Journal of Mathematical Extension

Vol. 15, No. 1, (2021), 1-14

ISSN: 1735-8299

URL: https://doi.org/10.30495/JME.2021.1244

Original Research Paper

ON Semi-n-Absorbing Submodules

Sh. Khoshdel*

Payame Noor University

M. Maani-Shirazi

Payame Noor University

Abstract. Let n be a positive integer greater than 1. In this paper, we introduce the concept of semi-n-absorbing submodules. several results concerning this class of submodules and examples of them are given.

AMS Subject Classification: 13C13; 13C99

Keywords and Phrases: Flat module, faithfully flat module, multiplication module, semi-*n*-absorbing ideal, semi-*n*-absorbing submodule

1. Introduction

During this paper, R is a non-zero commutative ring with identity and all modules are unital. For a submodule N of an R-module M, we denote the ideal $\{r \in R \mid rM \subseteq N\}$ by $(N :_R M)$. The annihilator of M, denoted ann(M), is $(0 :_R M)$. Also, for an element $a \in R$ and an ideal I of R, $(N :_M a)$ is the set of all elements $x \in M$ such that $ax \in N$ and $(N :_M I)$ is the submodule $\{x \in M \mid Ix \subseteq N\}$.

The concept of semi-2-absorbing submodule was introduced in [6]. A proper submodule N of an R-module M is called semi-2-absorbing submodule of M, if whenever $a \in R$, $x \in M$ and $a^2x \in N$ then $ax \in N$ or

Received: May 2019; Accepted: November 2019

^{*}Corresponding author

 $a^2 \in (N:_R M)$. We extend this concept to semi-n-absorbing submodule, where n is a positive integer greater than 1. A proper submodule N of an R-module M is called a semi-n-absorbing submodule of M if whenever $a \in R$, $x \in M$ and $a^n x \in N$ then $ax \in N$ or $a^n \in (N:_R M)$. As a new class of submodules, we would like to compare it with the class of prime submodules. The main purpose of this paper is to get new results about semi-n-absorbing submodules. Some examples are given as well.

The organization of this paper is as follows. In section 2, we introduce the notion of semi-n-absorbing submodules and investigate some results of them. It is proved that a proper submodule N in an R-module M is semi*n*-absorbing if and only if for every $a \in R$ we have $(N :_M a^n) = (N :_M a)$ or $(N:_M a^n) = M$. Also, we show that in a multiplication R-module M, a submodule N is semi-n-absorbing in M if and only if $(N:_R M)$ is so in R. In proposition 2.23, it is seen that the inverse image of every semi-n-absorbing submodule is semi-n-absorbing. However, proposition 2.20 shows that this conclusion is not always true for the images of semi-n-absorbing submodules. In example 2.5, we characterize all semi*n*-absorbing submodules of \mathbb{Z} . Also, in example 2.4, we prove that $\mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z} -module does not have any semi-n-absorbing submodule, for every prime number p. In section 3, we focus on direct sums and tensor products of modules in order to find semi-n-absorbing submodules of them. It is shown that if N is a semi-n-absorbing submodule of an R-module Mand F is a flat R-module such that $F \otimes N$ is proper in $F \otimes M$ then $F \otimes N$ is semi-n-absorbing in $F \otimes M$. We prove that the converse holds when F is faithfully flat.

2. Basic Properties of Semi-n-Absorbing Submodules

In this section, we first define the concept of semi-n-absorbing submodules. Then some examples and properties of these submodules are given.

Definition 2.1. Let M be an R-module and n a positive integer greater than 1. A proper submodule N of M is called a semi-n-absorbing submodule of M if for each $a \in R$ and $x \in M$, $a^n x \in N$ implies that $ax \in N$

or $a^n \in (N :_R M)$.

Particularly, a proper ideal I of a ring R is called semi-n-absorbing in R if, for each $a, b \in R$, $a^nb \in I$ implies that $ab \in I$ or $a^n \in I$.

Recall that a proper submodule N of an R-module M is called prime if for every $a \in R$ and every $x \in M$, $ax \in N$ implies that $x \in N$ or $a \in (N :_R M)$. Obviously, every prime submodule is semi-n-absorbing, for each positive integer n greater than 1.

Most of the results below are the same as ones in [6] when n=2.

Clearly, every proper subspace in a vector space is semi-n-absorbing, where n is a fixed positive integer graeter than 1.

