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1. Introduction

The uniform monotonicity was introduced and studied by Birkhoff in
[4]. Hudzik and Narloch in [9] studied the relationships between mono-
tonicity and complex rotundity properties. We say that the Banach lat-
tice X has the STM property (X is an strictly monotone space) if for
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any u, v ∈ X such that u  v  0 and u = v, it can be con-
cluded that u = v. Also the Banach lattice X has the UM property
(X is a uniformly monotone space) if for all un  vn  0 such that
limn→∞ un = limn→∞ vn implies un − vn → 0 and the Banach
lattice X has the ULUM (LLUM) property (X is a upper (lower) lo-
cally uniformly monotone space) if for each u, vn ∈ X, vn  u  0
(u  vn  0) such that vn → u then vn − u → 0. In 1992 Kurc [13]
stated that the relation between the UM and UR (uniformly rotund)
property as well as between the STM and R (rotund) property. Further
relations can be found in [7]. Kurc in [13] introduced the dominated
best approximation problem and in [8] Hudzik and Kurc generalized
this problem on LLUM and ULUM spaces. In [5] the authors has dis-
cussed more general forms of the best approximation problem in Banach
lattices by means of monotonicities. More details about Banach lattices
and monotonicity could be found in [1, 11, 14, 15].

Let A and B be nonempty subsets of a normed space (X, .) and T :
A → B be a map. If x − Tx = d(A,B) for some x ∈ A, in which
d(A,B) = inf{x − y : (x, y) ∈ A × B} then (x, Tx) is called the best
proximity pair and x is called the best proximity point. The set of all
the best proximity points is denoted by PT (A,B), i.e., PT (A,B) = {x ∈
A : x− Tx = d(A,B)}.
The best proximity pair problem in Banach spaces has already been
examined by considering some special conditions. In [12] Kirk et al in-
troduced cyclic mapping with a restriction condition and Eldred and
Veeramani in [6] introduced cyclic contraction maps and discussed the
best proximity problem for cyclic contraction maps on uniformly convex
Banach spaces. In [17] this problem is examined for relatively nonexpan-
sive maps. Also proximinal pointwise contraction maps are defined by
Anuradha and Veeramani in [3] and they proved the existence of best
proximity points on a pair of weakly compact convex subsets of a Banach
space. You can refer to [2, 10, 16] for some other maps. In this paper
we will connect between monotonicity properties and the best proximity
pair problem.
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2. Preliminaries

Let X be a Banach lattice with a lattice norm  · . The norm  · 
has the strictly monotone property if for all x, y ∈ X+, the conditions
x  y, y = 0 and x = y implies x = y, in this case we say that X
is an STM space or X ∈ STM. Also we say that the norm is uniformly
monotone (X ∈ UM) if for any yn  xn  0, lim

n→∞
xn = lim

n→∞
yn

implies yn − xn → 0.

A Banach lattice X is said to be upper (lower) locally uniformly mono-
tone, X ∈ ULUM (X ∈ LLUM), if for any x, yn ∈ X, yn  x  0
(x  yn  0), and yn → x imply yn − x → 0.

Obviously,
UM
⇓

ULUM

⇒

⇒

LLUM
⇓

STM

For Example, Lp-spaces with 1  p < ∞ are UM spaces, but the space
L∞ is not even an STM space.

Recall that (X, .) has order continuous norm if 0  xα ↓ 0 implies
xα → 0.

From here on, A and B are two nonempty subsets of X and T : A→ B

is a map.

Definition 2.1. Let x ∈ A. A sequence {xn} ⊆ A is said to be a Tx-
minimizing sequence in A if lim

n→∞
xn− Tx = d(A,B) and {xn} ⊆ A is

said to be a T -minimizing sequence in A if lim
n→∞

xn − Txn = d(A,B).

