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Abstract. In this paper, a new limited memory BFGS is proposed
for solving stochastic optimization problems. Since the cost of storing
and manipulating Hj is prohibitive in the large scale setting, the L-
BFGS algorithms use the strategy of keeping the most recent correction
pairs. Besides, in the stochastic regime, due to some noisy information
in both gradient vector and Hessian approximation, the second-order
model is not an accurate estimation of the function. To overcome this
problem, our L-BFGS employs memory in an optimal manner by stor-
ing the correction pairs that have the least violation in the secant equa-
tion. Under some standard assumptions, the convergence property of
the new algorithm is established for strongly convex functions. Numer-
ical results on the problems arising in machine learning show that the
new method is competitive and effective in practice.
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1. Introduction

Using many more parameters to model large-scale data sets is a tendency
in machine learning. The larger the scale of the dataset and hence the
more the parameters used for modelling the dataset, the larger the scale
of the optimization problem. Accordingly, designing efficient algorithms
for these large-scale optimization problems is crucial in data science.

A special case that arises frequently in machine learning is the empirical
risk minimization problem:

. IS
xrrel]g}t F(x) = T ;fz(x), (1)

where f; : R — R is the loss function corresponding to the ¢-th sample
data, and T denotes the number of observations and is assumed to be
extremely large. The large value of T necessitates the use of stochas-
tic approximation algorithms (SA) which are based on small subsets of
data. One of the most pioneering research in this field is attributed to
Robbins and Monro [28]. This classical SA method mimics the steep-
est descent gradient method, by using a mini-batch stochastic gradient
based on b < T instances, i.e., the iteration zFt! = zF — ak@F(xk)
scheme is employed, where the stochastic gradient is estimated by

VF(z) == Vs, Flz) = % S Vi), @)

i€S,

where S, C {1,2,...T'} is a randomly chosen subset of training examples,
and b is the cardinality of S,.

The SA method has been studied extensively in [7, 11, 12, 26, 27, 30, 31],
in which the main focus has been the convergence of SA in different set-
tings. The methods for solving convex stochastic optimization problems
are of great interest in the literature [1, 2, 8, 11, 12, 13, 14, 15, 18, 19].
Unlike gradient-based methods, which fundamentally employ first-order
models, quasi-Newton methods employ second-order models. The use
of second-order derivative information makes these methods more ro-
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bust. The quasi-Newton update is as follows:

Pt = oF — o HLVF(2F), (3)

where H}, is an estimation of the exact inverse Hessian [V2F (2*)]~L.

There are a number of works in the literature attempting to design
stochastic quasi-Newton algorithms for solving large scale setting as
(1). These algorithms update the iterates via (3) using the stochastic
gradient. Byrd et al. in [5] employed Hessian vector products to incor-
porate the second-order information by using sample average approx-
imation (SAA) approach. Bordes et al. [3] used a diagonal re-scaling
matrix and updated the Hessian at fixed intervals in order to reduce the
computational costs.

Schraudolph et al. in [32] developed a BFGS framework for solving
(1). The gradient difference in their BFGS update is obtained from two
sampled gradients which are extracted from the same sample set.

Mokhtari and Ribeiro [23] makes use of regularized BFGS matrix to
solve strongly convex problems. Moreover, they studied an online quasi-
Newton method in [24].

In all the above-mentioned studies, the gradient noise is of special im-
portance. To alleviate the gradient noise, Moritz et al. [25] integrated the
L-BFGS method of [21] with the variance reduction technique (SVRG)
proposed by Johnson and Zhang in [16]. Also, Lucchi et al. in [22] em-
ployed SVRG in the L-BFGS method. Byrd et al. [6] incorporated the
stochastic regime in the L-BFGS method. They calculate Hj using sub-
sampled Hessian matrices V2F (z*), based on the sample Sy, where Sy
is sampled uniformly at random and independently of S. Their strategy
for reducing computational costs is similar to that mentioned by Bordes
[3]. In fact, they update the Hessian vector products at fixed intervals.

