WEAKLY COMPLETELY CONTINUOUS ELEMENTS OF THE BANACH ALGEBRA $\mathrm{LUC}(G)^*$

Mohammad Javad Mehdipour

ABSTRACT. In this paper, we study weakly compact left multipliers on the Banach algebra $LUC(G)^*$. We show that G is compact if and only if there exists a non-zero weakly compact left multipliers on $LUC(G)^*$. We also investigate the relation between positive left weakly completely continuous elements of the Banach algebras $LUC(G)^*$ and $L^{\infty}(G)^*$. Finally, we prove that G is finite if and only if there exists a non-zero multiplicative linear functional μ on LUC(G) such that μ is a left weakly completely continuous elements of $LUC(G)^*$.

2010 Mathematics Subject Classification: Primary 43A15; Secondary 47B07, 47B48. Key words: Locally compact group, multiplier, weakly compact operator.

1 Introduction

Throughout this paper, G denotes a locally compact group with a fixed left Haar measure λ . Let $L^1(G)$ be the group algebra of G defined as in [5] equipped with the convolution product * and the norm $\|.\|_1$. Let $L^{\infty}(G)$ be the usual Lebesgue space as defined in [5] equipped with the essential supermum norm $\|.\|_{\infty}$. Then $L^{\infty}(G)$ is the dual of $L^1(G)$. We recall that the first dual $L^{\infty}(G)^*$ is a Banach algebra with the first Arens product "·" defined by $\langle F \cdot H, f \rangle = \langle F, Hf \rangle$, where

$$\langle Hf, \phi \rangle = \langle H, f\phi \rangle$$
 and $\langle f\phi, \psi \rangle = \langle f, \phi * \psi \rangle$

for all $F, H \in L^{\infty}(G)^*$, $f \in L^{\infty}(G)$ and $\phi, \psi \in L^1(G)$. Let C(G) be the space of all bounded continuous complex-valued functions on G and $C_0(G)$ be the space of all continuous functions on G vanishing at infinity. The space of left uniform continuous function on G, denoted by LUC(G), is the set of all bounded continuous complex-valued functions f on G for which the mapping

$$x \mapsto \delta_x * f$$

from G into C(G) is norm continuous, where δ_x denotes the Dirac measure at x. The Banach space LUC(G) is a left introverted subspace of $L^{\infty}(G)$; that is, for each $\nu \in LUC(G)^*$ and $f \in LUC(G)$, the function νf defined by

$$\langle \nu f, x \rangle = \langle \nu, \delta_{x^{-1}} * f \rangle \qquad (x \in G)$$

is also an element in LUC(G). This lets us to endow $LUC(G)^*$ with the first Arens product " \circ " defined by

$$\langle \mu \circ \nu, f \rangle = \langle \mu, \nu f \rangle$$

for all $\mu, \nu \in LUC(G)^*$, $f \in LUC(G)$. Then $LUC(G)^*$ with this product is a Banach algebra.

Let π denote the natural continuous operator that associates to any functional in $L^{\infty}(G)^*$ its restriction to LUC(G). It is easy to see that π is a homomorphism and $\pi|_{E \cdot L^{\infty}(G)^*}$ is an isometric isomorphism from $E \cdot L^{\infty}(G)^*$ onto $LUC(G)^*$ for all $E \in \Lambda(L^{\infty}(G)^*)$, the set of all mixed identities E with norm one in $L^{\infty}(G)^*$; that is,

$$\phi \cdot E = E \cdot \phi = \phi$$

for all $\phi \in L^1(G)$. Also, observe that $\pi|_{L^1(G)}$ is identity on $L^1(G)$. Note that the group algebra $L^1(G)$ can be embedded into $LUC(G)^*$ via

$$\langle \phi, f \rangle := \int_G \phi(x) \ f(x) \ d\lambda(x) \quad (\phi \in L^1(G), f \in \mathrm{LUC}(G)).$$

Let \mathcal{A} be a Banach algebra; a bounded operator $T: \mathcal{A} \to \mathcal{A}$ is called *left multiplier* if T(ab) = T(a)b for all $a, b \in \mathcal{A}$. For any $a \in \mathcal{A}$, the left multiplier $b \mapsto ab$ on \mathcal{A} is denoted by λ_a ; also a is said to be a *left (weakly) completely continuous element of* \mathcal{A} if λ_a is a (weakly) compact operator on \mathcal{A} .