Definition 2.2. Let x ∈ A. A subset A ⊆ X is said to be a Tx-absolutely
direct set if for any y, z ∈ A there exists w ∈ A such that |w − Tx| 
|y − Tx| ∧ |z − Tx|.

Definition 2.3. A subset A ⊆ X is said to be a T -absolutely direct set if
for any x, y ∈ A there exists z ∈ A such that |z−Tx|  |x−Tx|∧|y−Tx|
and |z − Ty|  |x− Ty| ∧ |y − Ty|.

Example 2.4. Suppose that X is a Banach lattice, x ∈ X and A =
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{αx : α ∈ R}. If T is a identity map then A is a Tx-absolutely direct
set for any x ∈ A, but A is not a T -absolutely direct set.

Remark 2.5. If A is a sublattice of a Banach lattice X (i.e., A is closed
with respect to the finite infimum and supremum) and A  B (or B  A)
then A is a T -absolutely direct set and also A is a Tx-absolutely direct
set for any x ∈ A. Recall that A  B means x  y for any x ∈ A and
y ∈ B.

Definition 2.6. The best proximity pair problem is said to be

1. T -solvable if PT (A,B) = ∅,

2. T -uniquely solvable if card(PT (A,B)) = 1 (or Tx-solvable if PT (A,B)
= {x}),

3. T -stable if for every T -minimizing sequence {xn} in A, dist(xn, PT (A,

B))→ 0 as n→∞,

4. T -strongly solvable if it is T -stable and T -uniquely solvable.

5. Tx-stable if for every Tx-minimizing sequence {xn} in A, dist(xn, PT (A,

B))→ 0 as n→∞ and

6. Tx-strongly solvable if it is Tx-stable and Tx-solvable.

Example 2.7. Consider the space X = R2 with Euclidean norm and
coordinatewise ordering, i.e., if x = (x1, x2) and y = (y1, y2), then x  y

if and only if x1  y1 and x2  y2 hold in R. Let A = {(0, y) : y ∈ R},
B = {(1, y) : y ∈ R} and T : A→ B be defined as

T ((0, y)) =


(1, 1), y ∈ Q
(1, 0), y ∈ Q

.

It is easy to see that PT (A,B) = {(0, 1)}, A is not a T -absolutely direct
set and it is Tx-absolutely direct set for any x ∈ A. Moreover the best
proximity pair problem is neither T -stable nor Tx-stable for any x =
(0, y) such that y /∈ Q. Note that if y ∈ Q, then this problem is Tx-
stable.
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3. Main Results

In this section we will examine, in two separate parts, monotonicity and
proximity pair for T -absolutely and Tx-absolutely direct sets. In these
parts we are going to give some relations between the best proximity
pair problem and monotonicity properties in Banach lattices.

3.1 Monotonicity and the best proximity pair for
T -absolutely direct sets

In this part we prove some uniqueness and existence theorems about
the best proximity pair for T -absolutely direct sets and its relation with
Monotonicity in Banach lattices.

Theorem 3.1.1. A Banach lattice X is an STM space if and only if
card(PT (A,B))  1, for any convex subset A of X, which A is a T -
absolutely direct set.

Proof. Necessity. Suppose there exist x, y ∈ A such that x − Tx =
y − Ty = d(A,B) = d. Since A is a T -absolutely direct set, there
exists z ∈ A such that |z − Tx|  |x − Tx| ∧ |y − Tx| and |z − Ty| 
|x − Ty| ∧ |y − Ty|. Thus, d  z − Tx  x − Tx = d, and by the
STM property of X, we obtain |z − Tx| = |x − Tx|. Moreover since A

is convex, we have x+z
2 ∈ A. Therefore,

d = x− Tx 

x+ z

2
− Tx

 
x− Tx+ z − Tx

2
= d.