In this paper, we propose a new stochastic quasi-Newton method in
the L-BFGS framework. Traditionally, the L-BFGS algorithms keep the
most recent correction pairs {s;, y;} [21], and drop the oldest vector pair
in the current set of correction pairs and replace it by the new one once
the new iterate is performed. However, in the stochastic structure, there
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are some noisy information in both gradient vector and Hessian approx-
imation matrix. This makes the secant equation to be violated by the
correction pairs. Therefore, the second-order model is not an accurate
estimation of the function. To overcome this problem, instead of the
recent pairs, we keep the correction pairs in the memory that have the
least violation of the secant equation. This helps us to better approxi-
mate the Hessian vector products by pairs and estimate the model. The
convergence property of the new proposed approach for strongly convex
functions is investigated under some standard assumptions. To see the
practical performance of the new L-BFGS, numerical results of apply-
ing the new technique on some large-scale problems arising in machine
learning are reported and compared with some other algorithms in this
context. The results show the efficiency and effectiveness of our approach
in practice.

The rest of the paper is organized as follows: In Section 2, we derive a
new strategy for updating memory in L-BFGS method, and present the
new limited memory quasi-Newton algorithm. Section 3 is devoted to es-
tablishing the convergence property of the new proposed algorithm for
strongly convex functions under some assumptions. In Section 4, numer-
ical experiments are provided that illustrate the practical performance
of the new L-BFGS on some machine learning problems. Finally, some
concluding remarks are given in Section 5.

2. A Stochastic L-BFGS Method

The BFGS method is one of the most popular quasi-Newton algorithm
for minimizing a deterministic function F'(x). It is derived by forming
the following quadratic model of the objective function at the current
iterate xy:

1
mi(p) = Fi, + VE p+ §pTBk:p,

where Fy, = F(x), VF, = VF(x;) and By is an n X n symmetric
positive definite matrix that approximates the Hessian and is updated
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at every iteration. The BFGS algorithm offers to update Hy,1, the
approximation of the inverse Hessian, uniquely by Hy:

(BFGS)  Hyp1= (I — prsiyr” ) He(I — pryrsi’) + prsksk” . (4)

where

sp=a" —ab =afp, Yy =VFy - VE, (5)

and

1

pr = —7—-
UL sk

The pair {sg, yx} is called a correction pair. In the quasi-Newton meth-
ods, a reasonable requirement on the approximation of the Hessian ma-
trix is that the gradient of the model should match the gradient of the
objective function in the latest two iterations, which is referred to as
secant equation, i.e.,

Bii15k = Y, (6)

For large-scale settings, it is necessary to employ a limited memory vari-
ant of the BFGS method. In the so-called L-BFGS method, only a cer-
tain number of latest correction pairs {s;, y;} is stored in the memory in
order to update Hy, by (4).

Our algorithm is in the stochastic structure and uses the L-BFGS frame-
work. Following Byrd et al. [6], we use regular intervals to update Hessian
vector products instead of updating them in each iteration. Indeed, the
displacement vector s is calculated by the following equation:

k
St = Tt — Tt-1, Ty = Z ', (7)
k—L

where L is the fixed interval length, 2* is the i-th iteration and z; is the
average of the recent L iterations. We also follow the work suggested by
Byrd et al. [6] in defining the displacement vector y, to prevent noisy
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gradients. Hence, instead of using (5), the vector y is defined by the
secant equation (6):

ye = Ve, F(Z4)st, (8)

where Sy C {1,...,T'} is a randomly chosen subset of training examples,
and V?SHF is a sub-sampled Hessian matrix defined by:

VEF@) = ;- 3 Vi), )

1€SH
where by is the cardinality of Sy.

