
Journal of Mathematical Extension
Vol. 14, No. 3, (2020), 151-167
ISSN: 1735-8299

URL: http://www.ijmex.com

Some Relations on Noetherian and Boolean
Artinian BL-algebras

J. Kazemiasl
Shahrekord Branch, Islamic Azad University

F. Khaksar Haghani∗

Shahrekord Branch, Islamic Azad University

Sh. Heidarian
Shahrekord Branch, Islamic Azad University

Abstract. In this paper, we derive some new results on Noetherian
and Boolean Artinian BL-algebras. We further obtain some relations
between local and semilocal BL-algebras and Boolean Artinian BL-
algebras.

AMS Subject Classification: 06D99; 08A99; 03G99
Keywords and Phrases: Noetherian BL-algebra, Boolean Artinian
BL-algebra, prime filters, generated filters, deductive system

1. Introduction

BL-algebras have been invented by Hájek [2] in order to provide an
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means. He provided an algebraic counterpart of a propositional logic,
(BL), which embodies a fragment common to some of the most impor-
tant many-valued logics, namely Lukasiewicz Logic, Gödel Logic and
Product Logic. This Basic Logic is proposed as the most general many-
valued logic with truth values in interval [0, 1] and BL-algebras are
the corresponding LindenbaumTarski algebras. The language of propo-
sitional Hájek basic logic [2] contains the binary connectives o, ⇒ and
the constant 0. Axioms of BL are given as:

(A1) (ϕ⇒ ψ)⇒ ((ψ ⇒ w)⇒ (ϕ⇒ w));
(A2) (ϕoψ)⇒ ϕ;
(A3) (ϕoψ)⇒ (ψoϕ) ;
(A4) (ϕo (ϕ⇒ ψ))⇒ (ψo (ψ ⇒ ϕ));
(A5a) (ϕ⇒ (ψ ⇒ w))⇒ ((ϕoψ)⇒ w);
(A5b) ((ϕoψ)⇒ w)⇒ (ϕ⇒ (ψ ⇒ w));
(A6) ((ϕ⇒ ψ)⇒ w)⇒ ((ψ ⇒ ϕ)⇒ w)⇒ w);
(A7) 0⇒ w.

Apart from their logical interest, BL-algebras have important algebraic
properties and they have been intensively studied from an algebraic point
of view. There has been some recent interest in applying rings theory
notions to non-mainstream algebras. The situation is analogous to that
of rings theory. However, the details are slightly different although some
of the ideas are similar.

Hájek [2] introduced the concepts of filters and prime filters in BL-
algebras. From logical point of view, filters correspond to sets of prov-
able formula. E. Turunen studied some properties of filters theory, which
plays important role in studying logical algebras. He showed how BL-
algebras can be studied by deductive systems. Deductive systems cor-
respond to subsets closed with respect to Modus Ponens and they are
called filters, too. Also he introduce the notion of Boolean Artinian BL-
algebras [12]. Motamed and Moghaderi [5], introduced the notions of
Noetherian and Artinian on BL-algebras. They obtained some equiva-
lent definitions of Noetherian and Artinian BL-algebras. Meng B. L and
Xin X. L [6], introduced the co-Noehterian BL-algebras.

In this paper, we obtain some new relations between the above notions.
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The structure of the paper is as follows:

In Section 2, we recall some definitions and results about BL-algebras
that we use in the sequel. In Section 3, we recall the notion of Noetherian
and Boolean Artinian BL-algebras and we derive some results about the
relations between them.

2. Preliminaries

In this section, we give some definitions and theorems which are needed
in the rest of the paper.

An algebra(A,∧,∨,,→, 0, 1) of the type (2, 2, 2, 2, 0, 0) is called a
BL-algebra if satisfies the following axioms [2]:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice;
(BL2) (A,, 1) is a commutative monoid;
(BL3)  and → form an adjoint pair, i.e., c  a → b if and only if
a c  b;
(BL4) a ∧ b = a (a→ b);
(BL5) (a→ b) ∨ (b→ a) = 1.

For all a, b, c ∈ A. We denote x = x→ 0 and x−− = (x)−, for all x ∈ A.
Most familiar example of a BL-algebra is the unit interval [0, 1] endowed
with the structure induced by a continuous t-norm. In the rest of this
paper A, denotes the universe of a BL-algebra [2].

