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Abstract. In this paper a numerical procedure based on mollification
approach and conjugate gradient method is established to solve a one
dimensional inverse moving boundary value problem. The problem is
considered with noisy data. A regularized problem using mollification
approach is considered and the conjugate gradient method is used to
solve the proposed problem. Some numerical examples are considered to
show the ability of this method. These examples show that the accurate
and stable results can be obtained efficiently for these kind of problems.
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1. Introduction

A large number of situations in heat and mass transfer appear as mov-
ing boundary problems. These are associated with phase change when
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one phase keeps growing at the expense of the other phase and the
two-phase interface moves as a function of time. Heat transfer problems
with phase-change are very common in physics and engineering. Typical
examples include the production or melting of ice, solidification of cast-
ings, and aerodynamic heating of missiles. All of these problems share
the characteristic of an interface boundary which moves toward either
the solid (melting) or the liquid region (solidification). In these prob-
lems, the thermal behavior is assumed to be governed by a well known
partial differential equation of heat conduction [1,4,6,7,8]. During recent
years, much interest has been devoted to the numerical analysis of non-
linear phase change problems. The main feature of such problems is the
moving interface at which the phase change occurs.
These problems often known as direct and inverse Stefan problems. The
direct Stefan problem requires determining both the temperature and
the moving boundary interface when the initial and boundary conditions,
and the thermal properties of the heat conducting body are known. Con-
versely, inverse Stefan problems require determining the initial and/or
boundary conditions, and/or thermal properties from additional infor-
mation which may involve the partial knowledge or measurement of
the moving boundary interface position, its velocity in a normal direc-
tion, or the temperature at selected interior thermocouple of the domain
[1,4,6,8]. Moreover, inverse Stefan problems belong to a very important
class of improperly posed problems of control theory which have many
engineering applications. For example, in the technology of refining a
material by means of recrystallization one is interested in solving the in-
verse Stefan problem which consists of finding the temperature and heat
flux at the fixed surface which guarantee the flatness of the crystalliza-
tion front, see [3, 4, 6]. Various numerical methods have been developed
to solve the Stefan problems. These methods need to be able to effi-
ciently solve the heat equation on irregular domains and keep track of a
moving interface that may undergo complex topological changes [3,4,6].
In this work we investigate the inverse problem of parameter identifi-
cation in a one-phase ablation-type moving boundary problems numer-
ically. Such a problem can be regarded as discovering the cause from
the known result. These inverse problems are ill-posed in the sense that
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small perturbations in the observed functions may result in large changes
in the corresponding solutions [1,8,6]. The ill-posed nature requires spe-
cial numerical techniques having regularization properties to stabilize
the results of calculations. Recently the filtration based methods such
mollification method and the iterative regularization methods such as
conjugate gradient methods have been employed in the solution of in-
verse heat transfer problems and found to be very efficient [2,9,10]. In
this study a regularization procedure based on discrete mollification ap-
proach and conjugate gradient method (CGM) is established to solve
an inverse moving boundary problem. To handle the input data errors,
first the mollified version of our interest problem is achieved and then
the CGM is used to recover the unknown parameters.
The outline of this paper is as follows: In Section 2, the mathematical
formulation of our interest inverse problem is introduced. In Section 3,
a numerical procedure based on marching and mollification methods is
developed to solve the proposed problem. Section 4 contains the con-
vergence and stability analysis of the introduced numerical method and
finally in Section 5 some numerical examples are given and solved with
the proposed method.

2. A Brief Review of Discrete Mollification

Let δ > 0, p′ > 0, Ap = (
∫ p′
−p′exp(−s2)ds)−1, I = [0, 1] and Iδ =

[p′δ, 1−p′δ]. Notice that the interval Iδ is nonempty whenever p′ < 1/2δ.
Furthermore suppose K = {xj : j ∈ Z, 1 � j � M} ⊂ I, satisfying

xj+1 − xj > d > 0, j ∈ Z,

and
0 � x1 < x2 < · · · < xM � 1,

where Z is the set of integers and d is a positive constant. Now if
G = {gj}j∈Z be a discrete function defined on K and sj = (1/2)(xj +
xj+1), j ∈ Z, Then the discrete δ−mollification of G is defined by [2,9,10]

JδG(x) =
M∑

j=1

(∫ sj

sj−1

ρδ(x − s)ds

)
gj ,
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where

ρδ,p′(x) =

{
Apδ

−1 exp
(
−x2

δ2

)
, |x| � p′δ,

0, |x| > p′δ.

Notice that,
∑M

j=1(
∫ sj

sj−1
ρδ(x − s)ds) =

∫ p′δ
−p′δρδ(s)ds = 1.

Let ∆x = supj∈Z(xj+1 − xj), some useful results of the consistency,
stability, and convergence of discrete δ-mollification are as follows [9].

Theorem 2.1. If g(x) is uniformly Lipschitz in I and G = {gj = g(xj) :
j ∈ Z} is the discrete version of g, then there exists a constant C,
independent of δ, such that

‖ JδG − g ‖∞,Iδ
� C(δ + ∆x).