The main contribution of our algorithm appears in the technique by
which we use the memory in the L-BFGS method. As it was mentioned,
since the cost of storing and manipulating H}, is prohibitive when the
number of variables is large, the L-BFGS algorithm usually keeps the
most recent correction pairs {s;,y;} [21], and replaces the oldest one by
the new pair {sy,yi} right after computing the new iterate. However,
in the stochastic regime, both the gradient and Hessian approximations
are noisy. Therefore, the secant equation (6) might be violated by the
pairs. In this case, keeping just M most recent correction pairs may cause
some incompatibility between the model and the objective function. In
order to prevent this phenomena, we propose to keep those pairs in the
memory that have the least violation in the secant equation.

Let us define the sec vector as follows:

secy = Hyy1yp — s = Hep1ye + akpk.

Once the memory for the pairs becomes full, the stored correction pair
{s,y}, whose corresponding sec vector norm is large, is replaced by the
new correction pair.

Algorithm 3 provides the main framework of our new proposed stochastic
limited memory quasi-Newton method. Moreover, Algorithms 1 and 2
are the procedures which calculate vector y via (8) and the matrix-vector
products, respectively.
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Algorithm 1 Calculation of y = getSH (zg,x1)

Require: z; and xg

Ensure: y
1: Choose a sample Sy € {1,...,T},
2: Set y = @?SHF(xl)(xl — Tp).

Algorithm 2 Calculation of matrix-vector product; p = getHg(g,S,Y)

Require: The vector g, and two matrices S and Y.
Ensure: The matrix-vector product p.

1: Let k be the number of non-zero columns in S, and ¢ = g.
2: fori=ktol do
3. Set p; = yT%, a; = pis} q and g = q — ay;.
4: end for
S
5: Set r = szzi q.
6: fori=1to k do
T Bi=piylr,r =71+ si(0 — Bi).
8: end for
9: Set p=r.

Since in the first 2L iterations, no correction pair {s, y} is calculated, the
search direction is that of the gradient direction. Whenever the memory
reaches its maximum size M, a correction pair {s,y} with maximum
corresponding ||sec| is found and is replaced by the newest one. The
results show that even with extra computations for finding the correc-
tion pair whose corresponding sec vector norm is larger, the proposed
algorithm performs well and is competitive with some other well-known
algorithms both in computing time and optimality gap.

2.1 Convergence analysis

In this section, we investigate the convergence property of Algorithm 3
for strongly convex and twice continuously differentiable functions. The
following assumptions are made in our analysis:

Assumption 1 The function f; : R®™ — R is convex and twice continu-
ously differentiable, for all 1 <7 < T.
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Assumption 2 There exist positive constants A and A, such that
A X V% F(z) < Al (10)

for all z € R™ and all nonempty subsets Sy C {1,...,7'}. This
implies that the true objective F' satisfies

M < V2F(x) < AI,  Va cR™ (11)

Algorithm 3 Stochastic limited memory quasi-Newton

1: Choose a starting point x%, positive integers M (memory parameter)
and L, and step-length sequence o > 0.

2: Let S and Y be two n x M zero matrices.

3: Set t = —1 and z; = 0.

4: Choose a sample S; C {1,...,T}.

5: Set pg = @F(QUO)7 ! =29 — a%pg, and k = 1.

6: repeat

7. Set Z; = 7; + 2%, and choose a sample S, C {1,...,T},
8: if £k < 2L then

9: Set pr, = @F(xk)

10: else

11: Set pyp = getHg(VF(z*),S,Y).

12: end if

13:  if mod(k,L) = 0 then

14: Set t =t+ 1,7, = 4+,

15: if ¢ > 0 then

16: Set § =&y — Ty—1 and § = getSH (T, Ty—1).

17: if t < M then

18: Set s; = 5, y; = 9, and sec; = getHg(y:, S,Y) + oFpy.
19: else

20: Set ¢ = argmax{||sec;||,j =1,..., M},

21 for!=ito M —1 do

22: S = Si4+1,Yl = Yi+1, S€C| = SeCjy1-

23: end for

24: sp =5, ym = ¥, secar = getHg(yar, S,Y) + oFpy.
25: end if

26: end if

27: xy = 0.