Lemma 2.2.Let N be a proper submodule of an R-module M and n a positive integer greater than 1. The following statements are equivalent. (i) N is semi-n-absorbing in M:

(ii) For every $a \in R$ and every submodule L of M, $a^nL \subseteq N$ implies that $aL \subseteq N$ or $a^n \in (N :_R M)$.

Proof. It is clear. \square

Example 2.3 Let p be a prime number and n a positive integer greater than 1. The zero submodule of \mathbb{Z}_{p^n} as a \mathbb{Z} -module is a semi-n-absorbing submodule. For it, let $a, x \in \mathbb{Z}$ be such that $a^n \bar{x} = \bar{0} \in \mathbb{Z}_{p^n}$. Then $p^n \mid a^n x$ and so $p \mid a$ or $p^n \mid x$. If $p \mid a$ then $a^n \in (0 :_{\mathbb{Z}} \mathbb{Z}_{p^n})$. Otherwise, $p^n \mid x$ which implies that $a\bar{x} = \bar{0} \in \mathbb{Z}_{p^n}$.

Example 2.4. Let p be a fixed prime number and n a positive integer greater than 1. Each proper submodule of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is of the form $G_k = (\frac{1}{p^k} + \mathbb{Z})$, for a non-negative integer k. Furthermore, for each $k \geq 0$, $(G_k :_{\mathbb{Z}} \mathbb{Z}_{p^{\infty}}) = 0$. Note that $p^n(\frac{1}{p^{n+k}} + \mathbb{Z}) = \frac{1}{p^k} + \mathbb{Z} \in G_k$, but neither $p^n \in (G_k :_{\mathbb{Z}} \mathbb{Z}_{p^{\infty}}) = 0$ nor $p(\frac{1}{p^{n+k}} + \mathbb{Z}) \in G_k$. Hence $\mathbb{Z}_{p^{\infty}}$ does not have any semi-n-absorbing submodule.

In the following example we characterize all semi-n-absorbing ideals of \mathbb{Z} .

Example 2.5. For a positive integer n greater than 1, the only semi-n-absorbing ideals in \mathbb{Z} are 0, $p\mathbb{Z}$, $p^2\mathbb{Z}$,..., $p^n\mathbb{Z}$, where p is an arbitrary

prime number. Clearly, 0 is semi-n-absorbing. Now, we show that $p^{\alpha}\mathbb{Z}$ is semi-n-absorbing for $1\leqslant \alpha\leqslant n$. To see this, let $a,x\in\mathbb{Z}$ and $a^nx\in p^{\alpha}\mathbb{Z}$. If $p\mid a$ then $a^n\in p^{\alpha}\mathbb{Z}$. Otherwise, $p^{\alpha}\mid x$ which implies that $ax\in p^{\alpha}\mathbb{Z}$. Let $\alpha>n$. Then $p^{\alpha}=p^np^{\alpha-n}\in p^{\alpha}\mathbb{Z}$. But $pp^{\alpha-n}\notin p^{\alpha}\mathbb{Z}$ and $p^n\notin p^{\alpha}\mathbb{Z}$. In this case, $p^{\alpha}\mathbb{Z}$ is not semi-n-absorbing. Finally, let k be a positive integer such that $k=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$, where $k>1,\ r>1$ and p_i 's are distinct prime numbers. Suppose that $\alpha_i\geqslant n$, for some i. Then without loss of generality, we can assume that i=1. Note that $k=p_1^np_1^{\alpha_1-n}p_2^{\alpha_2}\cdots p_r^{\alpha_r}\in k\mathbb{Z}$. But $p_1p_1^{\alpha_1-n}p_2^{\alpha_2}\cdots p_r^{\alpha_r}\notin k\mathbb{Z}$ and $p_1^n\notin k\mathbb{Z}$. If $\alpha_i< n$, for each i, then $p_1^n(p_2^{\alpha_2}\cdots p_r^{\alpha_r})\in k\mathbb{Z}$ but $p_1p_2^{\alpha_2}\cdots p_r^{\alpha_r}\notin k\mathbb{Z}$ and $p_1^n\notin k\mathbb{Z}$. Therefore we proved our claim.

This example shows that, for each positive integer greater than 1, there are semi-n-absorbing submodules which are not prime.

Let M be an R-module. Recall that the idealization $R(+)M = R \times M$ is a ring with identity (1,0) under addition defined by (a,x) + (b,y) = (a+b,x+y) and multiplication defined by (a,x)(b,y) = (ab,ay+bx).