Sakai [11] has shown that if G is a locally compact non-compact group, then zero is the only left weakly completely continuous element of $L^1(G)$. Akemann [1] has proved that if G is compact, then any $\phi \in L^1(G)$ is a left weakly completely continuous element of $L^1(G)$. He also has characterized weakly compact left multiplier on $L^1(G)$. In fact, he has shown that any weakly compact left multiplier on $L^1(G)$ is of the form λ_{ϕ} for some $\phi \in L^1(G)$. Weakly compact left multipliers on the Banach algebra $L^{\infty}(G)^*$ of a locally compact group G have been studied by Ghahramani and Lau in [3, 4]. In the same papers, they have obtained some results on the question of existence of non-zero weakly compact left multipliers on $L^{\infty}(G)^*$. Losert [8] among other things, has proved that if G is non-compact, then there is no non-zero weakly compact left multipliers on $L^{\infty}(G)^*$. Medghalchi [9] has studied compact and weakly compact right multiplier on $LUC(S)^*$, where S is a left cancellative foundation semigroup. He has proved that the existence of a non-zero compact or weakly compact right multiplier on $LUC(S)^*$ is equivalent to left amenability of S.

In this paper we study weakly compact left multipliers on the Banach algebra $LUC(G)^*$ of a locally compact group G.

In section 2, we show that G is compact if and only if there exists a non-zero weakly compact left multipliers on $LUC(G)^*$. In section 3, we investigate the relation between positive left weakly completely continuous elements of the Banach algebras $LUC(G)^*$ and $L^{\infty}(G)^*$. We show that F is a positive left weakly completely continuous elements of $L^{\infty}(G)^*$ if and only if $F \in L^1(G)$ and it is a positive left weakly completely

continuous elements of $LUC(G)^*$. Finally, we prove that G is finite if and only if there exists a non-zero multiplicative linear functional μ on LUC(G) such that μ is a left weakly completely continuous elements of $LUC(G)^*$.

2 The existence of weakly completely continuous elements

Before we give the main result of this section, let us remark that any left multiplier T on $LUC(G)^*$ is of the form λ_{μ} for some $\mu \in LUC(G)^*$; indeed, $T = \lambda_{T(\delta_e)}$, where e denotes the identity element of G.

Theorem 2.1 Let G be a locally compact group and $\mu \in LUC(G)^*$. Then μ is a non-zero left weakly completely continuous element of $LUC(G)^*$ if and only if G is compact and $\mu \in L^1(G)$.

Proof. Let μ be a non-zero left weakly completely continuous element of LUC(G)*. Choose $E \in \Lambda(L^{\infty}(G)^*)$. Then there exists $F \in L^{\infty}(G)^*$ such that $\mu = \pi(E \cdot F)$. If $\pi_0 = \pi|_{E \cdot L^{\infty}(G)^*}$, then

$$\lambda_{E \cdot F} = \pi_0^{-1} \lambda_\mu \pi$$

on $L^{\infty}(G)^*$. Hence $E \cdot F$ is a non-zero left weakly completely continuous element of $L^{\infty}(G)^*$. Thus G is compact and so $L^1(G)$ is an ideal in $L^{\infty}(G)^*$. Thus $\lambda_{E \cdot F}|_{L^1(G)} : L^1(G) \to L^1(G)$ is a weakly compact left multiplier. Hence there exists $\phi \in L^1(G)$ such that $\lambda_{E \cdot F} = \lambda_{\phi}$ on $L^1(G)$. Set $r := E \cdot F - \phi$. For every $\psi \in L^1(G)$ and $f \in C(G)$, we have

$$\langle r, \psi f \rangle = \langle (E \cdot F - \phi) \cdot \psi, f \rangle = 0.$$

From this and the fact that $L^1(G)C(G) = C(G)$, we see that $\langle r, g \rangle = 0$ for all $g \in C(G)$. Therefore, $\pi(r) = 0$; see Theorem 2.3 of [7]. We thus have

$$\mu = \pi(E \cdot F) = \pi(\phi) + \pi(r) = \phi \in L^1(G).$$

Conversely, let G be compact and $\mu \in L^1(G)$. Then μ is a left weakly completely continuous element of $L^1(G)$; see Theorem 4 of [1]. So, μ is a left weakly completely continuous element of $LUC(G)^*$ by [2].

In the following, we give some corollaries of this theorem.

