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Abstract. This paper presents a modification of successive approxi-
mation method by using projection operator to solve nonlinear Volterra-
Hammerstein integral equations of the second kind. In this paper, it is
proved that under some conditions the sequence of iterated solutions
converges to the exact solution. Applicability of this modification has
been shown with some numerical examples. Comparisons with some
other methods are also addressed which highlight superiority of the
method.

AMS Subject Classification: 65D15; 65R20

Keywords and Phrases: Nonlinear hammerstein integral equations,
successive approximation method, projection operator, shifted legendre
polynomials

1. Introduction

In this paper we consider the following nonlinear Volterra Hammerstein
integral equation

v =)+ [ k(s gt y()dt, s € [0,1], 1)

where z, k and g are known functions. The function g(¢, y(t)) is nonlinear
in the unknown function .
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Applying Green’s function method on a nonlinear boundary value prob-
lem leads to an integral equation of Hammerstein type. Also in studying
some phenomena in various branches of science and engineering, one may
encounter integral equations of Hammerstein type [4, 5].

There are numerous papers which are devoted to study the solution of
these family of nonlinear integral equations. The projection methods
such as Galerkin and collocation methods and their variants are well
known and popular methods which have been used to solve the Ham-
merstein integral equations numerically see for example [16, 2, 12, 21, 6,
13, 24]. These methods convert the integral equation into a system of al-
gebraic equations which is usually solved by an iterative technique. Some
modifications of these methods have allocated much attention to it-
self, for example in [17], Kumar and Sloan presented a new collocation
method to solve Fredhlom-Hammerstein integral equations. Several pa-
pers have used the Kumar-Sloan technique by different basis functions
such as orthogonal functions and wavelets [9, 10, 23]. In addition to these
methods, other approaches have been used to estimate the solution of
the Hammerstein integral equations such as degenerate kernel method
[14], iterated degenerate kernel method [15], a variation of the Nystrom
method [18], Adomian decomposition method [1], etc.

Successive approximation method (Picard iterative method) is a classic
approach which can handle both linear and nonlinear problems. One of
the drawbacks of this method is it’s increasing amount of computations
in the first few iterations. This causes the algorithm to be stopped in
the beginning of the implementation by a software like Maple. Here we
have proposed a modification in successive approximation method to
overcome this problem by using a projection operator in the iterative
method.

The paper is organized as follows:

In Section 2, preliminary mathematics about successive approximation
method and the best approximation solution in L?[0, 1] is presented. In
Section 3, we present the modified successive approximation method. The
convergence discussion is given in Section 4. Finally, in Section 5, some
numerical examples are presented to confirm effectiveness and applica-
bility of the approach.
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2. Mathematical Preliminary

2.1 Successive approximation method

Consider the Volterra-Hammerstein integral equation (1), where k, g, =
are continuous functions. One of the ways to obtain some approximations
to the exact solution is to use the following recurrence relation

{yo(s) = x(s),
Yir1(s) == x(s) + [ok(s,t)g(t, ys(t)) dt, i=0,1,---.

Here the function g satisfies the Lipschitz condition with respect to it’s
second variable

|g(8,t) _g(Svu)| < ’Y‘t - u|78 € [07 1]7

where v is independent of s, ¢t and u. The convergence of the generated
sequence {y;}>°, and whereby existence and uniqueness of the exact
solution of (1) is guarantied by the Banach fixed point theorem [3].
We define the nonlinear operators, T : L2[0,1] — L2[0,1] and G : L?[0, 1]
— (10, 1] as follows

Ty(s) = z(s) + /OS E(s,t)y(t)dt, s € 0,1], (2)
and
G(x)(t) = g(t, (1)), t € [0,1]. (3)

Eq. (1) and the above iteration method can be represented in the oper-
ator form, respectively as

y(S) = TG(y)(S)v s € [07 1]7 (4)

yo(s) == z(s),
{yi+1(5) = TG(yi)(s), i=0,1,--. (5)
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2.2 The best approximation in L?[0, 1]

Let the sequence {¢;}5°, be a complete orthonormal set of functions in
L?[0,1] in which ¢; is a polynomial of degree i, i = 0,1,---, and P,,,
m > 1 denotes the space of polynomial functions of degree < m. Let
the inner product and norm of space L2[0, 1] be respectively

1
(u,v) :/0 u(t)v(t)dt, ||ull 2 =/ (u,u), for all u,v € L*[0,1].

