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1. Introduction

A completely distributive complete lattice is called a molecular lattice. In
1992, Wang introduced his important theory called topological molec-
ular lattices as a generalization of ordinary topological spaces, fuzzy
topological spaces and L-fuzzy topological spaces in terms of closed ele-
ments, molecules, generalized order-homomorphisms and remote neigh-
bourhoods [13]. Then many authors characterized some topological no-
tions in such spaces, such as convergence theories of molecular nets or
ideals [5, 3], separation axioms [6, 8|, generalized topological molecular
lattices [7, 12, 14] and other notions.

In general topological lattice theory, since there are no concepts like
complement or pseudocomplement, ‘open’ and ‘closed’ are not dual con-
cepts. To be exact, when an open concept is given, we could not take
for granted that a ‘closed’ concept will be surely found, and vice versa.

Throughout this paper for a molecular lattice L, a subset 7 of L is
called a topology if it is closed under arbitrary joins, finite meets and
0,1 € 7, where 0 and 1 are the smallest and the greatest elements of
L, respectively. Every element of a topology is called open. A subset A
of L is called a cotopology if it is closed under arbitrary meets, finite
joins and 0,1 € A; and it is called a generalized cotopology on L if it
is only closed under arbitrary meets and 0,1 € A. Every element of a
cotopology or a generalized cotopology is called closed.

In [12], we introduced the concept of a generalized topological molecular
lattice (briefly, gtml) as a pair (L, 7), where 7 is a topology on L. Let a*
denote the pseudocomplement of an element a. Then for any molecular
lattice L, the first De Morgan law (\/;c;a;)” = ;s a; holds. Thus if 7
is a topology on L, then the set 7* := {a* | @ € 7} is a generalized co-
topology on L, and hence we have two structures on a molecular lattice,
topology and generalized cotopology which are not dual to each other.

In the following, we recall some definitions and properties of molecular
lattices. For two molecular lattices L and Lo, and a mapping f : L1 —
Lo which preserves arbitrary joins, let f denote the right adjoint of f,
then f: Ly — Ly is defined by f(y) = \/{z € L, | f(z) < y} for every y € L.
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Definition 1.1. [13] A map f : L1 — Lo between molecular lattices is
called a generalized order-homomorphism or an ml-map in this paper,
if f preserves arbitrary joins and its right adjoint is a complete homo-
morphism, i.e., f preserves arbitrary joins and arbitrary meets.

Lemma 1.2. [1, 4] Let g : Ly — Ly be a complete homomorphism
between molecular lattices. Then g has a left adjoint f : L1 — Lo and
hence f is an ml-map.

Definition 1.3. [13] An element a of a lattice L is called coprime, if
a < bVcimpliesa < b ora < c, for every b,c € F, and it is called
completely coprime if, for every S C F, a < V.S implies a < s for some
seSs.

We denote by M (L) and M (L) the set of all nonzero coprime elements
and nonzero completely coprime elements of F', respectively. Nonzero
coprime elements are also called molecules. If L is a molecular lattice,
then L is V-generated by the set M (L), i.e., every element of L is a join
of some elements of M(L).

The category of all molecular lattices with ml-maps between them is
denoted by MOL and the category of all topological molecular lattices
in the sense of Wang with continuous ml-maps between them is denoted
by TML. It is well known that these categories are complete and co-
complete and some categorical structures of them were introduced by
many authors [2, 9, 11, 13, 14, 15, 16, 17]. In the following, readers are
suggested to refer to [1] for some categorical notions.

Definition 1.4. [9] Let {L;}icr be a family of molecular lattices and
LY = L;\{0}. An element A in @, L; is defined as a subset in the direct
product [, LY subject to the following conditions:

1. | A=A, that is, if {yitier € [[; LY, {xi}tic1 € A, and Vi € I,
z; 2 Yi, then {yitier € A.