Corollary 2.2 Let G be a locally compact group. Then the following assertions are equivalent.

- (a) G is compact.
- (b) LUC(G)* has a non-zero positive left completely continuous element.
- (c) LUC(G)* has a non-zero left completely continuous element.
- (d) $LUC(G)^*$ has a non-zero left weakly completely continuous element.

As an immediate consequence of Theorem 2.1 and Corollary 2.2, we have the following result.

Corollary 2.3 Let G be a locally compact group. Then the following assertions are equivalent.

- (a) G is compact.
- (b) Any $\phi \in L^1(G)$ is a left weakly completely continuous element of $LUC(G)^*$.
- (c) $LUC(G)^*$ has a non-zero positive left weakly completely continuous element in $L^1(G)$.
 - (d)LUC(G)* has a non-zero left weakly completely continuous element in $L^1(G)$.
 - (e) LUC(G)* has a non-zero left weakly completely continuous element.

In the following, for $C_0(G) \subseteq X \subseteq L^{\infty}(G)$, let

$$C_0(G)^{\perp_X} = \{ r \in X^* : \langle r, f \rangle = 0 \text{ for all } f \in C_0(G) \}.$$

As a consequence of Theorem 2.1, we present the next result.

Corollary 2.4 Let G be a locally compact group and $r \in C_0(G)^{\perp_{LUC(G)}}$. If r is a left weakly completely continuous element of $LUC(G)^*$, then r = 0.

Akemann [1] proved if $\mu \in L^1(G)$ is a left weakly completely continuous element, then it is a left completely continuous element. In this case, Ghahramani [2] showed that μ is a left weakly completely continuous element of M(G). These results together with Theorem 2.1 prove the following corollary.

Corollary 2.5 Let G be a locally compact group and $\mu \in LUC(G)^*$. Then μ is a left weakly completely continuous element of $LUC(G)^*$ if and only if μ is a left completely continuous element of $LUC(G)^*$.

Let I be a subset of $LUC(G)^*$. The left annihilator of I in $LUC(G)^*$ is denoted by lan(I) and is defined by

$$lan(I) = {\mu \in LUC(G)^* : \mu \circ I = {0}}.$$

Proposition 2.6 Let G be a locally compact group and I be a closed right ideal in $LUC(G)^*$ such that $lan(I) = \{0\}$. Then G is compact if and only if there exists a non-zero weakly compact left multiplier on I.

Proof. Let T be a non-zero weakly compact left multiplier on I. Then there exists $\xi \in I$ such that $T(\xi) \notin \operatorname{lan}(I)$. Hence $T(\xi \circ \zeta) \neq 0$ for some $\zeta \in I$. For every $\mu \in \operatorname{LUC}(G)^*$, we have

$$T(\xi \circ \zeta) \circ \mu = T(\xi) \circ \zeta \circ \mu = T(\xi \circ \zeta \circ \mu).$$

Therefore,

$$T\{\xi \circ \zeta \circ \mu : \mu \in \mathrm{LUC}(G)^*, \|\mu\| \le 1\} \subseteq T\{\iota : \iota \in I, \|\iota\| \le \|\xi\| \|\zeta\|\}.$$

This shows that $\lambda_{T(\xi \circ \zeta)}$ is a non-zero weakly compact left multiplier on LUC(G)*. Therefore, G is compact.

Conversely, let G be compact. Then $LUC(G)^*$ has a non-zero left weakly completely continuous element, say μ . Since $lan(I) = \{0\}$, we have $\mu \notin lan(I)$. Hence λ_{μ} is a non-zero weakly compact left multiplier on I.

3 Positive weakly completely continuous elements

In this section, we study positive weakly completely continuous elements of the Banach algebras $LUC(G)^*$ and $L^{\infty}(G)^*$. The main result of this section is the following.

Theorem 3.1 Let G be a locally compact group and $F \in L^{\infty}(G)^*$. Then the following assertions are equivalent.

- (a) F is a positive left completely continuous element of $L^{\infty}(G)^*$.
- (b) F is a positive left weakly completely continuous element of $L^{\infty}(G)^*$.
- (c) $F \in L^1(G)$ and F is a positive left weakly completely continuous element of $LUC(G)^*$.
 - (d) $F \in L^1(G)$ and F is a positive left completely continuous element of $LUC(G)^*$.