For any = € L?[0,1], the approximate function @, = > jr;(z, dx)dx is
called the best approximation for z in P, which satisfies the following
optimal condition

[ = @mllr2 = inf [l —wullL. (6)

m

The following theorem shows that by increasing the value of m, a better
approximations for z can be obtained.

Theorem 2.2.1. [8] Let {¢;}°, be a complete orthonormal sequence of
functions in L?[0,1]. For any x € L*[0,1], the sequence {z;}32, defined
by Tm = > py (2, Gr) bk converges uniformly to x.

The map P, from L?[0, 1] into P, which is defined as P,z = 31", (2, ¢x) ok
is an orthogonal projection operator. Hence, Theorem 2.2.1, results in

|2 — Ppz||2 — 0 as m — oo, for all x € L?[0,1]. (7)

The inner product of L2[0,1] can be approximated by the following
discrete inner product which is obtained by using the Gauss-Lobatto

quadrature
Zu v(sj)wj, (8)
7=0

where w; = m[Lm(l zid = 0,00 m and the set {s;}7" is the

shifted Legendre Gauss- Lobatto nodes in [0, 1].
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According to [7], if 2 belongs to the Sobolev space HY(0,1) = {u\i—iu €
L?[0,1],0 < k < N}, the following error estimate between the continu-
ous and discrete inner products holds

(@, 0) = (&, @)m| < crm ™|zl gn 6]l L2,V ¢ € P, (9)

where ||z|| gy = (chvzo ||u(k)||2L2)%, and ¢y is a positive constant inde-
pendent of N, m,$, x. Obviously, ||z||;2 < ||z|/ g~ for all z € HY(0,1).
We define the operator @, from L?[0,1] to P,, as

m

Qmz = Z(xa ¢k>m¢k (10)

k=0

With the aid of the assumptions of Theorem 2.2.1, and (9), for all z €
HYN(0,1) we obtain

1P = Qmal|rz = || 3520 (2, d) — (z, Gk )m)drl| 2
< ZZL:O |(xv¢k) - ($7¢k)m| (11)
<a(m+)m™N|z| g

Therefore for all z € HV(0,1) and m > 1,

1Qmzl 12 < [Pt — Q| 12 + || Pl 12
< cr(m+ D)mNz| gy + || Palll|2]| .2

As ||Pn|| = 1, we have
1Qmazlz2 < (e1(m + 1)m™ + Dl g,
and consequently
1Qmll < gm =1+ c1(m+1)m™ for all m > 1. (12)
It is easily seen that according to (11) and (7)
|2 — Qmz|| 2 — 0 as m — oo, for all z € HY(0,1), N > 2. (13)
Furthermore, according to (12)

Gm — 1 as m — oo. (14)
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In this paper, the complete orthonormal sequence is considered to be
{91}320, where ¢i(t) := 153, ¢ € [0,1], and Li(t) = Li(2t — 1), i =
0,1,2,---, are shifted Legendre polynomials. The functions L;(t), i =

0,1,2,---,t € [-1,1], are the well-known Legendre polynomials which
can be obtained recursively, as follows

{Lo():lLl() =t,

2j+1 * :
Ljpa(t) == 2tL(t) — 77 Lj-a(t),5 = 1.

3. Modified Successive Approximation Method

Usually, the number of terms in iterative functions grows rapidly in each
stage by increasing the number of iterations. Therefore the algorithm
may be failed when it is executed by any software like Maple. Therefore
we need to modify the method to prevent the growth of computations. In
the following algorithm, we modify the successive approximation method
slightly. In each step, after calculating the new iterative function we ap-
proximate it by its best approximation in P, and in this way we control
the terms of the iterative functions.

Algorithm 1.
Let the functions k, g, x, number m and the precision € be given and
s € 0,1].

step 0) Set Zg m(s) := 0;

forn=1,--- while anm — Zp 1m||L2 e do
step 1) 2, m(s) )+ Jo k(s 1) Znm(t)dt;
) o
step 3) n+1 m( = Zizo(rn,ma ¢Z)¢Z(S)7

end for,

step 4) Set 7y, (s) := z(s) + [5 k(s,1)Znt1,m(t)dt.

According to the definition of operators T', G and P,,, Algorithm 1 can
be represented as follows.