Lemma 2.6.Let n be a positive integer greater than 1. Suppose that I is a proper ideal of the ring R and M is an R-module. Then I is seminabsorbing in R if and only if I(+)M is semi-n-absorbing in R(+)M.

Proof. Suppose that I(+)M is semi-n-absorbing in R(+)M. Let $a,b \in R$ be such that $a^nb \in I$. Then we have $(a,0)^n(b,0) \in I(+)M$. Since I(+)M is semi-n-absorbing in R(+)M so $(a,0)(b,0) \in I(+)M$ or $(a,0)^n \in I(+)M$. This yields that $ab \in I$ or $a^n \in I$. Thus I is semi-n-absorbing. Similarly, one can prove the other direction. \square

Lemma 2.7.Let n be a positive integer greater than 1. If I is a semi-n-absorbing ideal of a ring R, then \sqrt{I} is also semi-n-absorbing.

Proof. Let $a,b \in R$, $a^nb \in \sqrt{I}$ and $ab \notin \sqrt{I}$. There exists a positive integer k such that $(a^nb)^k \in I$. Since I is semi-n-absorbing and $(a^k)^nb^k \in I$ so $a^kb^k \in I$ or $(a^k)^n \in I$. But $ab \notin \sqrt{I}$. Thus $a^kb^k \notin I$ and hence $(a^k)^n \in I$ which shows that $a^n \in \sqrt{I}$. \square

Example 2.8. Consider the idealization $\mathbb{Z}(+)\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}$ Lemma 2.6. Let n be a positive integer greater than 1, p a prime number and take

 $I=p^{n+1}\mathbb{Z}$. It is seen that $\sqrt{0(+)I}=0(+)\mathbb{Z}$ is semi-n-absorbing in $\mathbb{Z}(+)\mathbb{Z}$. But, note that $(p,0)^n(0,p)\in 0(+)I$ while $(p,0)(0,p)=(0,p^2)\notin 0(+)I$ and $(p,0)^n=(p^n,0)\notin 0(+)I$. Therefore 0(+)I is not semi-n-absorbing.

This example shows that the converse of Lemma 2.7 is not true.

Lemma 2.9. Let n be a positive integer greater than 1 and M an R-module. Let N and K be two submodules of M such that $N \subseteq K$. If N is a semi-n-absorbing submodule of M then N is semi-n-absorbing in K.

Proof. It is clear. \square

Next, we give an example of a module which shows that the converse of the above lemma is not correct.

Example 2.10. Take N=0 and $K=(\frac{1}{2}+\mathbb{Z})$ in the \mathbb{Z} -module $\mathbb{Z}_{2^{\infty}}$. Then it is easily checked that N is semi-n-absorbing in K while N is not so in M (Example 2.4).

Lemma 2.11. Let n be a positive integer greater than 1 and N a semi-n-absorbing submodule of an R-module M. Then, for each submodule L of M, either $L \subseteq N$ or $L \cap N$ is semi-n-absorbing in L.

Proof. Suppose that $L \nsubseteq N$. Then $L \cap N$ is proper in L. By the definition, we can easily show that $L \cap N$ is semi-n-absorbing in L. \square

Lemma 2.12. Let n be a positive integer greater than 1, M an R-module and $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ be a chain of semi-n-absorbing submodules of M. If $N=\bigcup_{{\lambda}\in\Lambda}N_{\lambda}$ is proper, then N is semi-n-absorbing.

Proof. It follows immediately from the definition of semi-n-absorbing submodules. \square

The above result is to somehow similar to one in [2].

Example 2.8 shows that the converse of Lemma 2.12 is not true in general.

Let N and K be two isomorphic submodules of an R-module M and n a positive integer greater than 1. If N is semi-n-absorbing, it is not necessary that K is so. As an example, consider \mathbb{Z} as a \mathbb{Z} -module. Note

that $2^n\mathbb{Z}$ and $6^n\mathbb{Z}$ are isomorphic submodules in \mathbb{Z} . But $2^n\mathbb{Z}$ is a semin-absorbing submodule while $6^n\mathbb{Z}$ is not.

In general, the intersection of two semi-*n*-absorbing submodules is not essential to be semi-*n*-absorbing. See the following example.