A BL-algebra is nontrivial if 0 = 1. For any BL-algebra A, the deduct
L(A) = (A,∧,∨, 0, 1) is a bounded distributive lattice. We denote the
set of all natural numbers by N and define a0 = 1 and an = an−1  a,
for n ∈ N\ {0}. Hájek [2] defined a filter of a BL-algebra A to be a
non-empty subset F of A such that (i) if a, b∈ F implies ab ∈ F , (ii)
if a ∈ F, a  b then b ∈ F . In each BL-algebra A, for every x, y ∈ A,
x  y  x, y [8]. E. Turunen [7] defined a deductive system of a BL-
algebra A to be a non-empty subset D of A such that (i) 1 ∈ D, (ii)
x ∈ D and x→ y ∈ D imply y ∈ D. The set of all deductive systems of
a BL-algebra A is denoted by D(A). A subset F of a BL-algebra A is a
deductive system of A if and only if F is a filter of A [7]. A deductive
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system D of BL−algebra A is Boolean if, for all x ∈ A, x ∨ x ∈ D [9].

A filter F of a BL-algebra A is proper if F = A. A proper filter P of A
is called a prime filter of A if for all x, y ∈A, x ∨ y ∈ P implies x ∈ P

or y ∈ P . A proper filter P of A is Prime if and only if P can not
be expressed as an intersection of two filters properly containing P or
equivalently, for all x, y ∈A, either x→ y ∈ P or y → x ∈ P [8].

If F , G and P are filters of A, then P is a prime filter of A if and only
if F ∩G ⊆ P then F ⊆ P or G ⊆ P .

A proper filter M of A is a maximal filter if and only if for any x /∈ M
there exists n ∈ N such that (xn)− ∈ M [7]. Every maximal filter of A
is a prime filter [8].

The set of all filters, prime filters and maximal filters of a BL-algebra A
are denoted by (A), Spec(A) andMax(A), respectively. For every sub-
setX ⊆ A, the smallest filter of A which containsX, i.e., the intersection
of all filters F ∈ (A) such that F ⊇ X, is said to be the filter generated
by X [1]. The filter of A generated by X will be denoted by X, where
X ⊆ A, in which ∅={1} and X = {a ∈ A : x1  x2  · · ·xn  a,

for some n ∈ N and x1, x2, . . . , xn ∈ X} [8]. A filter F ∈ (A) is
called finitely generated, if F = x1, x2, . . . , xn, for some x1, . . . , xn ∈A
and n ∈ N. For F ∈ (A) and x ∈ A\F , F x = F


{x} and so

F x = {a ∈ A : a  fxn, for some f ∈ F , and n  1} [8].
Definition 2.1. ([5]) Let A be a BL-algebra and F be a filter of A. A
prime filter P of A, is called a minimal prime filter of F if F ⊆ P

and if further, there exists Q ∈ Spec (A) such that F ⊆ Q ⊆ P , then
P = Q. The set of all minimal prime filter of {1}, is denoted byMin(A).

Definition 2.2. ([5]) A BL-algebra A is called Noetherian (Artinian),
if for every increasing (decreasing) chain of its filters F1 ⊆ F2 ⊆ . . .

(F1 ⊇ F2 ⊇ . . . ), there exists n ∈ N such that Fi= Fn, for all i  n.

Theorem 2.3. ([5]) Let A be a BL-algebra. Then A is Noetherian BL-
algebra if and only if every filter of A is finitely generated.
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Definition 2.4. ([2]) Let A be a BL-algebra. A non-empty subset I ⊆ A

is called an ideal of A, if the following conditions are satisfied:
(i) 0 ∈ I,
(ii) If x, (x− → y−)− ∈ I then y ∈ I.

Definition 2.5. ([6]) A BL-algebra A is said to be co-Noetherian with
respect to ideals if every ideal of A is finitely generated. A BL-algebra A
is satisfies the ascending chain condition with respect to its ideals if for
every ascending chain sequence I1 ⊆ I2 ⊆ ... of ideals of A, there exists
n ∈ N such that Ii = In, for all i  n.

Remark 2.6. ([8]) Let F and G be two filters of A such that F ⊆ G.

It is evident that
G

F
is a filter of

A

F
. Since G is a filter, then it can be

easily shown that
a

F
∈ G

F
if and only if a ∈ G. Moreover, (

A

F
) = {H

F
:

H ∈ (A), F ⊆ H}.

Definition 2.7. ([7]) A BL-algebra A is called locally finite if all non-
unit elements are of finite order, i.e., for any non-unit element x of A,
xn = 0 for some n  1. Obviously, the only proper deductive system of
a locally finite BL-algebra is {1}, thus, M(A) = {1}, where M(A) =
{M :M is a maximal deductive system of A}.