Let the functions k, g, =, number m and the precision ¢ are given and
s €0,1].



A MODIFICATION IN SUCCESSIVE APPROXIMATION ... 75

Set Zom/(s) := 0;

for n =1, - while||Z,, ;m — Zn—1mllr2 = € do
Znt1,m(8) = PpGT (Znm)(5);

Set Unm(s) = T (Znt1,m)(8)-

In fact, if the solution of the following equation exists then it can be
approximated using the sequence {Zy, ., 5.

Zm = PnGT (Zm), m > 1,Zp, € Py,. (15)

Remark 3.1. Kumar and Sloan [17] proposed a different collocation
method based on a modification of the original problem. They used the
collocation method to find the solution of the following modified equation
instead of (4)

z=GT(z). (16)

To compare with (15), the collocation equation related to (16) was writ-

ten as
zn = P,GT(z),

where P, is an interpolatory operator.

In each iteration of the Algorithm 1, m inner products are performed
which causes some computational drawbacks, hence we replace the con-
tinuous inner product by the discrete inner product (8) which results in
the following algorithm.

Algorithm 2: Modified successive approximation
Let functions k, g, «, number m and the precision € be given and s €
[0, 1].

Set 29,m(s) = 0;

for n =1,---while|| 2 m — 2n—1,m||12 = € do

Znt1,m(8) 1= QmGT (2n,m)(8);

Set yn,m(s) = T(Zn-‘rl,m)(s)'
Indeed, under certain conditions, Algorithm 2, finds the fixed point of
the following equation

Zm = QmGT (zm), m =1 zp € Py,. (17)
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For later use, we define the sequence {y,, }>°_; C L?[0,1] as

Ym =T (2m), m > 1. (18)

4. Error Analysis

Let the following assumptions be satisfied by functions z, k, g.

H1: z € HN(0,1).

H?2: The kernel function k(s,t) is in HV((0,1)2).

H3: The function g(¢,y) is in HV((0,1) x R).

HA: 1= SUP( e (o,1)xm) “Hut < 0.

A straight result of the assumptions H3 and H4 is that the function g
satisfies a Lipschitz condition in the second variable with the Lipschitz

constant -,

lg(s,t) — g(s,u)| < 7|t — u|,for all s € [0,1] and ¢, u € R.

Theorem 4.1. Let assumptions H1-H4 be satisfied. Then the operators
G, GT, Ph,GT and Q,,GT, m > 1 satisfy a Lipschitz condition.

Proof. Let y; and y2 be two arbitrary functions in HV(0, 1). Since the
function g satisfies the Lipschitz condition, we have

|G (y1)(t) =G (y2)(t)] = |g(t, y1 (L)) —g(t, y2(t))] < y|y1(t)—ya2(t)], for all t € [0,1].

This immediately implies that

1G(y1) — G(y2)ll 2 < Ylly1 — y2ll L2 (19)

To prove the Lipschitz condition for GT', from Schwartz inequality for
t € [0,1] we have

" 2
Ty () — Toat)? < ( [t - yQ(S))\dS>
t S 2 S t S) — S 2 S
</0 k(t, 5)d /0 n(s) — a(s)Pds  (20)
t 1
< [ Wit Ras [ ln(s) =)
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Taking the integral of both side of (20) over interval [0,1], and using
Schwartz inequality we obtain

1Ty — Tyollr2 < Klly1 — y2ll 12, (21)

where K2 = fol fot]k(t, s)[?dsdt. Using (19) and (21), the Lipschitz
continuity of the operator GT is inferred,

IGT(y1) — GT(y2)|lz2 < YTy — Ty2llr2 < Kvllyr — w2l (22)

The linear operator P,,, m > 1 is an orthogonal projection, hence
|| P || = 1 and according to the relation (22), we conclude that

1PnGT(y1) = PnGT (y2)ll 2 < IGT(y1) — GT(y2)ll 2 < K|y — wall2-
(23)

Finally, the Lipschitz continuity for Q,,GT, m > 1 follows from (22)
and (12),

1QmGT (Y1) — QuGT (y2) |2 < aml|GT (Y1) — GT(y2) | 2 < amEKY||y1 — y2l|L2-
(24)

The following theorems establish the convergence of the sequence gen-
erated by the modified successive approximation method and (17). O