Example 2.13. Let $M = \mathbb{Z}$ as a \mathbb{Z} -module, $N = 2^n \mathbb{Z}$ and $K = 3^n \mathbb{Z}$. We know that N and K are semi-n-absorbing submodules of M but $N \cap K = 6^n \mathbb{Z}$ is not semi-n-absorbing.

The following lemma will give us a characterization of semi-n-absorbing submodules.

Lemma 2.14. Let n be a positive integer greater than 1 and N a proper submodule of an R-module M. Then N is semi-n-absorbing if and only if for every $a \in R$ we have $(N :_M a^n) = (N :_M a)$ or $(N :_M a^n) = M$.

Proof. Suppose that N is a semi-n-absorbing submodule of M and $a \in R$. If $(N :_M a^n) = M$ then we are done. Otherwise, let $x \in M$ and $a^n x \in N$. Since N is semi-n-absorbing and $(N :_M a^n) \neq M$ so $ax \in N$ which shows that $x \in (N :_M a)$. Therefore $(N :_M a^n) \subseteq (N :_M a)$. Clearly $(N :_M a) \subseteq (N :_M a^n)$. Consequently $(N :_M a) = (N :_M a^n)$.

Conversely, let $a \in R$, $x \in M$ and $a^n x \in N$. If $(N :_M a^n) = M$, then $a^n \in (N :_R M)$. Otherwise $(N :_M a) = (N :_M a^n)$. Since $x \in (N :_M a^n)$ so $x \in (N :_M a)$ i.e., $ax \in N$. Thus N is semi-n-absorbing submodule in M. \square

Lemma 2.15. Let N be a proper submodule of an R-module M and n a positive integer greater than 1. The following are equivalent.

- (i) N is semi-n-absorbing;
- (ii) $(N :_M I)$ is semi-n-absorbing, for each ideal I of R with $IM \nsubseteq N$; (iii) $(N :_M (r))$ is semi-n-absorbing, for each $r \in R$ with $rM \nsubseteq N$.
- **Proof.** (i) \Longrightarrow (ii) Assume that I is an ideal of R with $IM \nsubseteq N$. Let $a \in R$, L be a submodule of M and $a^nL \subseteq (N:_M I)$. Then $a^nIL \subseteq N$. By Lemma 2.2, $aIL \subseteq N$ or $a^n \in (N:_R M)$. If $aIL \subseteq N$ then $aL \subseteq (N:_M I)$. Consequently, $aL \subseteq (N:_M I)$ or $a^n \in (N:_R M)$. Therefore $(N:_M I)$ is semi-n-absorbing.
- $(ii) \Longrightarrow (iii)$ It is clear.

(iii) \Longrightarrow (i) Take r=1. Then $(N:_M(1))=N$. So N is semi-nabsorbing. \square

Lemma 2.16. Let N be a proper submodule of an R-module M and n a positive integer greater than 1. If N is semi-n-absorbing in M then $(N:_R Rx)$ is a semi-n-absorbing ideal of R, for all $x \in M \setminus N$.

Proof. Note that $(N :_R Rx) \neq R$, for each $x \in M \setminus N$. By the definition of semi-n-absorbing ideals, we can get the result. \square

Lemma 2.17. Let N be a proper submodule of an R-module M and n a positive integer greater than 1. If N is a semi-n-absorbing submodule of M then $(N:_R M)$ is semi-n-absorbing as an ideal.

Proof. Let $a, b \in R$ and $a^n b \in (N :_R M)$. Then $a^n(bM) \subseteq N$. Since N is semi-n-absorbing, so by Lemma 2.2, $abM \subseteq N$ or $a^n \in (N :_R M)$. The rest of the proof is clear. \square

The following proposition shows that for multiplication modules the converse of the above lemma is true.

Proposition 2.18. Let N be a proper submodule of a multiplication R-module M and n a positive integer greater than 1. If $(N:_R M)$ is a semi-n-absorbing ideal of R then N is semi-n-absorbing as a submodule of M.

Proof. Let $a^nx \in N$, for some $a \in R$ and $x \in M$. Then $a^nRx \subseteq N$. Since M is multiplication so Rx = IM, for some ideal I of R. Hence we get $a^nIM \subseteq N$ i.e, $a^nI \subseteq (N:_R M)$. By Lemma 2.2, $aI \subseteq (N:_R M)$ or $a^n \in (N:_R M)$. The relation $aI \subseteq (N:_R M)$ implies that $aIM \subseteq N$ and so $aRx \subseteq N$. Therefore $ax \in N$ or $a^n \in (N:_R M)$. As a result, N is semi-n-absorbing. \square

Corollary 2.19. Let M be a finitely generated faithful multiplication Rmodule, N a proper submodule of M and n be a positive integer greater
than 1. Then N is a semi-n-absorbing submodule of M if and only if N = IM, for a semi-n-absorbing ideal I of R.