2. If 0 # B; C LY, and [[; B; C A, then b € A, where b = {b;}ier,
Viel, b, = suphB;.

Remark 1.5. [9] Let {Li}icr be a family of molecular lattices. Then
{(&Q, Li,pi) | i € I} is the product of {L;}icr in MOL, where the order
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in @, L is the usual inclusion relation in set theory. The NjcjA; in
®); L; is the intersection NjcyA; and the VcjA;j is as follows:

\/ Aj = {{bi}ie[ ‘ dB; C L?,i el st HBZ' - U Aj and V B; = bl}
jed i jeJ
The projection mapping pi, : Q; Li — Li, is defined as follows:
Pio(A) = \/{zi, | {i}ier € A} (1)
Ifz; € LY for each i € I, then | {z;}icr € @, Li, where | {x;}icr is the
lower set in [[; LY generated by {x;}icr. The coprime elements of @, L;
are as follows:

M = {| {mi}icr € Q) Li | mi € M(L;),i € I}.

)

2. The Category TDML

In this section, we define the category TDML and show that the cate-
gory TOP of all topological spaces is a reflective and coreflective sub-
category of TDML.

Definition 2.1. An element m of a molecular lattice L is called *-

coprime, if for every x € L, either m < x or m < z*.

We denote by M (L) the set of all nonzero *-coprime elements of L. It
is easy to show that M(L) C M(L) € M(L). For any topological space
(X, 1), let P(X) denote the powerset of X. Then the pseudocomplement
on P(X) is the subset complement, (P(X), 7) is a topological molecular
lattice and M(P(X)) = M(P(X)) = M(P(X)) = {{z} | z € X}. In
general, we have M (L) is a join generating base for a molecular lattice
L if and only if L is a molecular lattice isomorphic to P(M ), moreover

M(L) = M(L) = M(L).

Definition 2.2. A mapping f : L1 — Lo between molecular lattices is
said to be an x-generalized order-homomorphism or an xml-map if it is
an ml-map and its right adjoint f preserves *, i.e., f(a*) = (f(a))* for
every a € Lo.

By Lemma 1.2, we have the following result.
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Lemma 2.3. Let g : Ly — L1 be a complete homomorphism preserving
x between molecular lattices. Then g has a left adjoint f: L1 — Lo and
hence f is an *xml-map.

Definition 2.4. An sml-map f : (L1, 71) — (L2, T2) between gtmls s
said to be continuous if it is continuous with respect to topology T, i.e.,

f(b) € 71 whenever b € 4.

Definition 2.5. A molecular lattice L is said to be a De Morgan lattice
if the second De Morgan low (/\iel ai)* = V,cr a; holds; and if T is also

a topology on L, then the pair (L, T) is called a topological De Morgan
molecular lattice (briefly, tdml).

Thus for tdmls the set 7" is a cotopology, and if an sml-map f :
(L1,71) — (L2,72) between gtmls (tdmls) is continuous, then it is
continuous with respect to generalized cotopology (cotopology) 73, i.e.,
f(a) € 7f whenever a € 73.

A distributive pseudocomplemented lattice L is said to be a stone algebra
if a* v a*™* =1 for every a € L [4, 10]. It is easy to show that every De
Morgan molecular lattice is a stone algebra, but the converse is not true,
in general. For example, consider the molecular lattice [0, 1] which is a
stone algebra but it is not a De Morgan lattice, because if a,, = % for
every natural number n, then (A an)* =1 but \/ a} = 0.

The category of all gtmls with continuous *ml-maps between them is
denoted by GTML and the full subcategory of GTML of all tdmls is
denoted by TDML.

Lemma 2.6. Let L be a molecular lattice and BL :={z € L | x V z* =

1}. Then:
1. BL is a complete sublattice of L and if x € BL, then x* € BL, that

is, the inclusion map e : BL — L is a complete homomorphism
preserving *.