From [7], a BL-algebra A is semisimple if M(A) = {1}. In [7], it is also
proved that locally finite BL-algebras and locally finiteMV -algebras are
coincide. Moreover, for any BL-algebras A, M is a maximal deductive

system of A if and only if
A

M
is a locally finite BL-algebra if and only

if for any x /∈M , (xn)− ∈M for some n  1. E. Turunen [9], defined a
BL-algebra A is local if it has a unique maximal deductive system. He
proved that a BL-algebra A is local if and only if the unique maximal
deductive system of A is equal to {x ∈ A : xn > 0 for all n  1}.

From [11], Given two locally finite BL-algebras A and B, a product
BL-algebra A×B contains two disjoint descending chains of deductive
systems, namely A × B ⊇ A × {1} ⊇ {(1, 1)} and A × B ⊇ {1} × B ⊇
{(1, 1)}. Clearly, A × B is a semisimple BL-algebra and both maximal
deductive system A×{1} and {1}×B are disjoint. More generally, given
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n locally finite BL-algebras A1, A2, A3, . . . An, a product BL-algebran
k=1Ak is semisimple, contains 2n − 1 proper deductive system and

n disjoint maximal deductive system Mk = A1 × · · · × {1} × · · · × An,
k = 1, 2, . . . , n. Also, any properly descending chain of deductive systems
is finite.

Proposition 2.8. ([11]) Let A be a BL-algebra and M1,M2,M3, . . . ,Mn

be n maximal deductive systems, (not necessarily disjoint), of A. Then
the product BL-algebra A =

n
k=1A/Mk is semisimple, contains 2n −

1 proper deductive systems, and n disjoint maximal deductive systems
further any properly descending chain of deductive system of A is finite.

Definition 2.9. ([11]) A BL-algebra A is semilocal if it contains only
finite many disjoint maximal deductive systems.

Definition 2.10. ([11]) A BL-algebra A is Boolean Artinian if, any
properly descending chain of Boolean deductive systems is finite.

Definition 2.11. ([6]) Let X be a subset of a BL-algebra A. The least
ideal containing X in A is called the ideal generated by X and denoted by
(X]. If X = {a1, a2, . . . , an} then (X] is denoted by (a1, a2, . . . , an] in-
stead of ({a1, a2, . . . , an}]. An ideal I of A is said to be finitely generated
if there exist a1, a2, . . . , an ∈ A such that I = (a1, a2, . . . , an].

Proposition 2.12. ([6]) Let A be a BL-algebra. Then for any x1, . . . , xn ∈
A and n ∈ N, ((x1] ∪ (x2] ∪ · · · ∪ (xn]] = ((x̄1  x̄2  · · ·  x̄n)−].

Definition 2.13. ([12]) Let A be a BL-algebra. If I is an ideals of A,
I = (x] where x ∈ A, then I is called a principal ideal of A.

Definition 2.14. ([8]) Let A and B be two BL-algebras. A map f :
A −→ B defined on A, is called a BL-homomorphism if, for all x, y ∈
A, f (x→ y) = f (x) → f (y), f (xy) = f (x)f (y) and f (0A) =
0B. Also, we define ker(f) = {a ∈ A : f(a) = 1} and Im(f) = {f(a) :
a ∈ A}.

Theorem 2.15. ([4]) Let X be a subset of A. Then X = {a ∈ A :
(x1  x2  · · ·  xn)→ a = 1, for some n ∈ N and x1, x2, . . . , xn ∈ X},
where X is the filter of A generated by X.
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Theorem 2.16. ([8]) A subset F of a BL-algebra A is a deductive system
of A if and only if F is a filter of A.

Theorem 2.17. ([3]) Let A be a nontrivial BL-algebra, X ⊆ A and
D(X) = {P ∈ Spec(A) : X  P}. Then the following hold:
(i) X ⊆ Y ⊆ A implies D(X) ⊆ D(Y ) ⊆ Spec(A);
(ii) D({0}) = Spec(A) and D(∅) = E({1}) = ∅;
(iii) D(X) = Spec(A) if and only if A = X;
(iv) D(X) = ∅ if and only if X = ∅ or X = {1};
(v) If {Xi}i∈I is any family of subsets of A, then D(


i∈I Xi) =


i∈I D(Xi);

(vi) D(X) = D X;
(vii) D(X)


D(Y ) = D(X


Y );

(viii) If X,Y ⊆ A, then X = Y  if and only if D(X) = D(Y );
(ix) If F , H are filters of A, then F = H if and only if D(F ) = D(H).