Theorem 4.2. Let assumptions H1-H4 be satisfied and 0 < Kv < 1,
then the sequence {zpm} generated by the modified successive approxi-
mation method is convergent to the solution of equation (17) and con-
sequently the sequence {ynm} defined in the algorithm is convergent to
Ym and satisfies the following inequality

(K)"
1—-Kr

[Ynm = ymllr2 < K 1G ()]l L2 (25)

Proof. Since 0 < Kv < 1, according to (12) there is an M > 0
sufficiently large so that 0 < ¢, Kv < 1, m > M, thus the operator
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QmGT is a contractive map on HY(0,1) for m > M. Then by Banach
fixed point theorem [3] it has a unique fixed point 2, on H™[0,1] and
the sequence {z, ,} generated by the algorithm is convergent to it.
The convergence of {yn m} to ym as n — oo is obtained by using the
following inequality

”yn,m — Ymll2 = HTZn,m =Tz 2 < K”me — zml| g2 (26)

To prove the inequality (25), according to the Banach fixed point theo-
rem [3] the sequence {z, n,} satisfies

(Ky)"
1—- Ky

|2nm — Zmll2 < ”ZOM — 21mll g2

Since zg,m(s) = 0 and T'(20,m)(s) = x(s), we have

> llz1mll 2

HQmGT(ZO m) |l L2
175 |GT (z0,m) || 2

2 |G(@)] 2

Now by using (26), the inequality is obtained

(K ’Y)
1—

SG@ze. D

||yn,m — Ymllr2 < KHme — Zmllp2 < K

Theorem 4.3. Let assumptions H1-H4 be satisfied and 0 < Ky < 1,
then {ym}oo_, defined by (18) is convergent to y*, which is the exact
solution of (1).

Proof. By defining z* := Gy*, we get Tz* = TGy* = y*, these lead to
z* = GT'z*. By virtue of (21) and (24), we have

[ym = y* 12 = 1T2m = TGY || 12 = [[T2m — T2"|| 12 < K2m — 27| 12,
(27)
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and for all m > M

lzm — 2%z = 1@mGT (2m) — 2*( 2
= |QmGT (z1m) — QumGT(z*) + QmGT(2*) — 2*|| 12
< Q@mGT(2m) — QuGT (2|2 + [[@m (") — 27| 2
< @mKy[lzm — 2|22 + Q@ (2") — 27| 2.
(28)

By using (27) and (28) we have

K
1ym = "l L2 < Kl[zm — 2"l 2 < 7 19me™ = 2" le,

I_Qm

and the convergence is derived immediately from (13) and (14). O

5. Numerical Examples

In all of the following examples, for various amounts of m, we compute
the absolute errors in the following specified norms

N 2
Ey = Z (yexact(xj) - yapp(xj))2 >

j=1

Eo = max (|yezact(T5) — Yapp(w5)]) -
j=1..N

In Example 1, the convergence conditions of Theorem 4.2, are satisfied.
However, in Example 2 and 3 although some of the conditions of the
Theorem 4.2, are not established, but the results show the convergence
of the method. This confirms that the conditions of Theorem 4.2, are
sufficient and not necessary.

Computations are carried out in Maple V. 15 software, with hardware
configuration 32 bit intel Core 2 Duo CPU and 2 GB of RAM.

Example 1. Consider the following nonlinear Volterra-Hammerstein
integral equation of the second kind

y(s) = x(s) — /OS 5% cos(t) cos(y(t))dt, 0<s<1, (29)
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where z(s) = s — 6cos(s) — s cos(s) sin(s) — 3s? cos?(s) + 6cos?(s) +
65 cos(s) sin(s). The exact solution is y(s) = s.

Here K := (fol fot |53 cos(t)|2dsdt)? = 0.08434 and v := 1, so Ky =
0.08434 < 1 and according to the Theorem 4.2, the method is convergent.
The results of the method are presented in Table 1.

The results emphasize that when we increase the value of m the approx-
imate solution can quickly converge to the exact solution. The absolute
error of approximate solution for m = 15 is depicted in Figure 1.

Example 2. Consider the nonlinear Volterra-Hammerstein integral
equation of the second kind as follows:

y(s) = 1 + sin®(s) — 3/ sin(s — t)y(t)* dt, 0<s<1, (30)
0

which has the exact solution y(s) = cos(s).