2. BL is a Boolean algebra.

For any set X and z € X we do not distinguish {z} from x.
Let L be a molecular lattice. We define a mapping ¢ : L — P(M (L))
by .

pla) ={z e M(L) |z < a} (2)
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Then ¢ is a complete homomorphism preserving *. The functor cr :
GTML — TOP is defined by cr(L,n) = (cr(L),p(n)), where ¢(n) =
{¢(a) | a € n} and cr(L) = M(L) For any continuous sml-map f :
(Li,m) — (La,1), the mapping cr(f) : (M(Ly), o(m)) — (M(L), (1))
is given by cr(f)(x) = f(z). Then f is continuous if and only if er(f) is
continuous.

Theorem 2.7. cr : GTML — Top is the right adjoint of the embedding
functor P : Top — GTML, that is, Top is a coreflective subcategory
of GTML.

Proof. Let (L,n) be any given gtml. Consider w : (P(M(L)),gp(n)) —
(L,n) defined by u(A) = v{m € M(L) | m € A}. Since p ou = id
and u o ¢ < id, it follows that u is a left adjoint of ¢ as defined in (2)
and so it is a continuous *ml-map. In the following we prove that u is
universal. Let (X, 7) be a topological space, and f : (P(X),7) — (L,n)
be a continuous *ml-map. Define f : (X,7) — (M(L),(p(n)) by f(z) =
f(x). Then f is the unique continuous *ml-map satisfying the condition

uoP(f) = f. Thus cr is a right adjoint of P. O
For a molecular lattice L define a mapping ¢ : BL — P(M(BL)) by

Y(a) ={m e M(BL) | m < a}.

Then ¢ is a complete isomorphism preserving *.

The functor r : GTML — Top is defined by r(L,n) = (r(L),r(n)),
where r(L) = M(BL) and r(n) = {¢(a) | a € nN BL}. For any continu-
ous sml-map f : (L1,n1) — (Lga,n2), the its right adjoint f is a complete
homomorphism preserving .

Since b € BLs implies f (b) € BLy, it follows that the restriction mapping
g = [ |BL,: (BLa,7(n2)) — (BL1,7r(m)) is a complete homomorphism
preserving .

Let h : (BL1,r(m)) — (BLa,r(n2)) be a left adjoint of g. Then h

is a continuous *ml-map and the mapping r(f) : (M (BL1),r(m)) —
(M(BLs),r(n2)) defined by r(f)(m) = h(m) is a continuous function.

Theorem 2.8. r : GTML — Top is the left adjoint of the embedding
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functor P : Top — GTML, that is, Top is a reflective subcategory of
GTML.

Proof. Let (L,n) be any given gtml. Suppose that K : (L,n) —
(P(M(BL)),r(n)) be a left adjoint of the map eoy~! : P(M(BL)) —
L. In the following we prove that k is couniversal. Let (X, 7) be a topo-
logical space, and f : (L,n) — (P(X), 7) be a continuous *ml-map. We
define f : (r(L),r(n)) — (X,7) by f(m) = f(m). Then f is the unique

continuous «ml-map satisfying the condition P(f) ok = f. Thus r is a
left adjoint of P. O

Since for every molecular lattice L, the Boolean algebra BL is a De
Morgan molecular lattice, similar to the proofs of the above theorems
we have the following result.

Theorem 2.9. Top is a reflective and coreflective full subcategory of
TDML.

Remark 2.10. By the previous theorems, the categories GTML and
TDML have a non-trivial reflective and coreflective full subcategory. On
the other hand, TOP does not have such a subcategory, so this phe-
nomenon sharply distinguishes these categories from TOP on the cate-
gorical level.

3. Equalizers and Produts

In this section, we give the structures of limits as equalizers and products
in TDML. Moreover, we show that the category GTML has equaliz-
ers. Also, we show that the forgetful functor U : GTML — MOL does
not reflect products.

For an ml-map, since f and f preserve arbitrary joins, we have f (0) =

A~

f(Vo) = V¢ = 0 and similarly, f(0) = 0.

Lemma 3.1. Let f : FF — G be an ml-map. Then the following state-
ments hold.