Theorem 2.18. ([11]) Let M1,M2,M3, . . . ,Mn be n maximal deduc-
tive systems of a BL-algebra A and A =

n
i=1A/Mi be the product

BL-algebra. Then a map h : A −→ A defined, for all a ∈ A, by
h(a) = (a/M1, a/M2, . . . , a/Mn) is an onto BL-homomorphism such
that h(a) = 1A if and only if a ≡ 1 mod Mi, for all i = 1, 2, . . . , n where,
for x, y ∈ A, x ≡ y mod D iff (x→ y) (y → x) ∈ D. Thus A/

n
i=1Mi

is isomorphic to A =
n
i=1A/Mi.

3. Some Results on Noetherian and Boolean
Artinian BL-Algebras

In this section, we derive some new results on Noetherian, semilocal,
local and Boolean Artinian BL-algebras.

Lemma 3.1. Let A be a BL-algebra and F ∈ (A). If F is generated
by a finite set of generators, then F is generated by an element.

Proof. If F is generated by {x1, x2, . . . , xn}, for some x1, x2, . . . , xn ∈ A,
then F is the smallest filter containing, x1, x2, . . . , xn. We claim that F is
generated by x1x2· · ·xn. It is enough to show that F is the smallest
filter of A, which contains x1x2  · · ·  xn. Assume on the contrary
that F is not the smallest filter of A with the above condition. Then,
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there exists a filter G of A which contains x1x2· · ·xn and G ⊂ F ,
so x1  (x2  · · ·  xn ) ∈ G. Since x1  (x2  · · ·  xn)  x1, and
x1  (x2  · · ·  xn)  (x2  · · ·  xn) and G is a filter, so x1 ∈ G and
(x2  x3  · · ·  xn) = x2  (x3  · · ·  xn) ∈ G. Therefore, x1 ∈ G,
x2 ∈ G and x3  · · ·  xn ∈ G. Continuing this procedure, we conclude
x1, x2, . . . ,xn ∈ G, which is a contradiction. Thus, F is the smallest filter
of A such that containing all xi for all 1 i  n. 

Theorem 3.2. Let A be a BL-algebra and A = ∅. Then Spec(A) has
minimal element with respect to inclusion.

Proof. Since A = ∅, so Spec(A) = ∅. We consider (Spec(A),⊇ ) and
suppose {Pi} be a chain in (Spec(A),⊇ ). Put P =


i Pi. Since, 1 ∈

P , so P = ∅ and we conclude that P is a filter of A. We prove P is
prime. Let a∨ b ∈ P and a /∈ P, b /∈ P . Then there exist i, j ∈ N, a /∈ Pi,
b /∈ Pj . Since {Pi} is a chain, so Pi ⊇ Pj, and a /∈ Pj . Therefore,
a∨ b /∈ Pj and a∨ b /∈ P =


i Pi, which is a contradiction, so P is prime

and Spec(A) has a minimal element with respect to inclusion. 

Corollary 3.3. Let A be a BL-algebra. If A satisfy the ascending chain
condition on finitely generated filters, then A is a Noetherian BL-algebra.

Proof. Put F = {Fi ⊆ A : Fi is finitely generated filter of A}. We
prove that F has a maximal element. Clearly 1 ∈ F , then F = ∅. We
show that F has a maximal element. Let F1 ∈ F , if F1 is maximal of
F , it is obvious, otherwise, there exists F2 ∈ F , F1 = F2 such that
F1 ⊂ F2. Now if F2 is maximal element of F , we are done. But if F2
is not maximal element of F , then there exist F3 ∈ F, F3 = F2 and
F1 ⊂ F2 ⊂ F3. Continuing this procedure, we have F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂
Fn ⊂ . . . . Since Fi ∈ F , for all i ∈ N, so every Fi is finitely generated
filter therefore, there exist s n ∈ N such that Fi= Fn, for all i  n. Hence
Fn is a maximal element of F . To prove that A is Noetherian, it is
sufficient to show that every filter of A, is finitely generated. Let G be
an arbitrary filter of A, then we prove that G is finitely generated. Let
H = {Fi ⊆ G : Fi be a finitely generated filter of A}. For every x ∈ G,
we have, x ⊂ G, so H = ∅. According to the previous argument, H
has a maximal element like F1. We prove F1=G otherwise, if F1 = G,
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since F1 ∈ H, so F1 ⊂ G and there exists x ∈ G−F1. Since F1 is finitely
generated, then F1= x1, x2, . . . , xn, for some x1, x2, . . . , xn ∈ A. Thus
F1 ⊂ F2=x1, x2, . . . , xn,x ⊂ G, so F2 ∈ H and F1 ⊂ F2, which is a
contradiction. Hence G is a finitely generated filter of A and by Theorem
2.3, A is a Noetherian BL-algebra. 