Proof. Let N be a semi-n-absorbing submodule of M. Since M is multiplication so N = IM for $I = (N :_R M)$, by [5]. Lemma 2.17 shows

that I is semi-n-absorbing as an ideal.

Conversely, let N = IM, for a semi-n-absorbing ideal I of R. Suppose that $a \in R$, $x \in M$ and $a^n x \in N$. Then $a^n R x \subseteq N$. Since M is multiplication so Rx = JM, for an ideal J of R. In this case, we have $a^n JM \subseteq N = IM$. But M is finitely generated, faithful and multiplication. Thus $a^n J \subseteq I$, (see [5]). Since I is semi-n-absorbing, by lemma (2.), $aJ \subseteq I$ or $a^n \in I$. Thus $aJM \subseteq IM = N$ or $a^n \in I$. If $aJM \subseteq N$ then $aRx \subseteq N$ and so $ax \in N$. Otherwise $a^n \in I$ which implies that $a^n M \subseteq IM = N$. \square

Proposition 2.20. Let n be a positive integer greater than $1, f: M \longrightarrow M'$ an R-module epimorphism and N be a semi-n-absorbing submodule of M such that $Kerf \subseteq N$. Then f(N) is a semi-n-absorbing submodule of M'.

Proof. It is clear. \square

Corollary 2.21. Let n be a positive integer greater than 1, N a seminabsorbing submodule of an R-module M and K be a submodule of M such that $K \subseteq N$. Then $\frac{N}{K}$ is a semi-n-absorbing submodule of $\frac{M}{K}$.

Proof. Let $f: M \to \frac{M}{K}$ be the canonical epimorphism. Then $K = Kerf \subseteq N$. By the above proposition, the result follows. \square

Note that the condition of being epimorphism in Proposition 2.20 is essential. See the following example.

Example 2.22. Let n be a positive integer greater than 1. Define $f: \mathbb{Z} \to \mathbb{Z}$ by $f(k) = 3^n k$, for all $k \in \mathbb{Z}$. Then f is a \mathbb{Z} -module homomorphism which is not onto. Take $N = 2^n \mathbb{Z}$. We have N is semi-n-absorbing but $f(N) = 6^n \mathbb{Z}$ is not.

Proposition 2.23. Let n be a positive integer greater than $1, f: M \to M'$ be an R-module homomorphism and N' a semi-n-absorbing submodule of M'. Then $f^{-1}(N')$, the inverse image of N, is semi-n-absorbing in M.

Proof. It is clear. \square

Corollary 2.24. Let n be a positive integer greater than 1 and N and

K be two submodules of an R-module M such that $K \subseteq N$. If $\frac{N}{K}$ is a semi-n-absorbing submodule of $\frac{M}{K}$, then N is semi-n-absorbing as a submodule of M.

Proof. By considering $f: M \to \frac{M}{K}$ to be the canonical epimorphism, Proposition 2.23 shows the result. \square

Recall that a submodule N of an R-module M is called relatively divisible, denoted RD, if $rN = N \cap rM$, for all $r \in R$.

Proposition 2.25. Let n be a positive integer greater than 1, N a semi-n-absorbing submodule of an R-module M and K be a proper RD-submodule of M such that $N \subseteq K$. Then $\frac{K}{N}$ and K are semi-n-absorbing submodules of $\frac{M}{N}$ and M, respectively.

Proof. First we show that $\frac{K}{N}$ is a semi-n-absorbing submodule of $\frac{M}{N}$. Let $a \in R$, $x + N \in \frac{M}{N}$ and $a^n(x + N) \in \frac{K}{N}$. Then $a^nx + N = k + N$, for some $k \in K$, and so $a^nx - k \in N \subseteq K$. Therefore $a^nx \in K$. As $a^nx \in a^nM$ and K is RD, $a^nx \in a^nM \cap K = a^nK$ which implies that $a^nx = a^ny$, for some $y \in K$. Hence $a^n(x - y) = 0 \in N$. But N is semi-n-absorbing. Thus $a(x - y) \in N$ or $a^n \in (N :_R M)$.