28: end if
290 k=k+1.
30: until convergence
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Although the first assumption may appear to be unusual in some set-
tings, such as logistic regression function, it is common in practice to
either add an /5 regularization term or employ other mechanism to en-
sure that the iterates remain in a region where the function F' is strongly
convex. These assumptions imply that F' has a unique minimizer. From
now on, we denote the unique minimizer of F' by x*.

The following lemma provides an upper and a lower bound for the trace
and determinant of the H;,~! matrices, respectively.

Lemma 2.1.1. Suppose that Assumptions 1 and 2 hold and By = H;™'.

Then,
tr(Bt) < (n + M)A,
)\n-i—M
det(B z .
et(Bt) (n+ MYMAM

Proof. Using (5), we have s;Ty; = Sj@i«HF(Uj)sj. Hence, from As-
sumption 2, it yields
2 T 2
Alsill™ < s57y; < A sl

We proceed by induction on t. First, we note that the limited memory
quasi-Newton updating formula starts with:

T
Bto _ ?/tTytI
St™ Yt

(@@HF(ut)st)T@gHF(ut)stl
stT@%HF(ut)st

sTVE F(u)/?V% F(u) V% F(u)'/?s
stTﬁ?sH F(ut)l/g@gﬁF(ut)l/Qst

)

where the second equality is followed from y; = @?SHF (ug)s¢, and the
last equality is obtained from the fact that @?SHF (u¢) is symmetric and
positive definite. Let 2; = @?SHF(ut)l/Qst. Then,
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From Assumption 2, we have

< H <
~X ZtTZt ~ Y
which implies that
T
Yt Yt
tr(B") = n < nA,
(B stTy h
T n
det(BtO) _ (ytTyt> > A
St™ Yt

for all ¢. Assume that the induction hypothesis holds. Using Sherman-
Morrison-Woodbury formula, we can equivalently write (4) in terms of
the Hessian approximation as follows:
Bl tsisi ' BTy

siT B tsy yilse
Now, from the linearity of the trace operator, we can write:

| B sy n | el
StTBt]_lst Y st

Btj —_ Btjfl _

tr(By) = tr(B/ 1) —

ytTSt
<tr(BY7H 4+ A
<(h+M-1)A+A
= (n+ M)A,

where the last inequality follows from the fact that j < M.

In order to find a lower bound for the determinant, we use the property
of the determinant, i.e., det(AB) = det(A)det(B), we have:

. . 5. TRpJi-1 BI~N=1y.0..T
5;4 B/ s y;Ts;

In [9] it is shown that the following identity holds for all uy,v1,ue and
V2:

det(I + uvr L+ uzng) =(1+ ulTvl)(l + UQT'UQ) — (UlT’UQ)('UlTUQ).
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B s, 11 v;
L ug = (Bt] ) y; and vy = —#

By setting u; = —sj, v1 = ST 1s; w15,

we have:

. . y-Ts-
det (Bt’]) — det (Btjil) ﬁ
gt J

: Tsi sl
= det (B/71) |?|J]S H]z SjTBtinlSj
’ A
) N (B )’

where the last inequality is followed from the fact that

2 det (Bt]_l

SjTBtjilsj < )\max (Btjil) H 3]‘H2'

Now, using the fact that the largest eigenvalue of a positive definite
matrix is bounded by its trace, we have:

A

det (By) > det (B/71) BT
t

This completes the proof of the lemma. [

Lemma 2.1.2. Suppose that Assumption 1 and 2 hold. Then, there exist
constants 0 < v < T' so that:

v < Hy <T1, (12)

forallt >1

Proof. Using Lemma 2.1.1 and the fact that Hy is positive definite, we
obtain:

)‘maX(Bt) < ( )
d€t( t
max(Bt)

(n+ M)A,
) /\n+M

Amin(Bt) > Z (n + M)n+M=1n+M—1"
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Now, using B; = H; ™!, we have

1 - ((n + M)A TM-1
CEN I e

n+M-—1
By setting v = [CEST and I' = %, the proof is com-

pleted. O

The following theorem establishes the global convergence property of
Algorithm 3 for the strongly convex functions. The proof is similar to
Theorem 2.1.3 in [6].