Theorem 3.4. Let A be a BL-algebra. Then A is a semilocal if and
only if A/M(A) is a Boolean Artinian BL-algebra.

Proof. Let A be a semilocal BL-algebra. We show that by Definition
2.10, any properly descending chain of Boolean deductive system in
A/M(A) is finite. Suppose M1,M2,M3, . . . ,Mn be the n disjoint max-
imal deductive systems of A. Then by Definition 2.7, M(A) = ∩{M :
M is a maximal deductive system of A}, i.e., M(A) =

n
k=1Mk. By

Proposition 2.18, A/M(A) is isomorphic to A =
n
k=1A/Mk. Also by

Proposition 2.8, every properly descending chain of deductive system of
A is finite. Thus A/M(A) is Boolean Artinian. 

Conversely, Let A/M(A) be Boolean Artinian, then any properly de-
scending chain of deductive system in A/M(A) is finite. So any properly
descending chain of deductive system of A is finite, thus, A is a semilo-
cal BL-algebra. If A contains infinite many maximal deductive system
like M1,M2,M3, . . . , then M1 ⊇ (M1 ∩M2) ⊇ (M1 ∩M2 ∩M3) ⊇ . . . ,
is an infinite properly descending chain of deductive system generating
an infinite properly descending chain of deductive system M1/M(A) ⊇
(M1 ∩M2)/M(A) ⊇ (M1 ∩M2 ∩M3)/M(A) ⊇ . . . , of deductive system
into A/M(A), this is a contradiction. Since A/M(A) is Boolean Artinian,
so A contains only finite many disjoint maximal deductive system, i.e., A
is a semilocal BL-algebra.

By Theorem 3.4, the following conditions are equivalent:

Corollary 3.5. Let A be a BL-algebra. Then the following conditions
are equivalent:

(i) A is a semilocal and A has the n disjoint maximal deductive systems;

(ii) A/M(A) is Boolean Artinian;

(iii) A/M(A) is a semilocal BL-algebra.
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Proof. (i)⇒ (ii) Let A be a semilocal and A has the n disjoint maximal
deductive systems. Then, by Theorem 3.4, A/M(A) is Boolean Artinian.

(ii)⇒ (i) Let A/M(A) be Boolean Artinian. Then, by Theorem 3.4,
A is a semilocal BL-algebra and by Definition 2.9, A has the n disjoint
maximal deductive systems.

(i)⇒ (iii) Let A be a semilocal and A has the n disjoint maximal de-
ductive systems. SupposeM1,M2,M3, . . . ,Mn be the n disjoint maximal
deductive systems of A. Then by Definition 2.7, M(A) = ∩{M :M is a
maximal deductive system of A}, i.e.,M(A) =

n
k=1Mk. By Proposition

2.18, A/M(A) is isomorphic to A =
n
k=1A/Mk. Also by Proposition

2.8, every properly descending chain of deductive systems of A is fi-
nite. Thus A/M(A) is a semilocal BL-algebra.
(iii)⇒ (ii) LetA/M(A) be a semilocalBL-algebra. SupposeM1/M(A) ⊇
M2/M(A) ⊇ M3/M(A) ⊇ . . . , be properly descending chain of deduc-
tive system of a semilocal BL-algebra A/M(A) in whichM1,M2,M3, . . .,
are maximal deductive systems of A. Since A/M(A) is a semilocal, so
it contains only finite many disjoint maximal deductive systems. Hence
for some n  1, Mn/M(A) =Mn+1/M(A). Thus A/M(A) is a Boolean
Artinian BL-algebra. 

Theorem 3.6. Let A be a BL-algebra and A = ∅. Then the set of prime
ideals of A has minimal element with respect to inclusion.

Proof. It is similar to proof of Theorem 3.2. 

Theorem 3.7. Let A be a BL-algebra. Then every finitely generated
ideal in A is principal.

Proof. Let F be a finitely generated ideal of A, then F = (x1, . . . , xn] for
some x1, . . . , xn ∈ A. By induction on n, we complete the proof. If n = 1,
the claim is true by hypothesis. Now assume it is true for n = k and set
(x1, . . . , xn] = (x]. Let n = k+1 then (x1, . . . , xk, xk+1] ⊆ ((x]∪ (xk+1]],
by Proposition 2.12, we have ((x] ∪ (xk+1]] = ((x̄ x̄k+1)−]. 