Thus |x − Tx| =
x+z
2 − Tx

 = |z − Tx| according to which X ∈ STM

and
x+z
2 − Tx

  |x−Tx|+|z−Tx|
2 = |x − Tx|. Notice that any Banach

lattice X has the following property

|f + g|+ |f − g| = 2(|f | ∨ |g|), (∀f, g ∈ X) (1)

which leads to

|x− z| = 2(|x− Tx| ∨ |z − Tx|)− |x+ z − 2Tx| = 0,

i.e., x = z. By the relation |z − Ty|  |x− Ty| ∧ |y − Ty|, similarly we
get y = z, and thus x = y.
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Sufficiency. If X ∈ STM then there exist x1, x2 ∈ X such that x1 
x2 > 0 and x1 + x2 = x1. Let A = {λx2 : λ ∈ [0, 1]}, B = {−x1}
and T : A→ B be a constant function. Then A is a convex T -absolutely
direct set and for any λx2 ∈ A, |λx2 − (−x1)| = |x1 + λx2|  x1 =
|x1|. Therefore, x1 = x1 + x2  x1 + λx2  x1, which yields
x1 + λx2 = x1 = d(A,B) for all λ ∈ [0, 1]. Hence PT (A,B) = A,
which is a contradiction. 

Theorem 3.1.2. Assume a Banach lattice X has the UM property, and
A ⊆ X is a closed convex T -absolutely direct set. Then any T -minimizing
sequence in A is convergent. Moreover if T is also a continuous map then
card(PT (A,B)) = 1.

Proof. Suppose {zn} ⊆ A is a T -minimizing sequence in A, and so
lim
n→∞

zn − Tzn = d(A,B) = d. We show that {zn} is a Cauchy se-
quence. Otherwise, there are subsequences {znk} and {zmk

} of {zn} and
ε > 0 such that znk − zmk

  ε for large k’s. Now since A is a closed
convex T -absolutely direct set, there exists xk ∈ A such that

|xk − Tznk |  |znk − Tznk | ∧ |zmk
− Tznk |

and
|xk − Tzmk

|  |znk − Tzmk
| ∧ |zmk

− Tzmk
|.

Therefore d  xk−Tznk  znk −Tznk → d. In view of the fact that
A is convex, then znk+xk

2 ∈ A and

d 

znk + xk

2
− Tznk

 
znk − Tznk+ xk − Tznk

2
 znk−Tznk → d.

And since X ∈ UM and

znk + xk

2
− Tznk

 
|znk − Tznk |+ |xk − Tznk |

2
 |znk − Tznk |,

we have
|znk − Tznk | −


znk + xk

2
− Tznk



→ 0. (2)

20 A. A. SARVARI, H. MAZAHERI AND H. R. kHADEMZADEH

Sufficiency. If X ∈ STM then there exist x1, x2 ∈ X such that x1 
x2 > 0 and x1 + x2 = x1. Let A = {λx2 : λ ∈ [0, 1]}, B = {−x1}
and T : A→ B be a constant function. Then A is a convex T -absolutely
direct set and for any λx2 ∈ A, |λx2 − (−x1)| = |x1 + λx2|  x1 =
|x1|. Therefore, x1 = x1 + x2  x1 + λx2  x1, which yields
x1 + λx2 = x1 = d(A,B) for all λ ∈ [0, 1]. Hence PT (A,B) = A,
which is a contradiction. 

Theorem 3.1.2. Assume a Banach lattice X has the UM property, and
A ⊆ X is a closed convex T -absolutely direct set. Then any T -minimizing
sequence in A is convergent. Moreover if T is also a continuous map then
card(PT (A,B)) = 1.

Proof. Suppose {zn} ⊆ A is a T -minimizing sequence in A, and so
lim
n→∞

zn − Tzn = d(A,B) = d. We show that {zn} is a Cauchy se-
quence. Otherwise, there are subsequences {znk} and {zmk

} of {zn} and
ε > 0 such that znk − zmk

  ε for large k’s. Now since A is a closed
convex T -absolutely direct set, there exists xk ∈ A such that

|xk − Tznk |  |znk − Tznk | ∧ |zmk
− Tznk |

and
|xk − Tzmk

|  |znk − Tzmk
| ∧ |zmk

− Tzmk
|.

