Journal of Mathematical Extension Vol. 13, No. 1, (2019), 143-152 ISSN: 1735-8299 URL: http://www.ijmex.com

(φ, ψ) – Biprojective Banach Algebras

Z. Ghorbani* Jahrom University

J. Baradaran Jahrom University

Abstract. The article studies the concept of a (φ, ψ) - biprojective and (φ, ψ) -pseudo amenable Banach algebra A, where φ is a continuous homomorphism on A and $\psi \in \Phi_A$. We show if A is (φ, ψ) - contractible, then A is (φ, ψ) - biprojective. The converse holds, whenever A is either unital or commutative and there exists $a_o \in A$ such that $\varphi(a_0) = a_0$.

AMS Subject Classification: 46H25; 47B47

Keywords and Phrases: Banach algebra, (φ, ψ) – amenable, (φ, ψ) – biprojective

1. Introduction

Amenable Banach algebra was introduced by Johnson in [6]. He showed that A is amenable Banach algebra if and only if A has a approximate diagonal that is, a bounded net (m_{α}) in $(A \otimes A)$ such that $m_{\alpha}a - am_{\alpha} \longrightarrow 0$ and $\pi(m_{\alpha})a \longrightarrow a$ for every $a \in A$. The notion of a biflat and biprojective Banach algebra was introduced by Helemskii [4, 5]. Indeed, A is called biprojective if there is a bounded A-bimodule map $\theta : A \longrightarrow A \otimes A$ such that $\pi \circ \theta = id_A$.

He considered a Banach algebra A is amenable if A biflat and has a bounded approximate identity [3, 5]. In fact, A is called biflat if there exists a bounded A-bimodule map $\theta : (A \otimes A)^* \longrightarrow A^*$ such that $\theta \circ \pi^* = id_{A^*}$.

Given a continuous homomorphism φ from A into A, authors in [9, 10] are defined and studied φ -derivations and φ -amenability.

Received: January 2019; Accepted: May 2019

^{*}Corresponding author

Recall that a character on A is a non-zero homomorphism from A into the scalar field. The set of all characters on A is called the character space of A and is denoted by Φ_A .

This article studies (φ, ψ) – contractible Banach algebras, where φ is a continuous homomorphism on A and $\psi \in \Phi_A$. We show that if A is (φ, ψ) – contractible, then A is (φ, ψ) – biprojective. The converse holds, whenever Ais either unital or commutative and there exists $a_o \in A$ such that $\varphi(a_0) = a_0$.

2. (φ, ψ) - Biprojective Banach Algebras

Suppose that A is a Banach algebra. Let Hom(A) denotes the set of all continuous homomorphisms from A into itself.

Definition 2.1. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. We say that A is (φ, ψ) - biprojective if there exists a bounded A-bimodule map $\theta: A \longrightarrow (A \otimes A)$, where $\psi \circ \pi \circ \theta \circ \varphi = \psi \circ \varphi$.

If A is a biprojective Banach algebra, then A is a (φ, ψ) - biprojective Banach algebra for every $\varphi \in Hom(A)$ and $\psi \in \Phi_A$.

Theorem 2.2. Suppose that A is a (φ, ψ) - biprojective Banach algebra. If I is a closed deal of A with one sided bounded approximate identity and $\varphi(I) \subset I$. Then I is $(\varphi|_I, \psi|_I)$ - biprojective.

Proof. Assume that $\theta: A \longrightarrow (A \otimes A)$ is a continuous A-bimodule map such that $\psi \circ \pi \circ \theta \circ \varphi(a) = \psi \circ \varphi(a)$ $(a \in A)$. Let $\iota: I \hookrightarrow A$ be the inclusion map. Then $\theta|_I = \theta \circ \iota: I \longrightarrow (A \otimes A)$ is *I*-bimodule homomorphism. If I^3 denotes span $\{abc: a, b, c \in I\}^-$, then $I^3 = I$, because *I* has a one sided bounded approximate identity and

$$\begin{array}{lll} \theta|_{I} &=& \theta(I) \\ &=& \theta_{(}I^{3}) \\ &\subseteq& span\{a \cdot \theta(b) \cdot c\}^{-} \\ &\subseteq& span\{a \cdot m \cdot c : a, c \in I, m \in A \otimes A\}^{-} \subseteq I \otimes I. \end{array}$$