The method has been applied for various values of m. The results are
given in Table 2.

The table shows the rapid decrease in the error by increasing m. To
affirm the precision of our method, in Figure 2, the absolute error of
the approximate solution corresponding to m = 15 is plotted. In Table
3 we have represented the error of approximations for m = 20, which
are obtained by our approach and Radial basis function method (RBF)
[22] and Single-term Walsh series method (STWS) [23].

Example 3. Consider the following nonlinear Volterra-Hammerstein
integral equation of the second kind given in [20]:

y(s) = g — %e—% — /05 (y(®) +y2(1)) dt, 0<s<1, (31)

which has the exact solution y(s) = e,

The method has been implemented and the results have been summa-
rized in Table 4. Looking at the table, it can be seen that the abso-
lute error is rapidly reduced by increasing m. For comparison with the
other methods in Table 5, the absolute errors of present method and the
other methods are given. It shows the effectiveness and accuracy of our
method in comparison with the other methods. The absolute error of
approximate solution for m = 15 is depicted in Figure 3.
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Table 1: The E5 and E errors with various m in Example 1.

m | number of E. E,
iterations

5 5 2.23108 E -7 | 8.71336 E -8

10 10 5.87671 E -15 | 2.32414 E -15

15 16 5.77612 E -24 | 2.26498 E -24

20 20 4.12562 E -33 | 1.61230 E -33

Table 2: The Fs and E, errors and CPU time with various m. in
Example 2.

m | Number of Feo Es CPU time
iterations

5 8 1.54592 E -7 | 8.28632 E -8 2.6364

10 10 4.05377 E -14 | 2.26688 E -14 4.5708

15 14 7.60379 E -22 | 4.12729 E -22 | 13.2600

20 36 8.89121 E -30 | 4.48100 E -30 | 67.2364

Table 3: Comparison between absolute error of the present method,

Table 4: The Es and FE., errors and CPU time with various m in

RBF and STWS methods in example 2.

t

Our method
m = 20

RBF method
N =20

STWS method
m = 80

0.2
0.4
0.6
0.8
1.0

5.93151 E-30
7.98636 E-30
7.93769 E-30
5.97590 E-30
7.39411 E-46

2.2529 E -16
1.1229 E -16
7.5228 E -17
6.8774 E -17
2.0931 E -16

1.0E-5
1L.OE-5
20E-5
20E-5

20E -5

Example 3.

m

Number of
iterations

Ex

E,

CPU time

15
21
29
35

9.22560 E -7
2.82371 E -13
1.16352 E -20
1.14054 E -28

5.79565 E -7
1.76812 E -13
7.29077 E -21
7.13981 E -29

1.6380
3.3384
79717
15.1945
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Table 5: Comparing our approach and the methods in [18, 19] for

Example 3.

m

Our

method

Bernstein operational
matrices method [19]

TF method[18]

4

8
16
32

8.49274 E -6
9.48008 E -11
2.02022 E -22
4.60349 E -48

6.819 E-5
8429 E -8
*<E-13
*< E-13

3.738 E-3
9.3701 E -4
2344 E 4
2374 E -3

*Reported up to 13 digits

4.%x10"33

3.x 103

Error 5 x 10-33

1.x10-%

Figure 1:

0 0.2

0.4 0.6

5

0.8 1

The absolute error between approximate solution and the

exact solution with m = 15 in Example 1.
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7.%x 10722 {\ /\

6.x 10722

5.%x 10722 (\

4.x 107221
Error

3.x 10722

2.x 10722

1.x 107221

0-f T T T T !
0 0.2 0.4 0.6 0.8 1
s

Figure 2: The absolute error between approximate solution and the
exact solution with m = 15 in Example 2.

1.x 107201 ﬂ {\
8.x 1072 Hﬂ

6.% 10721

4.x 102! i

2.x10°2'

Error

0 T T T
0 0.2 0.4 0.6 0.8 1
s

Figure 3: The absolute error between approximate solution and the
exact solution with m = 15 in Example 3.
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Conclusion

In this study, we have proposed a modification to successive approxima-
tion method by using the projection of the iteration functions in each
stage. The applicability of the method is shown with the implementation
of the method in some examples. By comparison of the numerical results
of the present method with the exact solution and some other methods,
the performance and superiority of the method have been confirmed.
The convergence analysis of the method has also been discussed.
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