Therefore d  xk−Tznk  znk −Tznk → d. In view of the fact that
A is convex, then znk+xk

2 ∈ A and

d 

znk + xk

2
− Tznk

 
znk − Tznk+ xk − Tznk

2
 znk−Tznk → d.

And since X ∈ UM and

znk + xk

2
− Tznk

 
|znk − Tznk |+ |xk − Tznk |

2
 |znk − Tznk |,

we have
|znk − Tznk | −


znk + xk

2
− Tznk



→ 0. (2)

20 A. A. SARVARI, H. MAZAHERI AND H. R. kHADEMZADEH

Sufficiency. If X ∈ STM then there exist x1, x2 ∈ X such that x1 
x2 > 0 and x1 + x2 = x1. Let A = {λx2 : λ ∈ [0, 1]}, B = {−x1}
and T : A→ B be a constant function. Then A is a convex T -absolutely
direct set and for any λx2 ∈ A, |λx2 − (−x1)| = |x1 + λx2|  x1 =
|x1|. Therefore, x1 = x1 + x2  x1 + λx2  x1, which yields
x1 + λx2 = x1 = d(A,B) for all λ ∈ [0, 1]. Hence PT (A,B) = A,
which is a contradiction. 

Theorem 3.1.2. Assume a Banach lattice X has the UM property, and
A ⊆ X is a closed convex T -absolutely direct set. Then any T -minimizing
sequence in A is convergent. Moreover if T is also a continuous map then
card(PT (A,B)) = 1.

Proof. Suppose {zn} ⊆ A is a T -minimizing sequence in A, and so
lim
n→∞

zn − Tzn = d(A,B) = d. We show that {zn} is a Cauchy se-
quence. Otherwise, there are subsequences {znk} and {zmk

} of {zn} and
ε > 0 such that znk − zmk

  ε for large k’s. Now since A is a closed
convex T -absolutely direct set, there exists xk ∈ A such that

|xk − Tznk |  |znk − Tznk | ∧ |zmk
− Tznk |

and
|xk − Tzmk

|  |znk − Tzmk
| ∧ |zmk

− Tzmk
|.

Therefore d  xk−Tznk  znk −Tznk → d. In view of the fact that
A is convex, then znk+xk

2 ∈ A and

d 

znk + xk

2
− Tznk

 
znk − Tznk+ xk − Tznk

2
 znk−Tznk → d.

And since X ∈ UM and

znk + xk

2
− Tznk

 
|znk − Tznk |+ |xk − Tznk |

2
 |znk − Tznk |,

we have
|znk − Tznk | −


znk + xk

2
− Tznk



→ 0. (2)



THE BEST PROXIMITY PAIR FOCUSING ON ... 21

Then by (1) and (2), we obtain

znk − xk = 2 (|znk − Tznk | ∨ |xk − Tznk |)− |znk + xk − 2Tznk | → 0.

Likewise, we get zmk
− xk → 0. Hence znk − zmk

 → 0, which is a
contradiction.

Finally let zn → z ∈ A and T is a continuous map. Then Tzn → Tz

and as a result z − Tz = d(A,B). On the other hand X has the
STM property, so by Theorem 3.1.1, card(PT (A,B))  1, therefore
card(PT (A,B)) = 1. 

Example 3.1.3. Let X = R2 be a Banach lattice with Euclidean norm
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and B = {(x, y) : x + y = 2}. We define the continuous map T : A →
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convex subset of X, but PT (A,B) = A. We can see the condition T -
absolutely in Theorem 3.1.2 is necessary. Note that all sequences in A

are T -minimizing.
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solvable.
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xn + x0

2
− Txn| → 0 as n→∞. (3)
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Hence, by (1) and (3) we obtain

xn − x0 = 2(|xn − Txn| ∨ |x0 − Txn|)− |xn + x0 − 2Txn| → 0.

i.e., dist(xn, PT (A,B)) → 0 as n → ∞, and so the best proximity pair
problem is T -strongly solvable. 