So for every $a \in I$,

$$\begin{aligned} \psi \circ \pi \circ \theta|_{I} \circ \varphi(a) &= \psi \circ \pi(\theta(\varphi(a))) \\ &= \psi \circ \varphi(a). \ \Box \end{aligned}$$

Proposition 2.3. Let A be a (φ_A, ψ_A) – biprojective Banach algebra, and let B be a (φ_B, ψ_B) – biprojective Banach algebra with $\varphi_A \in Hom(A)$,

144

 $\psi_A \in \Phi_A, \ \varphi_B \in Hom(B) \ and \ \psi_B \in \Phi_B.$ Then $A \otimes B$ is $(\varphi_A \otimes \varphi_B, \psi_A \otimes \psi_B)$ -biprojective.

Proof. There exists an A-bimodule map $\theta_1 : A \longrightarrow (A \otimes A)$ with $\psi_A \circ \pi_A \circ \theta_1 \circ \varphi_A = \psi_A \circ \varphi_A$ and B-bimodule map $\theta_2 : B \longrightarrow (B \otimes B)$ with $\psi_B \circ \pi_B \circ \theta_2 \circ \varphi_B = \psi_B \circ \varphi_B$. Let $\theta_0 : (A \otimes A) \otimes (B \otimes B) \longrightarrow (A \otimes B) \otimes (A \otimes B)$ be the isometric isomorphism given by $(a_1 \otimes a_2) \otimes (b_1 \otimes b_2) \mapsto (a_1 \otimes b_1) \otimes (a_2 \otimes b_2)$ $(a_1, a_2 \in A, b_1, b_2 \in B)$. We let $\theta = \theta_0 \circ (\theta_1 \otimes \theta_2) : A \otimes A \longrightarrow (A \otimes B) \otimes (A \otimes B)$. Then for $a \otimes b \in A \otimes B$ we have

$$\begin{aligned} \pi_{A\hat{\otimes}B} \circ \theta \circ (\varphi_A(a) \otimes \varphi_B(b)) &= & \pi_{A\hat{\otimes}B} \circ \theta_0 \circ (\theta_1 \otimes \theta_2) \circ (\varphi_A(a) \otimes \varphi_B(b)) \\ &= & \pi_A \otimes \pi_B \circ (\theta_1 \otimes \theta_2) (\varphi_A(a) \otimes \varphi_B(b)) \\ &= & \pi_A \circ \theta_1 \circ \varphi_A(a) \otimes \pi_B \circ \theta_2 \circ \varphi_B(b). \end{aligned}$$

Thus $(\psi_A \otimes \psi_B) \circ \pi_{A\hat{\otimes}B} \circ \theta \circ (\varphi_A(a) \otimes \varphi_B(b)) = \psi_A \circ \pi_A \circ \theta_1 \circ \varphi_A(a) \otimes \psi_B \circ \pi_B \circ \theta_2 \circ \varphi_B(b) = (\psi_A \circ \varphi_A) \otimes (\psi_B \circ \varphi_B)(a \otimes b) = (\psi_A \circ \varphi_A)(a)(\psi_B \circ \varphi_B)(b) = (\psi_A \otimes \psi_B) \circ (\varphi_A \otimes \varphi_B)(a \otimes b).$

Therefore, $A \otimes B$ is $(\varphi_A \otimes \varphi_B, \psi_A \otimes \psi_B)$ – biprojective. \Box

The proof of the following result is similar to that of Proposition 2.3.

Proposition 2.4. Let A be a (φ_A, ψ_A) - biprojective Banach algebra, and let B be a (φ_B, ψ_B) - biprojective Banach algebra with $\varphi_A \in Hom(A)$, $\psi_A \in \Phi_A$, $\varphi_B \in Hom(B)$ and $\psi_B \in \Phi_B$. Then $A \oplus B$ is a $(\varphi_A \oplus \varphi_B, \psi_A \oplus \psi_B)$ biprojective.