Conversely, since (x], (xk+1] ⊆ (x1, , xk, xk+1], then ((x̄ x̄k+1)−] = (x]∪
(xk+1]] ⊆ (x1, . . . , xk, xk+1], so (x1, . . . , xk, xk+1] = ((x̄  x̄−k+1)

−] is a
principal ideal of A, and the claim holds for all n ∈ N.
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Theorem 3.8. If Every ideal of BL-algebra A is principal, then A is a
co-Noetherian BL-algebra.

Proof. Let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . . . , be an increasing chain of ideals
of A. Put I = I1 ∪ I2 ∪ . . . , it is clear that I is an ideal of A. By
hypothesis I = (x] for some x ∈ A. So there exists n ∈ N such that
x ∈ In. Therefore, Ii = In, for all i  n. Hence A is a co-Noetherian
BL-algebra. 

Proposition 3.9. If A is a Noetherian BL-algebra. Then (Spec(A), TA)
is a Noetherian topological space, where D(F ) = {P ∈ Spec(A) : F  P}
and TA = {D (F ) : F ∈  (A)}.

Proof. From [3], we deduce, TA = {D (F ) : F ∈  (A)} is a topological
space. Let F1 ⊆ F2 ⊆ . . . , be a chain of filters of A. By Theorem 2.17 (i)
clearly, D(F1) ⊆ D(F2) ⊆ . . . , is a chain of TA. Since A is Noetherian, so
there exists i ∈ N, such that for all n  i Fi = Fn . Then by Theorem
2.17 (ix), D(Fi) = D (Fn), for all n  i and hence (Spec(A), TA) is
Noetherian topological space. 

Proposition 3.10. Let A be a Boolean Artinian BL-algebra, B be a
BL-algebra and f : A −→ B be an onto BL-homomorphism. Then
f(A) = B is a Boolean Artinian BL-algebra.

Proof. It is easy to see that for any deductive system D of B, f−1(D)
is a deductive system of A. Let D1  D2  · · ·  Dn  . . . , be a
properly descending chain of Boolean deductive systems of B, then
f−1(Di), i ∈ N are Boolean deductive systems of A. Since f is onto,
f−1(D1)  f−1(D2)  · · ·  f−1(Dn)  . . . , is a properly descending
chain of Boolean deductive system of A. By hypothesis, A is Boolean
Artinian, then there exists a n ∈ N such that, f−1(Di) = f−1(Dn), for
all i  n. Since f is an onto BL-homomorphism, so we get f(f−1(Di)) =
f(f−1(Dn)) and Di = Dn, for all i  n. Thus B is a Boolean Artinian
BL-algebra. 

Proposition 3.11. Let A be a Boolean Artinian BL-algebra and f :
A −→ A be a one to one BL-homomorphism. Then f is an onto BL-
homomorphism.
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Proof. Suppose f is not an onto BL-homomorphism of BL-algebras,
i.e., A  f(A). Since f is one to one, so f(A)  f2(A) and hence
fn−1(A)  fn(A) for all n  2. This means that A  f(A)  f2(A) 
· · ·  fn−1 (A)  fn (A)  . . . , is a properly descending chain of Boolean
deductive systems of A. This chain is not stationary, because if there
exists k ∈ N such that fk+1(A) = fk(A), then by the injectivity of
f , there exists a map g : A −→ A, g(f(A)) = IA, thus g(fk+1(A)) =
g(fk (A)), i.e., fk (A)=fk−1 (A), by continuing this procedure, we get,
A = f(A). This is a contradiction, hence A = f(A) and f is an onto
BL-homomorphism. 

Proposition 3.12. Let A be a Boolean Artinian BL-algebra and D be

a deductive system of A. Then
A

D
is a Boolean Artinian BL-algebra.

Proof. Let
D1
D

D2
D
 · · ·  Dn

D
 . . . , be a properly descending chain

of Boolean deductive system of
A

D
. Then D1  D2  · · ·  Dn  . . . ,

is a properly descending chain of Boolean deductive system of A. Since
A is a Boolean Artinian BL-algebra, there exists a n ∈ N such that for

all i  n, Di = Dn, so for all i  n,
Di

D
=

Dn

D
. Thus

A

D
is Boolean

Artinian. 

Proposition 3.13. Let A be a BL-algebra. Then A is a Boolean Ar-
tinian BL-algebra if and only if every non-empty set of deductive systems
of A has a minimal element.