If $a(x-y) \in N$, then ax+N=ay+N and $a(x+N)=a(y+N) \in \frac{K}{N}$. Otherwise $a^n \in (N:_R M) \subseteq (\frac{K}{N}:_R \frac{M}{N})$. Therefore $\frac{K}{N}$ is semi-n-absorbing.

Then, we show that K is semi-n-absorbing in M. Let $a \in R$, $x \in M$ and $a^n x \in K$. Thus $a^n (x + N) \in \frac{K}{N}$. Since $\frac{K}{N}$ is semi-n-absorbing so $a(x + N) \in \frac{K}{N}$ or $a^n \in (\frac{K}{N} :_R \frac{M}{N})$. Hence $ax \in K$ or $a^n \in (\frac{K}{N} :_R \frac{M}{N}) = (K :_R M)$ and we get the result. \square

Remark 2.26. Being RD in the above proposition is necessary.

Example 2.27. Let n be a positive integer greater than 1. Take $M = \mathbb{Z}$ as a \mathbb{Z} -module, N = 0 which is semi-n-absorbing in M and $K = 6^n \mathbb{Z}$. We have $K \cap 3\mathbb{Z} = 6^n \mathbb{Z} \cap 3\mathbb{Z} = 6^n \mathbb{Z}$. So $3K \neq K \cap 3\mathbb{Z}$ which shows that K is not an RD submodule. Also, $\frac{K}{N}$ and K are not semi-n-absorbing in $\frac{M}{N}$ and M, respectively.

Proposition 2.28. Let n be a positive integer greater than 1. Assume

that N is a semi-n-absorbing submodule of an R-module M and S a multiplicatively closed subset of R such that $S \cap (N :_R M) = \emptyset$. Then $S^{-1}N$ is semi-n-absorbing in the $S^{-1}R$ -module $S^{-1}M$.

Proof. Since $S \cap (N:_R M) = \emptyset$ so $S^{-1}N$ is proper in $S^{-1}M$. Now we show that $S^{-1}N$ is semi-n-absorbing in $S^{-1}M$. For this, let $\frac{a}{t} \in S^{-1}R$, $\frac{x}{s} \in S^{-1}M$ and $\frac{a^n}{t^n}\frac{x}{s} \in S^{-1}N$. There exists an element $u \in S$ such that $ua^nx \in N$. As N is semi-n-absorbing, $aux \in N$ or $a^n \in (N:_R M)$. If $aux \in N$, then $\frac{a}{t}\frac{x}{s} = \frac{aux}{tus} \in S^{-1}N$. In other case, $a^n \in (N:_R M)$ and so $\frac{a^n}{t^n} \in S^{-1}(N:_R M) \subseteq (S^{-1}N:_{S^{-1}R} S^{-1}M)$. Consequently, $S^{-1}N$ is semi-n-absorbing in $S^{-1}M$. \square

Example 2.29. Consider the \mathbb{Z} -module $M=\mathbb{Q}\times\mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take $N=\mathbb{Z}\times 0$ and $S=\mathbb{Z}-\{0\}$. Then S is a multiplicatively closed subset of \mathbb{Z} and $S^{-1}\mathbb{Z}=\mathbb{Q}$ is a field. So $S^{-1}(\mathbb{Q}\times\mathbb{Q})$ is a vector space over $S^{-1}\mathbb{Z}=\mathbb{Q}$ and the proper submodule $S^{-1}N$ is a semi-n-absorbing submodule of $S^{-1}(\mathbb{Q}\times\mathbb{Q})$, where n is a positive integer greater than 1. But N is not semi-n-absorbing in the \mathbb{Z} -module M. To see this, Note that $2^n(\frac{1}{2^n},0)=(1,0)\in N$ but neither $2(\frac{1}{2^n},0)=(\frac{1}{2^{n-1}},0)\in N$ nor $2^n\in(N:_{\mathbb{Z}}\mathbb{Q}\times\mathbb{Q})=0$.

3. Direct Sum, Tensor Product and Semi-n-Absorbing Submodules

In this section, we first characterize semi-n-absorbing submodules in the R-module $M = M_1 \oplus M_2$. Then we find a condition under which $F \otimes N$ is semi-n-absorbing in $F \otimes M$ if and only if N is semi-n-absorbing in M.