Proposition 2.5. Let A be a unital Banach algebra, and B be a Banach algebra containing a non-zero idempotent b_0 . If $A \otimes B$ is $(\varphi_A \otimes \varphi_B, \psi_A \otimes \psi_B)$ -biprojective, then A is (φ_A, ψ_A) -biprojective.

Proof. There is an $A \otimes B$ -bimodule $\theta : A \otimes B \longrightarrow (A \otimes B) \otimes (A \otimes B)$ with $(\psi_A \otimes \psi_B) \circ \pi_{A \otimes B} \circ \theta \circ (\varphi_A \otimes \varphi_B) = (\psi_A \otimes \psi_B) \circ (\varphi_A \otimes \varphi_B)$. We regard $A \otimes B$ as an A-bimodule with the actions given by

 $a_1 \cdot (a_2 \otimes b) = a_1 a_2 \otimes b$, and $(a_2 \otimes b) \cdot a_1 = a_2 a_1 \otimes b$ $(a_1, a_2 \in A, b \in B)$

Then for $a_1, a_2 \in A$ we have

$$\begin{aligned} \theta(a_1a_2 \otimes b_0) &= & \theta((a_1 \otimes b_0)(a_2 \otimes b_0)) \\ &= & (a_1 \otimes b_0) \cdot \theta((a_2 \otimes b_0)) \\ &= & a_1 \cdot (e_A \otimes b_0) \cdot \theta((a_2 \otimes b_0)) \\ &= & a_1 \cdot \theta((e_A \otimes b_0) \cdot (a_2 \otimes b_0)) \\ &= & a_1 \cdot \theta(e_A \cdot a_2 \otimes b_0^2) \\ &= & a_1 \cdot \theta(a_2 \otimes b_0). \end{aligned}$$

Z. GHORBANI AND J. BARADARAN

Similarly, we can show a right-module version of this equation. Hence we get

$$\theta(a_1a_2 \otimes b_0) = a_1 \cdot \theta(a_2 \otimes b_0) = \theta(a_1 \otimes b_0) \cdot a_2 \quad (a_1, a_2 \in A).$$

Let $\psi_B(b_0) = 1$ and we define

~

$$\rho: (A \otimes B) \otimes (A \otimes B) \longrightarrow (A \otimes A), \ (a_1 \otimes b_1) \otimes (a_2 \otimes b_2) \mapsto \psi_B(b_1 b_2) a_1 \otimes a_2,$$

where $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Clearly ρ is a bounded linear operator. We now define $\tilde{\theta} : A \longrightarrow (A \otimes A)$ by

$$\tilde{\theta}(a) = \rho \circ \theta(a \otimes \varphi_B(b0)) \quad (a \in A).$$

Then $\tilde{\theta}$ is an A-bimodule morphism. It follows from the identity

$$\pi_A \circ \rho = (id_A \otimes \psi_B) \circ \pi_{A\hat{\otimes}B}.$$

 So

$$\begin{split} \psi_A \circ \pi_A \circ \theta \circ \varphi_A(a) &= \psi_A \circ \pi_A \circ \rho \circ \theta(\varphi_A(a) \otimes \varphi_B(b0)) \\ &= \psi_A \circ (id_A \otimes \psi_B) \circ \pi_{A\hat{\otimes}B} \circ \theta(\varphi_A(a) \otimes \phi_B(b0)) \\ &= (\psi_A \otimes \psi_B) \circ \pi_{A\hat{\otimes}B} \circ \theta(\varphi_A(a) \otimes \varphi_B(b0)) \\ &= (\psi_A \otimes \psi_B) \circ (\varphi_A \otimes \varphi_B)(a \otimes b0) \\ &= (\psi_A \circ \varphi_A)(a)(\psi_B \circ \varphi_B)(b_0) \\ &= (\psi_A \circ \varphi_A)(a). \end{split}$$

That is, A is (φ_A, ψ_A) -biprojective. \Box

Definition 2.6. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. We say that A is (φ, ψ) - contractible if it has a central (φ, ψ) - diagonal, i.e., a (φ, ψ) - diagonal $m \in A \otimes A$ satisfying $\varphi(a) \cdot m = m \cdot \varphi(a)$ for all $a \in A$ and also $\psi \circ \pi(m) = 1$.