Example 3.1.5. Assume that M2(R) be the vector space of 2 × 2 real
matrices with the order relation , defined by A  B only if aij  bij

for i, j ∈ {1, 2}. We define a norm onM2(R) with A =
2

i,j=1
|aij |. Then

(M2(R),  · ) is a Banach lattice with the STM property.

Let A = {

0 a
b c


: a, b, c  δ > 1} and B = {


0 a
b c


: a, b, c  1}.

We defined T : A → B by T (

0 a
b c


) =


0 −a

δ + 2
− b
δ + 2 − c

δ + 2


. It is clear

that A is a convex T -absolutely direct set and PT (A,B) = {

0 δ
δ δ


},

because card(PT (A,B))  1 by the STM property of M2(R) and



0 δ
δ δ


−


0 1
1 1


 = 3(δ − 1) = d(A,B).

3.2 Monotonicity and the best proximity pair for
Tx-absolutely direct sets

In this part we study the relationship between the best proximity pair
for Tx-absolutely direct sets, and we investigate solvability of the best
proximity pair for Tx-absolutely direct sets, in terms of, Monotonicity
in Banach lattices.

Theorem 3.2.1. Assume that X is a Banach lattice with the UM prop-
erty and A is a closed convex Tx-absolutely direct set for some x ∈
A. Then all the Tx-minimizing sequences in A, are convergent to a
unique point in A.

Proof. Suppose {xn} is a Tx-minimizing sequence in A, i.e., lim
n→∞

xn−
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Tx = d(A,B) = d. Set z1 = x1. For z1 and x2, choose z2 ∈ A such that

|z2 − Tx|  |z1 − Tx| ∧ |x2 − Tx|.

For zn and xn+1, choose zn+1 ∈ A such that

|zn+1 − Tx|  |zn − Tx| ∧ |xn+1 − Tx|.

Then |zn− Tx| is monotonically decreasing and d  zn− Tx  xn−
Tx | → d, i.e.,

zn − Tx → d, (4)

so {zn} is also a minimizing sequence in A. By Zorn’s lemma, there
exists z0 ∈ X+ such that z0 = infn |zn−Tx|. Since X ∈ UM,X has order
continous norm by Theorem 3.1.1 in [5]. Therefore, |zn−Tx|−z0 → 0,
as n→∞, i.e., {|zn − Tx|} is a Cauchy sequence and z0 = d. We will
prove that {zn} is also a Cauchy sequence.
Since A is convex, for any m,n ∈ N and n > m, we have zn+zm

2 ∈ A.
Therefore, d   zn+zm2 − Tx  zn−Tx+zm−Tx

2 → d, i.e.,

zn + zm
2

− Tx → d as m,n→∞. (5)

Moreover,

|zn + zm
2

− Tx|  |zn − Tx|+ |zm − Tx|
2

 |zm − Tx|,

so (4), (5) and the UM property of X imply that

|zm − Tx| − |zn + zm
2

− Tx| → 0 as m,n→∞. (6)

Hence, by (1) and (6), we get

zn − zm = 2(zn − Tx| ∨ |zm − Tx|)− |zn + zm − 2Tx|
= 2|zm − Tx| − |zn + zm − 2Tx| → 0 as m,n→∞

whence it follows that {zn} is a Tx-minimizing Cauchy sequence inA. As
A is closed, there exists z ∈ A such that zn → z. Therefore z − Tx =
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d(A,B). Since |zn − Tx|  |xn − Tx|, by the same argument as before,
we can show xn − zn → 0. Hence xn → z.