1. fof<id, fof>id, fofof=Ffand fofof=Ff, whereid
denotes the identity map.
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2. f s unique, i.e., if go f > id and f o g < id, then g = f

3. f(1) =1. Also, f(a) =0 if and only if a = 0.

Proof. For parts (1) and (2) see [1, 4]. Since f(1) < 1, we have 1 <
F(f(1)) < f(1) and hence f(1) = 1. Now, let f(a) = 0. Then a <
f(f(a)) = f(0) = 0 and hence a = 0. O

Lemma 3.2. Let f : L1 — Lo be a map between molecular lattice such
that preserves arbitrary joins.

(a) If f is an sml-map, then f preserves x-coprime elements.

(b) [fﬁ is a join gemerating base for Ly, then f is an sml-map if and
only if f preserves x-coprime elements.

Proof. (a) Let m € M(L1) and y € Ly. Then m < f(y) or m <

(f(y))* = f(y*). Thus either f(m) <y or f(m) < y*. If f(m) =0, then
m = 0, which is a contradiction. Thus f(m) is an *-coprime element.

(b) Let y € Lo, m € M(Ly) and f preserves #-coprime elements. Then

m< fy) e fm)<y' e fm) Lyemt fy) em< (fiy)"

Thus f(y*) = (f(y))*. Conversely, by part (a), the result holds. [

By Lemma 3.2, we have the following result.

Corollary 3.3. f : {0,1} — L is an *ml-map if and only if f(1) €
M(L).

Definition 3.4. Let L be a molecular lattice and E be a complete
join subsemilattice of L, i.e., E C L and it is closed under arbitrary
joins. Then we say that E is an *-molecular sublattice (briefly, xmsubl)
of L if E is a molecular lattice and the inclusion map e : E — L is an
sml-map.

Example 3.5. Let L = {0,z,y,1}, where z and y are incompara-
ble. Then L is a molecular lattice and F = {0,z} is an *xmsubl of
L.If A= {0,1}, then A is a molecular lattice but it is not an *msubl of
L, because by Corollary 3.3, the inclusion e : A — L is not an *xml-map.
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Definition 3.6. Let (L,7) be a gtml and E be an xmsubl of L. If
0 = é(7), then (E,J) is also a gtml which is called a gtmsubl of L.

Notice that if E is a gtmsubl of L, then the inclusion *sml-map e : A —
L is continuous.

Now, we present a characterization of *msubls. Let L be a molecular
lattice. In the following, we consider a mapping J : L — L which satisfies
the following conditions:

1) J(a) <aforall a € L;
S2) JoJ=J;

(S

(

(S3) J preserves arbitrary joins;

(S4) J(Nierd(a;)) = J(Nierai) for all a; € L;
(S

5) J(J(a) Axz) =0 implies J(a) < J(z*) for all a,z € L.

Lemma 3.7. Let L be a molecular lattice and E be a complete join
subsemilattice of L. Then E is an xmsubl of L if and only if there
exists a mapping J : L — L which satisfies the conditions (S1) — (S5),
such that E = ImJ and a® = J(a*) for each a € E, where a¢ denotes
the pseudocomplement of a in E.

Proof. Let E be an xmsubl of L. Since the inclusion e : £ — L is an
sml-map, if we define a mapping J : L — L by J(a) = é(a) for each
a € L, then the result holds. Conversely, let J : L — L be a mapping
which satisfies the conditions (S1) — (S5), such that E = ImJ and
a® = J(a*) for each a € E. Since J preserves joins, it follows that F is a
complete join subsemilattice of L and hence is a complete lattice. Now,
we show that the infimum in F is as following:

Mierd (ai) = J(Nierai)-

Since Ajera; < aj, we have J(Aiera;) < Mierd(a;). Conversely, let x € E
and = < a; for every i € I. Then z = J(z) < J(a;) and hence z =
J(x) < Nierd(a;). Thus z < J(Nierd(ai)) = J(Niera;), as desired. On
the other hand, we have

VierMjesJ(aij) = J(VierNjesaij) = J(Njes Vier aij) = Njeg Vier J(aij).
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Thus F is a molecular lattice. Let z € E and z¢ be the pseudocomple-
ment of z in E. Since x M J(z*) = J(x)NJ(z*) = J(x Az*) = J(0) = 0,
it follows that J(z*) < z¢. Conversely, let y € F and y Mz = 0. Then
we have

O=yNa=Jy) NJx)=JyAz)=J(J(y) \z).