Proposition 2.7. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. If A is (φ, ψ) - contractible, then A is (φ, ψ) - biprojective. The converse holds, whenever A is either unital or commutative and there is $a_o \in A$ such that $\varphi(a_0) = a_0$.

Proof. Suppose that $m \in A \otimes A$ is a central (φ, ψ) -diagonal for A. We define $\theta: A \longrightarrow A \otimes A$ by $\theta(a) := a \cdot m$. Then for every $a \in A$ we have

$$\begin{aligned} \psi \circ \pi \circ \theta \circ \varphi(a) &= \psi \circ \pi(\varphi(a) \cdot m) \\ &= \psi \circ (\varphi(a))\psi \circ \pi(m) = \psi \circ (\varphi(a)). \end{aligned}$$

Thus, A is (φ, ψ) – biprojective.

146

Conversely, since A is (φ, ψ) - biprojective, there is a bounded A- module morphism $\theta: A \longrightarrow A \otimes A$ such that $\psi \circ \pi \circ \theta \circ \varphi(a) = \psi \circ (\varphi(a))$ $(a \in A)$. Let e_A be an identity for A and let $m = \theta(e_A)$. Then m is a central (φ, ψ) -diagonal for A.

In the commutative case, let $a_o \in A$ be such that $\varphi(a_0) = a_0$. Suppose that $\psi(a_0) = 1$ and define $m = \theta(a_0)$, then m is a central (φ, ψ) -diagonal for A. Therefore, A is (φ, ψ) - contractible Banach algebra. \Box

Example 2.8. Consider the semigroup \mathbb{N}_{\wedge} with the operation semigroup $m \wedge n = \min\{m, n\}, m, n \in \mathbb{N}. \Phi_{l^1(\mathbb{N}_{\wedge})} = \{\psi_n : l^1(\mathbb{N}_{\wedge}) \to \mathbb{C} | \psi_n(\sum_{i=1}^{\infty} c_i \delta_i) = \sum_{i=1}^{\infty} c_i, n \in \mathbb{N} \}.$ Then $l^1(\mathbb{N}_{\wedge})$ is not biprojective [11]. But if we choose $\psi_1 \in \Phi_{l^1(\mathbb{N}_{\wedge})}, \varphi \in Hom(l^1(\mathbb{N}_{\wedge}))$ and define $m = \delta_1 \otimes \delta_1$, then $\varphi(a) \cdot m = m \cdot \varphi(a)$ for all $a \in l^1(\mathbb{N}_{\wedge})$ and also $\psi_1 \circ \pi(m) = 1$. Terefore $l^1(\mathbb{N}_{\wedge})$ is a (φ, ψ_1) -contractible. By Proposition (2.7), $l^1(\mathbb{N}_{\wedge})$ is a (φ, ψ_1) -biprojective.

Definition 2.9. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. A is called (φ, ψ) - biflat if there exists a bounded A-bimodule map $\theta : A \longrightarrow (A \otimes A)^{**}$, where $\tilde{\psi} \circ \pi^{**} \circ \theta \circ \varphi = \psi \circ \varphi$.

i) Let A be a biflat Banach algebra. Then A is (φ, ψ) - biflat Banach algebra for every $\varphi \in Hom(A)$ and $\psi \in \Phi_A$.

ii) Let A be a (φ, ψ) -biprojective Banach algebra. Then A is (φ, ψ) - biflat Banach algebra for every $\varphi \in Hom(A)$ and $\psi \in \Phi_A$.

The following result can be found in [9].