Proposition 3.1. Let n be a positive integer greater than 1, M_1 and M_2 be R-modules and $M = M_1 \oplus M_2$. Moreover, let N_1 and N_2 be proper submodules of M_1 and M_2 , respectively. Then

- (i) N_1 is a semi-n-absorbing submodule of M_1 if and only if $N_1 \oplus M_2$ is semi-n-absorbing in $M = M_1 \oplus M_2$.
- (ii) N_2 is semi-n-absorbing in M_2 if and only if $M_1 \oplus N_2$ is semi-n-absorbing in M.

Proof. (i) Let N_1 be semi-n-absorbing in M_1 and $a \in R$, $(x_1, x_2) \in M$

be such that $a^n(x_1, x_2) \in N_1 \oplus M_2$. Thus $a^n x_1 \in N_1$. By hypothesis, $ax_1 \in N_1$ or $a^n \in (N_1 :_R M_1)$. If $ax_1 \in N_1$, then $a(x_1, x_2) \in N_1 \oplus M_2$. In other case, $a^n \in (N_1 :_R M_1)$ and so $a^n \in (N_1 \oplus N_2 :_R M)$ which shows that $N_1 \oplus M_2$ is semi-n-absorbing in M.

Conversely, assume that $N_1 \oplus M_2$ is semi-n-absorbing in M. Let $a \in R$, $x_1 \in M_1$ and $a^n x_1 \in N_1$. Then $a^n (x_1, 0) \in N_1 \oplus M_2$. But $N_1 \oplus M_2$ is semi-n-absorbing. So $a(x_1, 0) \in N_1 \oplus M_2$ or $a^n \in (N_1 \oplus M_2 :_R M)$. If $a(x_1, 0) \in N_1 \oplus M_2$, then $ax_1 \in N_1$. Otherwise $a^n \in (N_1 \oplus M_2 :_R M)$ which shows that $a^n M_1 \subseteq N_1$. Therefore N_1 is semi-n-absorbing in M_1 . (ii) It is similar to part (i). \square

Proposition 3.2. Let n be a positive integer greater than 1, M_1 and M_2 two R-modules such that $annM_1 + annM_2 = R$ and N be a semi-nabsorbing submodule of the R-module $M = M_1 \oplus M_2$. Then one of the following holds.

- (i) $N = N_1 \oplus M_2$ and N_1 is semi-n-absorbing in M_1 .
- (ii) $N = M_1 \oplus N_2$ and N_2 is semi-n-absorbing in M_2 .
- (iii) $N = N_1 \oplus N_2$, where N_1 and N_2 are semi-n-absorbing in M_1 and M_2 , respectively.

Proof. By the proof of Theorem 2.4 in [1], $N = N_1 \oplus N_2$, for some submodules N_1 of M_1 and N_2 of M_2 . Now if $N = N_1 \oplus M_2$ or $N = M_1 \oplus N_2$, by Proposition 3.1, we are done. Otherwise, $N = N_1 \oplus N_2$, where N_1 and N_2 are proper in M_1 and M_2 , respectively. Now let $a \in R$, $x_1 \in M_1$ and $a^n x_1 \in N_1$. Then $a^n(x_1, 0) \in N = N_1 \oplus N_2$. By hypothesis, $a(x_1, 0) \in N = N_1 \oplus N_2$ or $a^n \in (N_1 \oplus N_2 :_R M)$. In the first case, we get $ax_1 \in N_1$ and in the second $a^n \in (N_1 :_R M_1)$. Therefore N_1 is seminabsorbing in M_1 . Similarly, we can show that N_2 is seminabsorbing in M_2 . \square

Lemma 3.3. Let N be a submodule of an R-module M and $r \in R$. Then for every flat R-module F, we have $F \otimes (N :_M r) = (F \otimes N :_{F \otimes M} r)$.

Proof. See [3]. \square

Theorem 3.4. Let n be a positive integer greater than 1, N a semi-nabsorbing submodule of an R-module M and F be a flat R-module. If

 $F \otimes N$ is a proper submodule of $F \otimes M$ then $F \otimes N$ is a semi-n-absorbing submodule of $F \otimes M$.

Proof. As N is a semi-n-absorbing submodule of M, by Lemma 2.14, we have either $(N:_M a^n) = (N:_M a)$ or $(N:_M a^n) = M$, for all $a \in R$. Assume $(N:_M a^n) = (N:_M a)$. By the above lemma, we have $(F \otimes N:_{F \otimes M} a^n) = F \otimes (N:_M a^n) = F \otimes (N:_M a) = (F \otimes N:_{F \otimes M} a)$. If $(N:_M a^n) = M$ then $(F \otimes N:_{F \otimes M} a^n) = F \otimes (N:_M a^n) = F \otimes M$. Hence $F \otimes N$ is a semi-n-absorbing submodule of $F \otimes M$, by Lemma 2.14. \square Here, we give an example satisfying Theorem 3.4.