Proof. Let A be a Boolean Artinian BL-algebra and G be a non-
empty set of deductive systems of A that does not have a minimal
element. There exists a D1 ∈ G, since G is a non-empty set. Now as
G does not have a minimal element, there exists D2 ∈ G such that
D1  D2. Continuing this method, we have D1  D2  D3  . . . ,
which is a properly descending chain of Boolean deductive systems of
A. This chain is not stationary, so which is a contradiction. Thus G has
a minimal element. 

Conversely, suppose D1  D2  D3  . . . , is a properly descending
chain of Boolean deductive systems of A. Put G = {Di : i ∈ N}. Since
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G is a non-empty set, G has a minimal element, like Dn. Hence for all
i  n, Di = Dn and A is a Boolean Artinian BL-algebra.

Proposition 3.14. Let A be a Boolean Artinian BL-algebra. Then the
set of all maximal deductive systems of A is finite.

Proof. Put G = {D ∈ D(A) : D is the intersection of finitely many
maximal deductive systems of A}. If Max(A) is a non-empty set, then
G is also a non-empty set. Thus by Proposition 3.13, G has a minimal
element D1. So there exist M1,M2, . . . ,Mn of the set of all maximal
deductive systems of A such that D1 = M1 ∩M2 ∩ · · · ∩Mn. Suppose
M is an element of the set of all maximal deductive systems of A. Then
M ∩ D1 ⊆ D1, M ∩ D1 = M ∩M1 ∩M2 ∩ · · · ∩Mn ∈ G and D1 is
a minimal element of G, so M ∩ D1 = D1, Hence D1 = M1 ∩ M2 ∩
· · · ∩Mn ⊆M . Since any deductive system is a filter and every maximal
filters is prime, so M is in Spec(A), thus there exists i ∈ N, such that
Mi ⊆M . Now asM ,Mi are elements of the set of all maximal deductive
systems of A, we get Mi = M. Hence the set of all maximal deductive
systems of A is finite. 

Proposition 3.15. Let A and B be two local BL-algebras and f :
A −→ B be a BL-homomorphism. Then f(A) is a Boolean Artinian
BL-algebra.

Proof. First we show that A is a Boolean Artinian BL-algebra. Sup-
pose D1  D2  · · ·  Dn  . . . , be a properly descending chain
of Boolean deductive system of a local BL-algebra A. We claim that,
there exists a n ∈ N such that for all i  n, Di = Dn. It is clear that,
D1  D2  · · ·  Dn  . . . , generates a properly descending chain
D1 ∪M (A) /M (A)  D2 ∪M (A) /M (A)  . . . , of deductive sys-
tem in A/M (A), where M(A) =


{M :M is a maximal deductive sys-

tem of A}. Since A is a local BL-algebra, so A/M (A) is semilocal and for
some i  n, we have Di ∪M (A) /M (A) = Dn ∪M (A) /M (A). We
show thatDi = Dn. Suppose a ∈ Di, then a ∈ Di∪M (A) ⊆ Di ∪M (A)
and a ∈ Di ∪M (A) = Dn ∪M (A), a ∈ Dn ∪M (A), so for some
b ∈ Dn and c ∈ M(A), we have b  c  a. Thus b  c → a and
since b ∈ Dn, Dn is a deductive system, hence c → a ∈ Dn. Since
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M(A) is a properly deductive system, c ∈ M(A), and by Definition
2.7, M(A) = {x ∈ A : xn > 0 for all n  1}, so c /∈M(A), (c)k = 0, for
some k  1. Since Dn is Boolean, then c ∨ c ∈ Dn, thus (c ∨ c)k ∈ Dn

and c ∨ 0 = c, (c ∨ 0)k = ck, so ck = (c ∨ c)k, i.e., ck ∈ Dn. We know
that ck  c implies c → a  ck → a, therefore, from c → a ∈ Dn, We
conclude that a ∈ Dn, i.e., Di = Dn, for all i  n and A is Boolean
Artinian. Since B is a local BL-algebra, so B is Boolean Artinian, and
by Proposition 3.10, since A and B are Boolean Artinian, so f(A) is a
Boolean Artinian BL-algebra. 

Corollary 3.16. If A is a local BL-algebra and f : A −→ A be a one
to one BL-homomorphism. Then f is an onto BL-homomorphism.

Proof. Since A is local BL-algebra, so by Proposition 3.15, A is also
Boolean Artinian. Thus by Proposition 3.11, f is an ontoBL-homomorphism. 

Corollary 3.17. Let A and B be two BL-algebra and f : A −→ B be
an onto BL-homomorphism. If A is a local BL-algebra. Then B is a
Boolean Artinian BL-algebra.