Lemma 2.10. Let A be a Banach algebra. Then there exists an A-bimodule homomorphism $\gamma : (A \otimes A)^* \longrightarrow (A^{**} \otimes A^{**})^*$ such that for any functional $f \in (A \otimes A)^*$, elements $\varphi, \psi \in A^{**}$ and nets $(a_{\alpha}), (b_{\beta})$ in A with $w^* - \lim_{\alpha} a_{\alpha} = \varphi$ and $w^* - \lim_{\beta} b_{\beta} = \psi$ we have

$$\gamma(f)(\varphi \otimes \psi) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha} \otimes b_{\beta}).$$

If $\psi \in \Phi_A$, then ψ has a unique extension on A^{**} which it by $\tilde{\psi}$ and defined by $\tilde{\psi}(F) = F(\psi)$ for every $F \in A^{**}$.

Theorem 2.11. Suppose that A is a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. If A^{**} is $(\varphi^{**}, \tilde{\psi})$ -biprojective, then A is (φ, ψ) -biflat.

Proof. Let $\kappa : A \longrightarrow A^{**}, \kappa_1 : A^* \longrightarrow A^{***}$ and $\kappa_* : A^{**} \longrightarrow A^{****}$ denote the natural inclusions, π (** π , respectively) the product maps on A (A^{**} , respectively) and let γ be defined as in Lemma 2.10. Then the following diagram commutes:

for each $a^* \in A^*$, elements $a_1^{**}, a_2^{**} \in A^{**}$ and nets $(a_\alpha), (b_\beta) \subset A$ with $w^* - \lim_{\alpha} a_\alpha = a_1^{**}, w^* - \lim_{\beta} b_\beta = a_2^{**}$, we have

$$(\gamma(\pi^{*}(a^{*})))(a_{1}^{**} \otimes a_{2}^{**}) = \lim_{\alpha} \lim_{\beta} \lim_{\beta} \pi^{*}(a^{*})(a_{\alpha} \otimes b_{\beta})$$

$$= \lim_{\alpha} \lim_{\beta} a^{*}(a_{\alpha}b_{\beta})$$

$$= w^{*} - \lim_{\alpha} w^{*} - \lim_{\beta} \kappa(a_{\alpha}b_{\beta})(a^{*})$$

$$= \kappa_{1}(a^{*})(a_{1}^{**}a_{2}^{**})$$

$$= \kappa_{1}(a^{*})(^{**}\pi(a_{1}^{**} \otimes a_{2}^{**}))$$

$$= (^{**}\pi^{*}(\kappa_{1}(a^{*})))(a_{1}^{**} \otimes a_{2}^{**}).$$

Thus $\gamma \circ \pi^* =^{**} \pi^* \circ \kappa_1$. Hence $\pi^{**} \circ \gamma^* = \kappa_1^* \circ^{**} \pi^{**}$. Since A^{**} is $(\varphi^{**}, \tilde{\psi})$ -biprojective, there is an A-bimodule map $\theta_0 : A^{**} \longrightarrow (A^{**} \otimes A^{**})$, such that $\tilde{\psi} \circ \pi \circ \theta_0 \circ \varphi^{**} = \tilde{\psi} \circ \varphi^{**}$. Putting $\theta := \gamma^* \circ \theta_0 \circ \kappa$, then for each $a \in A$ we have

$$\begin{split} \tilde{\psi} \circ \pi^{**} \circ \theta \circ \varphi(a) &= \tilde{\psi} \circ \pi^{**} \circ \gamma^* \circ \theta_0 \circ \kappa \circ \varphi(a) \\ &= \tilde{\psi} \circ \kappa_1^* \circ \pi^{**} \circ \theta_0 \circ \kappa \circ \varphi(a) \\ &= \tilde{\psi} \circ \kappa_1^* \circ \pi^{**} \circ \theta_0 \circ \varphi^{**}(a) \\ &= \tilde{\psi} \circ \pi^{**} \circ \theta_0 \circ \varphi^{**}(a) = \psi \circ \varphi(a). \end{split}$$