Moreover, if g′(x) ∈ C(I) then,

‖ (JδG)′ − g′ ‖∞,Iδ
� C

(
δ +

∆x

δ

)
.

If the discrete functions G = {gj : j ∈ Z} and Gε = {gε
j : j ∈ Z}, which

are defined on K, satisfy ‖ G − Gε ‖∞,K� ε, then we have

‖ JδG − JδG
ε ‖∞,Iδ

� ε,

‖ (JδG)′ − (JδG
ε)′ ‖∞,Iδ

� Cε

δ
.

If g(x) is uniformly Lipschitz on I, let G = {gj = g(xj) : j ∈ Z} be the
discrete version of g and Gε = {gε

j : j ∈ Z} be the perturbed discrete
version of g satisfying ‖ G − Gε ‖∞,K� ε. then,

‖ JδG
ε − Jδg ‖∞,Iδ

� C(ε + ∆x),

and
‖ JδG

ε − g ‖∞,Iδ
� C(ε + δ + ∆x).

Moreover, if g′(x) ∈ C(I) then,

‖ (JδG
ε)

′ − (Jδg)
′ ‖∞,Iδ

� C

δ
(ε + ∆x),
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the nonhomogeneous or source term and s(t) > 0 represents the moving
boundary.
In the problem (1)-(5) it is supposed that s(t) is a known function and
the surface of the slab at x = 1 is exposed to an unknown transient
heat p(t). Our interest problem consists of determining two functions
u(x, t) and p(t) satisfying these equations. This one-dimensional moving
boundary problem can be transformed to a fixed boundary problem
by a simple stretching of the spatial coordinate according ζ = x/s(t).
Introducing dimensionless variables and parameters, the problem (1)-(5)
is transformed into the following dimensionless form

Cs2(t)ut(ζ, t) = Kuζζ(ζ, t) + s(t)
(

h + Cs(t)ζ
ds

dt

)
uζ(ζ, t)

+ F (ζ, t), 0 < ζ < 1, 0 < t < Tf , (6)

u(ζ, 0) = ϕ(ζ), 0 < ζ < 1, (7)

u(0, t) = q(t), 0 < t < Tf , (8)

u(1, tj) = p(t), 0 < t < Tf , (9)

uζ(1, tj) = φj , j = 1, 2, ..., N, (10)

where u(ζ, t) = T (ζs(t), t), F (ζ, t) = s2(t)f(ζs(t), t), ϕ(ζ) = ϕ1(ζs(0))
and φj = φjs(tj). It is assumed that q(t), ϕ(t) and φj , j = 1, 2, ...., N ,
are only known approximately as pε(t), ϕε(t) and φε

j such that

‖ϕ(t) − ϕε(t)‖∞ � ε

‖q(t) − qε(t)‖∞ � ε

‖φj − φε
j‖∞ � ε.

Because of the presence of the noise in the problem’s data, we first
stablize the problem using the mollification method.

3.2 Regularized problem

The regularized problem is formulated as follows. Determine v(x, t) and
p(t) = v(1, t) from the following problem
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Cs2(t)vt(ζ, t) = Kvζζ(ζ, t) + s(t)
(

h + Cs(t)ζ
ds

dt

)
vζ(ζ, t)

+ s2(t)F (ζ, t), 0 < ζ < 1, 0 < t < Tf , (11)

v(ζ, 0) = Jδ′(ϕ(ζ)), 0 < ζ < 1. (12)

v(0, t) = Jδ0(q(t)), 0 < t < Tf , (13)

v(1, t) = Jδ0(p(t)), 0 < t < Tf , (14)

with respect to the following overspecified data

vζ(1, t) = Jδ∗0 (φj), j = 1, 2, ..., N, (15)

where Jδ(.) shows the mollified function with respect to the mollification
radii δ and the radii of mollifications, δ0, δ∗0 and δ′ are chosen automat-
ically using the GCV method [2, 9].
We use the variational formulation of the inverse heat conduction prob-
lem under analysis. In such a case, the solution of the inverse problem
based on the minimization of the residual functional defined by the fol-
lowing equation

J1 =
1
2

N∑
i=1

(v(1, ti; p) − Jδ∗0 (φi))2, (16)

where v(1, t; p) is the temperature computed at ζ = 1 by the solving
direct problem (11)-(14) at the t = tj , j = 1, 2, ..., N . The conjugate
gradient method with an adjoint problem is used for the minimization of
the objective functional. Such minimization procedure requires the so-
lution of auxiliary problems, known as sensitivity and adjoint problems.
This inverse problem is recast as an optimum control problem of finding
the unknown control function p such that minimizes the functional (16).

