))dt.

(5) If
 b

a
λ1k1(x, t)F1(t, u(t))dt =

 b

a
λ2k2(x, t)F2(t, u(t))dt,

then
 b

a
λ1 k1(x, t)F1


t,

 b

a
λ2k2(t, z)F2(z, u(z))dz)


dt

=
 b

a
λ2k2(x, t)F2


t,

 b

a
λ1k1(t, z)F1(z, u(z))dz


dt.

By using the above assumptions, we show that Theorem 3.2 assures
that the system (2) has a unique solution when ϕ : [0,∞)× [0,∞) −→ R
defined by ϕ(t, s) = αs−t is a R-function for t, s ∈ [0,∞) and α ∈ (0, 1).

Define two self mappings f and g by

(f(u))(x) =
 b

a
λ1k1(x, t)F1(t, u(t))dt

(g(u))(x) =
 b

a
λ2k2(x, t)F2(t, u(t))dt.

Let w ∈ f(X) then w(x) = (f(u))(x) =
 b

a λ1k1(x, t)F1(t, u(t))dt. By
(1), there exists v ∈ X such that for all x ∈ I

 b

a
λ1k1(x, t)F1(t, u(t))dt =

 b

a
λ2k2(x, t)F2(t, v(t))dt = (g(v))(x).

So w = g and f(X) ⊆ g(X).
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On the other hand if g(u)  g(v), for u, v ∈ X, then on (C(I),, p) we
have

 b

a
λ2k2(x, t)F2(t, u(t))dt =

 b

a
λ2k2(x, t)F2(t, v(t))dt

for all x ∈ I. By (2), (f(u))(x)  (f(v))(x) for all x ∈ I and f(u)  f(v),
i.e. f is g-nondecreasing.

Note that for any x ∈ I and u, v ∈ X,

|
 b

a λ1k1(x, t)[F1(t, u(t))− F1(t, v(t))]dt|+ |
 b

a
λ1k1(x, t)F1(t, u(t))dt|

+ |
 b

a
λ1k1(x, t)F1(t, v(t))dt|

 α|λ2|(|
 b

a
k1(x, t)[F1(t, u(t))− F1(t, v(t))]dt|+ |

 b

a
k1(x, t)F1(t, u(t))dt|

+ |
 b

a
k1(x, t)F1(t, v(t))dt|)

 α |
 b

a
λ2k2(x, t)[F2(t, u(t))− F2(t, v(t))]dt|+ α |

 b

a
λ2k2(x, t)F2(t, u(t))dt|

+ α |
 b

a
λ2k2(x, t)F2(t, v(t))dt|

 α (g(u)− g(v)+ g(u)+ g(v)) .

So the contraction condition (1) holds, i.e.,

f(u)− f(v)+ f(u)+ f(v)  α (f(u)− f(v)+ f(u)+ f(v)) .

Therefore all assumptions of Theorem 3.2 are fulfilled and so f, g have
coincidence point. Suppose that f(u) = g(u) or equivalently

 b

a
λ1k1(x, t)F1(t, u(t))dt =

 b

a
λ2k2(x, t)F2(t, u(t))dt.

Then by condition (5),
 b

a
λ1k1(x, t)F1


t,

 b

a
λ2k2(t, z)F2(z, u(z))dz)


dt

=
 b

a
λ2k2(x, t)F2


t,

 b

a
λ1k1(t, z)F1(z, u(z))dz


dt.
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This implies that f and g are weakly compatible and they have a unique
fixed point. In others words the system (2) has a unique solution.
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