Theorem 2.1.3. suppose that Assumptions 1 and 2 hold and there exists
positive constant o such that E[|| VF(2*) ||]?> < 0. Let z* be the unique
minimizer of F', and suppose that

where
Q = max{F(z') — F(z*),0}.

3. Experimental Results

To validate our approach, we compare the performance of our new pro-
posed algorithm, denoted by “slbfgs”, with the stochastic gradient de-
scent (SGD) method [28], the stochastic quasi-Newton method (SQN)
[6] and the SVRG-LBFGS [17]. We evaluate these algorithms on three
popular machine learning models, including ¢ and ¢;-norm regularized
logistic regression (LR) problem and fe-norm regularized linear regres-
sion problem (ridge regression). Our experiments show the effective-
ness of the algorithm on real-world and synthetic data. All the methods
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were implemented in MATLAB using SGDLibrary 2. The performance
of stochastic algorithms is affected not only by the distribution of data
but also by the step-size selection strategy [4]. Hence, we consider a as
a constant. We set the memory to M = 10 for all the limited memory
methods in all tests, which is a standard choice for the L-BFGS meth-
ods. For all the methods, we display the results for values of the batch
size as b = 10, and for the quasi-Newton methods, we set the Hessian
batch size as by = 200, and L = 10.

It is worth mentioning that in all figures of this section, the horizontal
axis is the number of gradient evaluations unless otherwise stated. Be-
sides, in the vertical axis, the “optimality gap” stands for the expected
optimality gap which is E [F(z*) — F(z*)]), and “cost” denotes the
function value.

3.1 Experiments with Synthetic Data

We first test our algorithm on a £-norm logistic regression problem. The
train/test data were generated randomly via a data generator function
with T' = 100 and n = 10. Figure 1 reports the performance of SGD,
SQN, and the newly proposed algorithm on this problem. The figure
represents the cost function and optimality gap values in terms of the
number of gradient evaluations. It is noteworthy that each algorithm
requires a different number of evaluations of samples in each epoch.
Therefore, it is common to use the number of gradient evaluations to
evaluate the algorithms instead of the number of iterations. It can be
observed that the new method outperforms others both in computational
costs and optimality error.

Figure 2 represents the performance of the considered algorithms on
¢1-norm regularized logistic regression problem with A = 107!, As the
figure illustrates, the new algorithm outperforms the other algorithms
in finding the optimum of the function.

In Figure 3, we investigate the performance of ridge regression problem
on the synthetic data. In this experiment, SGD and SVRG-LBFGS

2All the codes for the experiments can be downloaded from
https://github.com/hiroyuki-kasai/SGDLibrary
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make more progress initially but the new algorithm performs well at the

end.

3.2 Experiments with RCV1 Data

Reuters Corpus Volume 1 (RCV1) [20] is a dataset which consists of
over 800,000 Newswire Stories that have been manually categorized.
Figure 4 displays test error and cost function of logistic regression prob-
lem on RCV1 data. The figure shows that the new proposed algorithm
outperforms the considered algorithms both in optimality gap and costs.
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Figure 1. Performance of the considered algorithms on the synthetic
data for fo-norm logistic regression problem
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Figure 2. Performance of the considered algorithms on the synthetic
data for /1-norm regularized logistic regression problem
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Figure 3. Performance of the considered algorithms on the synthetic
data for ¢1-norm regularized logistic regression problem

4. Conclusions

In this paper a limited memory BFGS algorithm for solving stochastic
optimization problems, mainly arising in the machine learning problems
is proposed. In the new algorithm, instead of storing the last pairs of
the correction vectors, the ones that provide more accurate curvature
of the function are stored. The convergence property of the proposed
scheme for the strongly convex functions under standard assumptions
is investigated. In order to compare the new approach by some existing
methods in the literature, the numerical results of applying the new
scheme on some synthetic and real-world data sets are reported and
compared.
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