4. Method of Optimization by Conjugate Gra-
dient

4.1 Sensitivity problem

The sensitivity function, solution of the sensitivity problem, is defined
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as the directional derivative of v(x, t) in the direction of the perturba-
tion of the unknown function p(t) [3,5,11,12]. The sensitivity problem
for v(x, t) is obtained by assuming that dependent variable v(x, t) is
perturbed by ε∆v(x, t) when the coefficient p(t) is perturbed by ε∆p(t),
where ε is a real number. The sensitivity problem is then obtained by
applying the following limiting process

lim
ε→0

Lε(pε) − L(p)
ε

(17)

where Lε(pε) and L(p) are the direct problem formulations written in
operator form for perturbed and unperturbed quantities, respectively.
The application of the limiting process given by equation (17) results in
the following sensitivity problem

Cs2(t)∆vt(ζ, t) = K∆vζζ(ζ, t) + s(t)
(

h + Cs(t)ζ
ds

dt

)
∆vζ(ζ, t),

0 < ζ < 1, 0 < t < Tf , (18)

∆v(ζ, 0) = 0, 0 < ζ < 1. (19)

∆v(0, t) = 0, 0 < t < Tf , (20)

∆v(1, t) = Jδ0(∆p(t)), 0 < t < Tf . (21)

4.2 Adjoint problem

In order to derive the adjoint problem, the governing equation of the
direct problem (11) is multiplied by the Lagrange multiplier λ(ζ, t), in-
tegrated in the corresponded space and time domains and added to the
original functional (16) [3]. The following extended functional is ob-
tained

J =
1
2

∫ Tf

0

N∑
i=1

(v(1, ti; p) − Jδ∗0 (φi))2δ(τ − ti)dτ

+
∫ Tf

0

∫ 1

0
{Kvζζ(ζ, τ) + s(τ)

(
h + Cs(τ)ζ

ds

dτ

)
vζ(ζ, τ)

− Cs2(τ)vt(ζ, τ)}λ(ζ, τ)dζdτ, (22)

where δ(.) is the Dirac delta function. Direction derivative of J(p) in
the direction of perturbation in p(t) is defined by
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4.3 Iterative regularization procedure

For the estimation of p(t), the iterative procedure of the CGM is written
as follows [3,5,12]

pn+1(t) = pn(t) − βndn(t), n = 0, 1, ... . (31)

where dn(t) is the direction of descent, β is the search step size, and
n is the number of iterations. For the iterative procedure, the direction
of descent is obtained as a linear combination of the gradient direction
with directions of descent of the previous iterations. The direction of
descent for the conjugate gradient method can be written as

d0(t) = ∇J(p(t)), (32)

dn(t) = ∇Jn(p(t)) + γn∇Jn−1(p(t)) n = 0, 1, ... . (33)

where γn is the conjugation coefficient. Different versions of the con-
jugate gradient method can be found in literature, depending on how
the conjugation coefficient are computed [3]. Here, these parameters are
obtained as follows

γ0(t) = 0, (34)

γn(t) =

∫ 1
0 Jn(q(t)2dt∫ 1

0 Jn−1(q(t)2dt
, n = 1, ... . (35)

The search step size βn, appearing in the expression of the iterative
procedure for estimation of p(t) are obtained by minimizing the objective
functional at each iteration along the specified directions of descent. If
the objective functional given by (16) is linearized with respect to βn,
the following expression is obtained for determining the search step size

βn =

∑N
i=1(v(1, ti; p) − Jδ∗0 (φi))∆v(1, ti; p)∑N

i=1(∆v(1, ti; p))2
, (36)

where v(1, ti; p) and ∆v(1, ti; p) are the solutions of direct and sensitivity
problems respectively, at the n iteration obtained by setting p(t) = pn(t)
and ∆p(t) = dn(t).
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As shown in this section, the conjugate gradient method of function es-
timation belongs to the class of iterative regularization methods. In such
class of methods, the stopping criterion for the computational procedure
is used as a regularization parameter, so that sufficiently accurate and
smooth solution is obtained for the unknown functions. For the stopping
criterion, we illustrate in this work the use of the discrepancy principle
[3]. With the use of the discrepancy principle, the iterative procedure of
the conjugate gradient method is stopped when the difference between
the measured and the estimated variables is of the order of the standard
deviation,δ of the measurements. Therefore, the iterative procedure is
stopped when

J(p(t)) < ζ, (37)

where a standard way to determine this tolerance is as follows [3]

ζ =
1
2
Nδ

2
. (38)

5. Computational Tests

The purpose of this section is to numerically validate the proposed nu-
merical procedure. An excellent way to check the accuracy of the nu-
merical calculations is to compare them to the analytical solutions. In
all cases, without loss of generality, we set p′ = 3 (see [10]). The radii
of mollification are always chosen automatically using the mollification
and GCV methods. Discretized measured approximations of boundary
data are modeled by adding random errors to the exact data functions
[3,5].
The errors between exact and approximate solutions are measured by
the relative weighted l2-norm given by

[∫ 1
0

∫ Tf

0 |vex(ζ, t) − vapp(ζ, t)|2dtdζ
]1/2

[∫ 1
0

∫ Tf

0 |vex(ζ, t)|2dtdζ
]1/2

.

All numerical results has been produced by MATLAB software.
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