Proof. Since A is a local BL-algebra, so by Proposition 3.15, A is also
Boolean Artinian, and by Proposition 3.10, B is a Boolean Artinian
BL-algebra. 

Corollary 3.18. Let A be a local BL-algebra and D be a deductive

system of A. Then
A

D
is a Boolean Artinian BL-algebra.

Proof. Since A is a local BL-algebra, so by Proposition 3.15, A is

Boolean Artinian and by Proposition 3.12,
A

D
is a Boolean Artinian

BL-algebra. 

Corollary 3.19. Let A be a local BL-algebra. Then every non-empty
set of deductive systems of A has a minimal element.

Proof. Since A is local BL-algebra, so by Proposition 3.15, A is Boolean
Artinian, and by Proposition 3.13, A is a Boolean Artinian BL-algebra if
and only if every non-empty set of deductive systems of A has a minimal
element. 
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Corollary 3.20. Let A be a local BL-algebra. Then the set of all max-
imal deductive systems of A is finite.

Proof. Since A is local BL-algebra, so by Proposition 3.15, A is Boolean
Artinian and by Proposition 3.14, the set of all maximal deductive sys-
tems of A is finite. 

Proposition 3.21. Let A and B be two local BL-algebras and h : A −→
B be an one to one BL-homomorphism. If h(D1) = h(D2), then
D1 = D2, for all deductive systems D1, D2 of A.

Proof. Let D1 and D2 be two deductive systems of A and h(D1) =
h(D2). Then for any x ∈ D1, h(x) ∈ h(D1) = h(D2), by Theorem
2.15, there exists n ∈ N such that (h(x1)h(x2)· · ·h(xn))→ h(x) =
1, since h is a BL-homomorphism, then h(x1x2· · ·xn) = (h(x1)
h(x2) · · ·  h(xn))→ h(x) = 1, i.e., h((x1  x2  · · ·  xn)→ x) = 1,
h(1) = 1 and by assumption, (x1  x2  · · ·  xn) → x = 1. Since x1,
x2, . . . , xn ∈ D1 and by Theorem 2.15, x ∈ D2 = D2, so D1 ⊆ D2.
Suppose x ∈ D2, then h(x) ∈ h(D1) = h(D2), by Theorem 2.15,
there exists n ∈ N such that (h(x1) h(x2) · · ·  h(xn))→ h(x) = 1,
since h is a BL-homomorphism, then h(x1  x2  · · ·  xn) = (h(x1)
h(x2) · · ·  h(xn))→ h(x) = 1, i.e., h((x1  x2  · · ·  xn)→ x) = 1,
h(1) = 1 and by assumption, (x1  x2  · · ·  xn) → x = 1. Since
x1, x2, . . . , xn ∈ D2 and by Theorem 2.15, x ∈ D1 = D1, so D2 ⊆
D1. Hence D1 = D2, for all D1, D2 ∈ D(A). 

Corollary 3.22. Let A be a BL-algebra such that every ideals of A is
finitely generated. If B is sub BL-algebra of A, and B is a co-Noetherian
BL-algebra, then every sub BL-algebra S between B and A (B ⊆ S ⊆ A)
is also a co-Noetherian BL-algebra.

Proof. Let S be every sub BL-algebra between B and A, i.e., B ⊆ S ⊆
A. By Definition 2.5, since every ideal of A is finitely generated, so A is
a co-Noetherian BL-algebra and every ascending chain in S, stops in A,
thus S is co-Noetherian. 
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Journal of advance in Metamathematics, (99) (2015), 2989-3005.

[7] E. Turunen, BL-algebras of basic fuzzy logic, Mathware Soft Comput., 6
(1999), 49-61.

[8] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidel-
berg, (1999).

[9] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math.
Logic, 40 (2001), 467-473.

[10] E. Turunen and S. Sessa, Local BL-algebras, Mult. Val. Logic 6 (2001),
229-249.

[11] E. Turunen, Semilocal BL-algeras, IX Internati onal IFSA Congress,
Beiging, China, 28-31 July (2005), 252-256.

[12] H. J. Zhan and B. L. Meng, Some results in Co-Noetherian BL-algebras,
International Journal of Scientific and Innovative Mathematical Research
(IJSIMR), 3 (9) (2015), 18-25.



SOME RELATIONS ON NOETHERIAN AND BOOLEAN ... 167

Jamal Kazemiasl
Ph.D Student of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Kazemiasl.j@gmail.com

Farhad Khaksar Haghani
Associate Professor of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Haghani1351@yahoo.com

Shahram Heidarian
Assistant Professor of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Heidarianshm@gmail.com