That is, A is (φ, ψ) -biflat. \Box

3. (φ, ψ) -Spseudo Amenable Banach Algebras

Suppose that A is a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. Let X be a Banach A-bimodule. A linear operator $D: A \longrightarrow X$ is a (φ, ψ) -derivation if it satisfies $D(ab) = D(a) \cdot \psi(b) + \varphi(a) \cdot D(b)$ for all $a, b \in A$. A (φ, ψ) -derivation D is (φ, ψ) -inner derivation if there is $x \in X$ such that $D(a) = \varphi(a) \cdot x - x \cdot \psi(a)$ for $a \in A$. Let $\mathcal{Z}^1_{(\varphi,\psi)}(A, X)$ be the set of all continuous (φ, ψ) -derivations from A

into X. The first cohomology group $\mathcal{H}^{1}_{(\varphi,\psi)}(A,X)$ is defined the quotient space $\mathcal{Z}^{1}_{(\varphi,\psi)}(A,X)/\mathcal{N}^{1}_{(\varphi,\psi)}(A,X).$

A Banach algebra A is called (φ, ψ) -amenable if $\mathcal{H}^{1}_{(\varphi,\psi)}(A, X^{*}) = \{0\}$, for all A-bimodules X.

Let A be a Banach algebra and X, Y be Banach A-bimodules. Then A-bimodule morphism from X to Y is a morphism $\varphi : X \longrightarrow Y$ such that

$$\varphi(a \cdot x) = a \cdot \varphi(x), \quad \varphi(x \cdot a) = \varphi(x) \cdot a \ (a \in A, \ x \in X)$$

Theorem 3.1. Assume that A is a Banach algebra with a bounded approximate identity and $a \cdot b = \psi(a) \cdot b$, $\psi \circ \varphi(a) = 1$ for every $a, b \in A$. If A is (φ, ψ) -amenable, then A is a (φ, ψ) -biflat.

Proof. Let (e_{α}) be a bounded approximate identity for A and E be a w^* -cluster point of $(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))$ in $(A \otimes A)^{**}$. We define a (φ, ψ) - derivation $D : A \longrightarrow (A \otimes A)^{**}$ by $D(a) = \varphi(a) \cdot E - E \cdot \psi(a)$. Then

$$\pi^{**}(D(a)) = w^* - \lim_{\alpha} \pi[(\varphi(a)(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) - (\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))\psi(a)]$$

$$= \lim_{\alpha} \varphi(a)\varphi(e_{\alpha}^2) - \varphi(e_{\alpha}^2)\psi(a)$$

$$= \lim_{\alpha} \psi(a)\varphi(e_{\alpha}^2) - \varphi(e_{\alpha}^2)\psi(a)$$

$$= \lim_{\alpha} \psi(a)\varphi(e_{\alpha}^2) - \varphi(e_{\alpha}^2)\psi(a) = 0.$$

Therefore, $D(A) \subseteq ker(\pi^{**}) = (ker\pi)^{**}$. So there exists $N \in (ker\pi)^{**}$ such that $Da(a) = \varphi(a).N - N.\psi(a)$. Put M = E - N. Then

$$\begin{split} \tilde{\psi} \circ \pi^{**}(M) &= \tilde{\psi} \circ \pi^{**}(E-N) = \tilde{\psi} \circ \pi^{**}(E) \\ &= w^* - \lim_{\alpha} \tilde{\psi} \circ \pi(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) \\ &= \lim_{\alpha} \psi \circ \varphi(e_{\alpha}^2) = 1. \end{split}$$

We now define θ : $A \longrightarrow (A \otimes A)^{**}$ by $a \mapsto \psi(a) \cdot M$ $(a \in A)$. Hence, for every $a \in A$,

$$\begin{split} \tilde{\psi} \circ \pi^{**} \circ \theta \circ \varphi(a) &= \tilde{\psi} \circ \pi^{**}(\psi(\varphi(a)) \cdot M) \\ &= \psi(\varphi(a)). \quad \Box \end{split}$$

Definition 3.2. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. We say that A is (φ, ψ) -approximate biprojective if there is a net $\theta_{\alpha} : A \longrightarrow (A \otimes A)(\alpha \in I)$ of continuous A-bimodule homomorphisms such that $\psi \circ \pi \circ \theta_{\alpha} \circ \varphi(a) \rightarrow \psi \circ \varphi(a)$.

Let A be a biprojective Banach algebra. Then A is (φ, ψ) -approximate biprojective Banach algebra for every $\varphi \in Hom(A)$ and $\psi \in \Phi_A$.