Therefore y = J(y) < J(z*), and hence ¢ = J(z*). Finally, we show
that e : E — L is an sml—map. For any x € L we have

é(x) =V{J(a) | J(a) <z} = é(x) = J(é(x)) <z = é(z) < J(x).
Since J(z) < z, it follows that é(xz) = J(z). Thus for any x € L we have
o) = J(*) = (J@) = (@) D

Lemma 3.8. Let L be a molecular lattice and E be a complete join
subsemilattice of L. Let S be the collection of all mappings J : L — L
which satisfy the conditions (S1) — (S5) and ImJ C E. Then S with
respect to pointwise order has a mazimal element v such that for each
Jes§, ImJ CImyCE.

Proof. Let v : L — L defined by v(a) = V{J(a) | J € S} for every
a € L. Then we have:

L y(a) < g;
2. y(v(a)) = v(VyesJ(a)) = ViesI(ViesJ(a)) = ViesI(a) = v(a);

3. ¥(Vierai) = Vyesd (Vierai) = VyesVier J(ai) = VierVjes J(a;) =
Viery(ai);

4. y(Nierv(ai)) = Vyes{I (Nierv(a:i)} = J(Niery(ai)) =
J(NierVies{J(ai)}) = J(Vies{NierJ(ai)}) = Vies{J(NierJ(ai))}
= Vyes{J(Nierai)} = v(Nierai);

5. If v(v(a) A x) = 0, then J(v(a) A z) = 0 for every J € S. Thus
V(a) < J(z") <v(2%).
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It is easy to see that for every J € S, J < v and Im~y C E. On the other
hand, we have J(a) = J(J(a)) < v(J(a)) < J(a). Thus J(a) = y(J(a)),
and hence ImJ C Im~. O

By Lemmas 3.7 and 3.8, we have the following results.

Corollary 3.9. Let L be a molecular lattice and A be a complete join
subsemilattice of L. Let S be the collection of all xmsubls B of L such
that B C A. Then S has a mazimal element.

Corollary 3.10. Let (L,7) be a gtml and A be a complete join sub-
semilattice of L. Let S be the collection of all gtmsubls B of L such
that B C A. Then S has a mazximal element. Moreover, if (L,T) is a
tdml, then so is the maximal element.

Theorem 3.11. The equalizer of (L1, 7'1) (Lg,72) in GTML is the pair
(E,e), where E is the maximal gtmsubl of L1 such that E C Ef, =
{z € F | f(z) = g(z)} and e : E — Ly is the continuous inclusion
sml-map.

Proof. Let h : N — Lq be an *ml-map such that foh = go h. We
define a mapping .J : Ly — L; by J(a) = ho h(a). Since hohoh = h,
it is easy to show that J satisfies the conditions (S1) — (S5). Thus
Imh = ImJ C E¢4 and hence h(z) € E. Now, we define o : N — E by
a(z) = h(x). Then e o « = h and for every x € E we have

i(a€) = &(é(2)°) = (@0 é)(z") = h(z") = (h(x))" = (&))",

Thus « is an *ml-map. Finally, it is easy to check that « is continuous
and unique. [

By Theorem 3.11 and Corollary 3.10, we have the following result.
IR
Theorem 3.12. Let (L1,7'1) (L2, T2) be morphisms in TDML. Then

s
e: (E,0) — (L1, 7) is an equalizer of (Ll,T)§<L2,77> in TDML if and
only if e is an equalizer in GTML.
Corollary 3.13. If M(Ll) is a join generating base for Ly, then the
1
equalizer of (Ll,n) (Lo, 72) in GTML is the pair (E,e), where E is
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the gtml generated by the set Mfg = {m e M(Ly) | f(z) = g(2)} and
e: E — L is the continuous inclusion *ml-map.