Now, if {yn} is another Tx-minimizing sequence then yn → w, for some
w ∈ A, and w − Tx = d(A,B). We prove that z = w.

Since A is a Tx-absolutely direct set, there exists y ∈ A such that
|y−Tx|  |z−Tx|∧ |w−Tx|. Thus, d  y−Tx  z−Tx = d, i.e.,
y− Tx = z− Tx. UM property implies STM property, and so, |y−
Tx| = |z−Tx|. Similar argument shows that |y−Tx| = |w−Tx|. Thus
|z−Tx| = |w−Tx|, and since A is convex, we have z+w

2 ∈ A. Therefore,
d = z − Tx   z+w2 − Tx  z−Tx+w−Tx

2 = d. Moreover, since
| z+w2 − Tx|  |z−Tx|+|w−Tx|

2 = |z − Tx| = |w − Tx| and X ∈ STM, we
get |z − Tx| = | z+w2 − Tx| = |w − Tx|. By (1) we obtain

|z−w| = 2(|z−Tx|∨|w−Tx|)−|z+w−2Tx| = 2|z−Tx|−2|z−Tx| = 0.

So, z = w. 

Theorem 3.2.2. Let X ∈ ULUM and z0 ∈ PT (A,B). If A is a convex
Tz0-absolutely direct set then the best proximity pair problem is Tz0-
stable.

Proof. Since A is a Tz0-absolutely direct set, then for any x ∈ A,
there exists y ∈ A such that |y − Tz0|  |x − Tz0| ∧ |z0 − Tz0|. By a
similar argument as in the proof of Theorem 3.2.2 we can prove that
y = z0. Therefore |z0 − Tz0|  |x − Tz0| for any x ∈ A. i.e., |z0 − Tz0|
is the infimum of |A − Tz0| in the given order. Suppose {zn} is a Tz0-
minimizing sequence in A, i.e., lim

n→∞
zn − Tz0 = d(A,B) = d. Since

|z0−Tz0|  |zn−Tz0| and zn−Tz0 → z0−Tz0 = d, by the ULUM
property of X, we have

|zn − Tz0| − |z0 − Tz0| → 0 as n→∞. (7)

Moreover since A is convex zn+z0
2 ∈ A, and so |z0−Tz0|  | zn+z02 −Tz0|.

On the other hand, we have

d = z0 − Tz0  
zn + z0
2

− Tz0 
zn − Tz0+ z0 − Tz0

2
→ d



THE BEST PROXIMITY PAIR FOCUSING ON ... 25

and X ∈ ULUM. Therefore

|zn + z0
2

− Tz0| − |z0 − Tz0| → 0. (8)

By (1), (7) and (8) we obtain

zn − z0 = 2(|zn − Tz0| ∨ |z0 − Tz0|)− |zn + z0 − 2Tz0|
= 2(|zn − Tz0| ∨ |z0 − Tz0| − |z0 − Tz0|)
+ (2|z0 − Tz0| − |zn + z0 − 2Tz0|)
 2|zn − Tz0| − |z0 − Tz0|+ 2|z0 − Tz0| − |zn + z0 − 2Tz0|
→ 0 as n→∞,

i.e., dist(zn, PT (A,B))→ 0 as n→∞.
Therefore the best proximity pair problem is Tz0-stable. 

Corollary 3.2.3. Let X ∈ ULUM and z0 ∈ PT (A,B). If A is a con-
vex T -absolutely direct set then the best proximity pair problem is Tz0-
strongly solvable.

Proof. By Theorem 3.2.1, card (PT (A,B)) = 1. Since A is a T -
absolutely direct set, then for any x ∈ A, there exists y ∈ A such
that |y − Tz0|  |x− Tz0| ∧ |z0 − Tz0| and with the same manner as in
Theorem 3.2.2, the best proximity pair problem is Tz0-stable. Therefore
it is Tz0-strongly solvable. 
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