Theorem 3.3. Let A be a (φ, ψ) -approximate biprojective Banach algebra. If I is a closed ideal of A and $\varphi(I) \subset I$, then I is $(\varphi|_I, \psi|_I)$ - approximate biprojective.

Proof. Suppose that $\theta_{\alpha} : A \longrightarrow (A \otimes A)(\alpha \in I)$ satisfies $\psi \circ \pi_A \circ \theta_{\alpha} \circ \varphi(a) \mapsto \psi \circ \varphi(a)$ $(a \in A)$ and $i_0 \in I$ such that $\psi(i_0) = 1$. Let $T : A \otimes A \longrightarrow I \otimes I$ be defined by $a \otimes b \mapsto ai_0 \otimes i_0 b$ (since I is ideal, for every $a, b \in A$, then $ai_0, i_0 b \in I$). We define $\rho_{\alpha} = T \circ \theta_{\alpha}|_I$. Therefore

$$\begin{split} \psi \circ \pi_{I} \circ \rho_{\alpha} \circ \varphi(i) &= \psi \circ \pi_{I} \circ T \circ \theta_{\alpha} \circ \varphi(i) \\ &= \psi \circ \pi_{A} \circ \theta_{\alpha} \circ \varphi(i) \\ &\mapsto \psi \circ \varphi(i) \quad (i \in I). \end{split}$$

Hence the proof is completes. \Box

Theorem 3.4. Suppose that A is a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. If A is (φ, ψ) -biflat, then A is (φ, ψ) -approximate biprojective.

Proof. Assume that $\theta: A \longrightarrow (A \otimes A)^{**}$ is a continuous A-bimodule map such that $\tilde{\psi} \circ \pi_A^{**} \circ \theta \circ \varphi(a) = \psi \circ \varphi(a)$ $(a \in A)$. By Goldstine's Theorem, there exists $(\theta_\alpha) \subset B(A, A \otimes A)$ such that $\theta = w^* - \lim_\alpha \theta_\alpha$. For every $a \in A$ we have

$$w^* - \lim_{\alpha} \pi_A \circ \theta_{\alpha} \circ \varphi(a) = w^* - \lim_{\alpha} \pi_A^{**} \circ \theta_{\alpha} \circ \varphi(a) = \pi_A^{**} \circ \theta \circ \varphi(a).$$

 So

$$\psi \circ \pi_A \circ \theta_\alpha \circ \varphi(a) \to \psi \circ \pi_A^{**} \circ \theta \circ \varphi(a).$$

Given $\varepsilon > 0$ and take $F = \{a_1, a_2, ..., a_r\} \subset A$. We put $M = \{\psi \circ \pi_A \circ T \circ \varphi(a_i) - \psi \circ \varphi(a_i) | T \in B(A, A \otimes A)\}_{i=1,...,r}$. Applying Mazur's Theorem, we obtain a net $(\theta_{(F,\epsilon)}) \subset B(A, A \otimes A)$ such that

$$\psi \circ \pi_A \circ \theta_{(F,\epsilon)} \circ \varphi(a) \longrightarrow \psi \circ \varphi(a)$$

So, A is (φ, ψ) -approximate biprojective. \Box

Definition 3.5. Let A be a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. We say that A is (φ, ψ) - pseudo amenable if A admit a (φ, ψ) - approximate diagonal, i.e., there is a net $(m_{\alpha}) \subset A \otimes A$ (not necessary bounded) such that $m_{\alpha} \cdot \varphi(a) - \varphi(a) \cdot m_{\alpha} \longrightarrow 0$ and $\psi \circ \pi(m_{\alpha}) \longrightarrow 1$ $(a \in A)$.

Theorem 3.6. Suppose that A is a Banach algebra, $\varphi \in Hom(A)$ and $\psi \in \Phi_A$. If A^{**} is $(\varphi^{**}, \tilde{\psi})$ -pseudo amenable, then A is (φ, ψ) -pseudo amenable.