Proof. Let v : Ly — L; defined by v(a) = V{m € Mfg |m < a}. ‘It is
easy to check that ~ satisfies the conditions (S1)—(S5) and Imvy = E. On
the other hand, for every mapping J : L; — L; which satisfies the
conditions (S1) — (85) and ImJ C Ey4, we have J(a) = J(V{m €
M(Ly) | m < a}) = V{J(m) | m € M(L1),m < a}. Since J(m) < m,
for every m € M, either J(m) = m or J(m) = 0. Thus ImJ C Im,
which shows that E is the maximal gtmsubl of L; such that £ C Eyg,

as desired. O

f
Example 3.14. Let XY be arbitrary continuous functions. Then the
g

P
equalizer of P(X)P? )P(Y) in TDML is the pair (F,e), where F is the

tdml generated bygthe set {{z} |z € X,f(zx) =g(x)} ande: E —
P(X) is the continuous inclusion *ml-map. Thus E = P(Ey,), where
E¢g:={r € X | f(x) = g(x)} is the equalizer of f and g in TOP. This
of course amounts to the familiar fact that the reflector P preserves
limits.

The following Lemma is an immediate consequence of Definition 1.4 and
Remark 1.5.

Lemma 3.15. Let py, : @Q,c; Li — Ly be the projection mapping de-
fined in (1), for some k € I and {x;}icr € @;c; Li- Then the following
statements hold.

1. pr(2) =1 {yitier for every z € Ly, where

1, iR,
Y= 2, ifi=k

2. (I {mitier)” = Ve Di(x).
3. I {xitier = Nier Pi(xi).

4. pi(z*) = (pi(2))* for anyi € I and z € L;.
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5. (pi(2) N pj(w))* = pi(z") V pj(w*) for any i,j € I, z € L; and
w € Lj.

By Lemma 3.15, it is easy to show that if L; is a De Morgan molecular
lattice for every i € I, then so is @);c; Li. Thus we have the following
result.

Theorem 3.16. {((®Q);c; Li, 7),pi) | i € I} is the product of {(Li, 7;) }icr
in the category TDML, where T = {a € @, L;i | Vi € I,p;(a) € 7;}.
Proof. Let {f; : (L,7") — (L, 7i) }ier be a family of TDML-morphisms.
By the property of product in MOL, there exists a unique morphism
f (L, 7") — (®,er Li, 7) such that p; o f = f; for every i € I and
f(a) =1 {fi(a)}ier- By Lemma 3.15, we have:

((l {witier)”) \/pz \/f \/fz \/ fz(%))

i€l i€l i€l i€l
/\fz xz /\f pz 35‘7, /\pz xz (l {551}161)) .
el i€l i€l

Thus f is an *xml-map. It is easy to check that f is continuous and
unique. [

Theorem 3.17. The forgetful functor U : GTML — MOL does not
reflect product.

Proof. Consider the molecular lattice L = {0,a,b,c,1}, where a and
b are incomparable, a < ¢,b < ¢. Let f,g : (L,7) — (L,7) be the
continuous xml-mappings defined by ¢(0) = 0, g(a) = b, g(b) = a,
g(c) = ¢, g(1) = 1 and f = id, where id is the identity map and

= {0,1}. Let (L@ L,p1,p2) be the product in MOL. Then there
exists a unique ml-map h : L — L L such that pj o h = f and
p2 o h = g. Now, we have

A((L(0,0))) = (] (a, ))VA(L (1,a)) = avb = ¢ # (h(] (b,)))" = 0° = 1.