Example 3.5. \mathbb{Q} is a flat \mathbb{Z} -module ([4]). By Example 2.5, 0 is semi-n-absorbing in \mathbb{Z} , where n is a positive integer greater than 1. Also, we have $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}} 0 = 0$. Therefore $\mathbb{Q} \otimes_{\mathbb{Z}} 0$ is proper in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}$ and so is semi-n-absorbing, by Theorem 3.4.

Theorem 3.6. Let n be a positive integer greater than 1 and F be a faithfully flat R-module. Then N is a semi-n-absorbing submodule of M if and only if $F \otimes N$ is semi-n-absorbing in $F \otimes M$.

Proof. Let N be a semi-n-absorbing submodule of M. If $F \otimes N = F \otimes M$ then $0 \to F \otimes N \to F \otimes M \to 0$ is an exact sequence. Since F is faithfully flat so $0 \to N \to M \to 0$ is exact which shows that N = M, a contradiction. So $F \otimes N \neq F \otimes M$. By the above theorem, we have $F \otimes N$ is a semi-n-absorbing submodule of $F \otimes M$.

Conversely, suppose that $F \otimes N$ is semi-n-absorbing in $F \otimes M$. Thus $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a \in R$. By Lemma 2.14, $(F \otimes N :_{F \otimes M} a^n) = (F \otimes N :_{F \otimes M} a)$ or $(F \otimes N :_{F \otimes M} a^n) = F \otimes M$. Suppose that $(F \otimes N :_{F \otimes M} a^n) = (F \otimes N :_{F \otimes M} a)$. Then, by Lemma 3.3, we get $F \otimes (N :_M a^n) = F \otimes (N :_M a)$ and so $0 \to F \otimes (N :_M a^n) \to F \otimes (N :_M a) \to 0$ is an exact sequence. But F is faithfully flat. Therefore $0 \to (N :_M a^n) \to (N :_M a) \to 0$ is exact. Thus $(N :_M a^n) = (N :_M a)$. Now, suppose that $(F \otimes N :_{F \otimes M} a^n) = F \otimes M$. In this case, $F \otimes (N :_M a^n) = (F \otimes N :_{F \otimes M} a^n) = F \otimes M$. Hence $0 \to F \otimes (N :_M a^n) \to F \otimes M \to 0$ is an exact sequence. Since F is faithfully flat so $0 \to (N :_M a^n) \to M \to 0$ is exact i.e., $(N :_M a^n) = M$. Consequently, N is semi-n-absorbing in M. \square

4. Conclusion

The class of semi-n-absorbing submodules is a new one which is comparable with the class of prime submodules. In fact, every prime submodule is semi-n-absorbing, for each positive integer n greater than 1. But the converse is not true, in general. The definition of semi-n-absorbing submodules is a tool which gives many good information.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions.

References

- [1] M. S. Abbas, On Fully Stable Modules, Ph.D Thesis, University of Baghdad, (1990).
- [2] H. Ansari-Toroghy and F. Farshadifar, Quasi 2-absorbing second modules, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., 68 (1) (2019), 1090-1096.
- [3] A. Azizi, Weakly prime submodules and prime submodules, *Glasgow Math. J.*, 48 (2006), 343-346.
- [4] P. E. Bland, *Rings and Their Modules*, Walter de Gruyter GmbH and Co. KG, Berlin New York, (2011).
- [5] Z. El-Bast, Multiplication modules, Comm. in Alg., 16 (4) (2007), 755-779.
- [6] I. M. Hadi and A. Harfash, Semi-2-Absorbing Submodules and Semi-2-Absorbing modules, International Journal of Advanced Scientific and Technical Research, 5 (3) (2015), 521-530.

Shamsolmolouk Khoshdel

Assistant Professor of Mathematics Department of Mathematics Payame Noor University Tehran, Iran

E-mail: khoshdel@pnu.ac.ir

Mansooreh Maani-Shirazi

Assistant Professor of Mathematics Department of Mathematics Payame Noor University Tehran, Iran

E-mail: maani@pnu.ac.ir