150

Proof. Let (\tilde{m}_{α}) be a (φ, ψ) -approximate diagonal for A^{**} . Then for every $a \in A$ we have $(\tilde{m}_{\alpha} \cdot \varphi(a) - \varphi(a) \cdot \tilde{m}_{\alpha} \to 0$ and $\psi \circ \pi(\tilde{m}_{\alpha}) \to 1$. By Goldstine's Theorem there is a net (\tilde{m}_{α}) in $(A \otimes A)$, and we can replace weak* convergence in the above two limit by weak convergence. This implies, by Mazur's Theorem, that A is (φ, ψ) - pseudo amenable. \Box

Theorem 3.7. Suppose that A is a Banach algebra with an approximate identity. Then A is (φ, ψ) - pseudo amenable if and only if A is φ - approximate biprojective.

Proof. Let $(e_{\beta})_{\beta \in I}$ be an approximate identity for A and suppose that θ_{α} : $A \longrightarrow (A \otimes A) \quad (\alpha \in \Delta)$ satisfies $\psi \circ \pi \circ \theta_{\alpha} \circ \varphi(a) \rightarrow \psi \circ \varphi(a) \quad (a \in A)$. Let $E = I \times \Delta^{I}$ be directed by the product ordering and for each $\lambda = (\beta, \alpha) \in E$, define $m_{\lambda} = \theta_{\alpha}(\varphi(e_{\beta}))$. Using the iterated limit theorem [7, Theorem 2.4], we get

$$\lim_{\lambda} \left(m_{\lambda} \cdot \varphi(a) - \varphi(a) \cdot m_{\lambda} \right) = 0 \ (a \in A),$$

and also

$$\lim_{\lambda} \psi \circ \pi(m_{\lambda}) = \lim_{\lambda} \psi \circ \pi(\theta_{\alpha}(\varphi(e_{\beta})))$$
$$= \lim_{\lambda} \psi \circ \varphi(e_{\beta}) = 1.$$

That is, A is (φ, ψ) – pseudo amenable. Conversely, let (m_β) be a (φ, ψ) – approximate diagonal for A and define $\theta_\beta : A \longrightarrow (A \otimes A)$ by $a \mapsto a \cdot m_\beta$. Then for every $a \in A$ we have

$$\psi \circ \pi \circ heta_{eta} \circ \varphi(a) = \psi \circ \pi \circ (\varphi(a) \cdot m_{eta})$$

= $\psi \circ \varphi(a)\psi \circ \pi(m_{eta})$
 $ightarrow \psi \circ \varphi(a).$

Acknowledgements

We thank the referees for their time and comments.

References

- [1] M. Ashraf and N.Rehman, On $(\sigma \tau)$ derivations in prime rings, Arch. Math. (BRNO)., 38 (2002), 259-264.
- [2] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 24 (Clarendon Press, Oxford), (2000).

Z. GHORBANI AND J. BARADARAN

- [3] A. Y. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford University Press, New York, (1993).
- [4] A. Y. Helemskii, Flat Banach modules and amenable algebras (translated from the Russian). Trans. Moscow Math. Soc., 47 (1985), 199-224.
- [5] A. Y. Helemskii, *The Homology of Banach and Topological Algebras*, 41, of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, (1989).
- [6] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, (1972).
- [7] E. Kaniuth, A. Lau, and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008), 85-96.
- [8] J. L. Kelley, *General Topology*, D. Van Nostrand Company, Inc., New York, (1955).
- [9] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc., (2006), 65-78.
- [10] M. S. Moslehian and A. N. Motlagh, Some notes on (σ, τ) -amenability of Banach algebras, *Stud. Univ. Babes-Bolyai Math.*, 53 (2008), 57-68.
- [11] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79 (2009), 515-530.
- [12] V. Runde, *Lectures on Amenability*, Lecture notes in mathematics, 1774, Springer, (2002).

Zahra Ghorbani

Assistant Professor of Mathematics Department of Mathematics Jahrom University P.O. Box 74135-111 Jahrom, Iran E-mail: ghorbani@jahromu.ac.ir

Javad Baradaran

Assistant Professor of Mathematics Department of Mathematics Jahrom University P.O. Box 74135-111 Jahrom, Iran E-mail: baradaran@jahromu.ac.ir