Thus h is not an «ml-map and hence (L Q) L, p1,p2) is not a product in
GTML. O

By Theorems 3.12 and 3.16, we have the following result.
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Theorem 3.18. TDML is a complete category.
Question. Does GTML have products?

4. Coequalizers and Coproduts

In this section, we show that GTML and TDML have coequalizers and
coproducts.
Recall that {([[, Li,q:) | ¢ € I} is the coproduct of {L;};cr in the cat-
egory MOL, where the order in [], L; is the pointwise order and the
mapping ¢i, : Li, — []; L; is defined by ¢;,(2) = {i}icr, and

xi—{ 0, if i # o,

x, if i = ig.
Theorem 4.1. {(([T,c; Lis ), i) | i € I} is the coproduct of {(Li,73)bier
in category GTML, where 7 = {a € [[,c; Li | Vi € I, gi(a) € 7}
Proof. Let {f; : (L;,7;) — (L, ") }ier be a family of GTML-morphisms.
By the property of coproduct in MOL, there exists a unique mor-
phism f : ([[,c; Li,7) — (L,7') such that f o¢q; = f; for every i € I,
and f({zi}icr) = Vs fi(xi). Since ¢; preserves the operation * and
Gi({bi}ier) = bi, it follows that ¢; is an *xml-map for every i € I. Now,
we have
f(a) ={fi(a") }ier = {fi(a) }ic; = (f(a))"

Thus f is an *xml-map. It is easy to check that f is continuous and
unique. [

If L; is a De Morgan molecular lattice for every i € I, then so is [[,.; L.
Thus we have the following result.

Corollary 4.2. The structure of coproduct in TDML is the same co-
product in GTML.

f .
Let (Ll,T)E(LQ, n) be a pair of GTML-morphisms. Then f and § are
complete homomorphism preserving *. So the set Qry := {a € Lo |
f(a) = g(a)} is a complete sublattice of Ly such that a* € Q4 whenever
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a € Q4. Thus the inclusion map e : Q4 — L2 is a complete homomor-
phism preserving *. By Lemma 2.3, e has a left adjoint g : Ly — Q.

Theorem 4.3. The coequalizer of (L1, T)é(L% n) in GTML is (Qtg,q,9),
where q : (L2,m) — (Qf4,9) is the left adjoint of the inclusion map
e: Qg — Ly and 6 = {a | §(a) € n}.

Proof. Since fo e=goe, it follows that go f =qog. Let h: Ly — N
be an *ml-map such that ho f = hog. Then oh = f o h, so fl(a) eFE
for every a € N. Thus the mapping a : N — E defined by a(a) = h(a)
is a complete homomorphism preserving * and e o @ = h. By Lemma
2.3, a has a left adjoint r : E — N such that jor = h and consequently
roq = h. It is easy to check that r is continuous and unique. [

s
Let (Ll,T)E(LQ, n) be a pair of TDML-morphisms. Then @y, is a De
Morgan molecular lattice. Thus we have the following result.

Corollary 4.4. The structure of coequalizer in TDML 1is the same
coequalizer in GTML.

By the previous statements, we have the following result.

Theorem 4.5. TDML and GTML are cocomplete categories.

5. Conclusion

In 1992, Wang introduced the concept of topological molecular lattices
in terms of closed elements as a generalization of ordinary topological
spaces in tools of molecules, remote neighbourhoods and generalized
order-homomorphisms. In this paper, we have introduced the cocom-
plete category GTML whose objects are generalized topological molec-
ular lattices in terms of open elements and whose morphisms are con-
tinuous generalized order-homomorphisms such that its right adjoins
preserve the pseudocomplement operation. Also, we have defined the
concept of a topological De Morgan molecular lattice and shown that the
category TDML of topological De Morgan molecular lattices as a full
subcategory of GTML is both complete an cocomplete. In particular,
we have investigated the structures of colimits as coequalizers, coprod-
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ucts in GTML and TDML; and the structures of limits as equalizers
and products in TDML. Moreover, we have shown that the category
GTML has equalizers.
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