Proof. The implication (a) \Rightarrow (b) is clear. By Corollary 2.5, (c) \Rightarrow (d). Now, if (d) holds, then F is a positive left completely continuous element of $L^1(G)$. The proof of Theorem 2.1 implies that F is a positive left completely continuous element of $L^{\infty}(G)^*$. Hence (d) \Rightarrow (a). To complete the proof, let F be a positive left weakly completely continuous element of $L^{\infty}(G)^*$. Then $\pi(F)$ is a left weakly completely continuous element of $L^{\infty}(G)^*$. Choose $E \in \Lambda(L^{\infty}(G)^*)$. From Theorem 2.1 and the fact that

$$\pi(E \cdot F) = \pi(F)$$

we see that $\pi(E \cdot F) \in L^1(G)$. Since $\pi : E \cdot L^{\infty}(G)^* \to LUC(G)^*$ is an isometry and π is identity on $L^1(G)$, we have $E \cdot F \in L^1(G)$. Set $r := F - E \cdot F$. We show that r = 0. Suppose r is non-zero. Let g be a continuous complex-valued functions on G with compact support C such that $||g|| \leq 1$ and

$$|\langle E \cdot F, g \rangle| \ge ||E \cdot F|| - (5/12)||r||.$$

Choose an element f in the unite ball $L^{\infty}(G)$ such that

$$|\langle r, f \rangle| \ge (23/24) ||r||.$$

Let V be an open set with compact closure for which $C \subseteq V$. Let h be a continuous complex-valued functions on G such that $0 \le h(x) \le 1$ for all $x \in G$, h(x) = 1 for all $x \in C$ and h(x) = 0 for all $x \notin V$. Define the complex-valued function γ on G by

$$g(x) := f(x) - h(x)g(x) + g(x)$$

for all $x \in G$. There exists a complex number η such that $\|\eta(f - hg) + g\| \le 1$ and

$$|\langle E \cdot F, \eta(f - hg) + g \rangle| = |\langle E \cdot F, f - hg \rangle| + |\langle E \cdot F, g \rangle|.$$

Since $\langle r, k \rangle = 0$ for all $k \in C(G)$, it follows that $\langle r, j \rangle = \langle r, f \rangle$. Thus

$$\begin{aligned} |\langle F, \jmath \rangle| & \geq |\langle r, \jmath \rangle| + |\langle E \cdot F, g \rangle| - |\langle E \cdot F, f - hg \rangle| \\ & \geq |\langle r, f \rangle| + 2|\langle E \cdot F, g \rangle| - ||E \cdot F|| \\ & \geq (1/8)||r|| + ||E \cdot F||. \end{aligned}$$

Note that $||j|| \le 1$. Therefore,

$$||F|| \ge (1/8)||r|| + ||E \cdot F||.$$

Let χ_G be the characteristic function of G. Since F is positive and $\langle r, \chi_G \rangle = 0$, we have

$$||F|| = \langle F, \chi_G \rangle = \langle E \cdot F, \chi_G \rangle = ||E \cdot F||.$$

Thus ||r|| = 0 and so r = 0, a contradiction. Therefore,

$$F = E \cdot F \in L^1(G)$$
.

Now, if $F \neq 0$, then G is compact; see [8]. Therefore, F is a positive left weakly completely continuous element of $LUC(G)^*$ by Theorem 2.1. That is, (b) \Rightarrow (c).

As an immediate consequence of this theorem, we have the following result.

Corollary 3.2 Let G be a locally compact group and $r \in C_0(G)^{\perp_{L^{\infty}(G)}}$. If r is a positive left weakly completely continuous element of $L^{\infty}(G)^*$, then r = 0.

Let X be a closed C^* -subalgebra of $L^{\infty}(G)$. We denote by $\Omega(X^*)$ the set of all non-zero multiplicative linear functionals on X^* .

Theorem 3.3 Let G be a locally compact group. Then the following assertions are equivalent.

- (a) G is finite.
- (b) $L^{\infty}(G)^*$ has a left weakly completely continuous element in $\Omega(L^{\infty}(G)^*)$.
- (c) LUC(G)* has a left weakly completely continuous element in $\Omega(LUC(G)^*)$.

Proof. It is trivial that (a) implies (b). Let $F \in \Omega(L^{\infty}(G)^*)$ be a left weakly completely continuous element of $L^{\infty}(G)^*$. Then F is a positive left weakly completely continuous element of $L^{\infty}(G)^*$. By Theorem 3.1, $F \in L^1(G)$ and it is a positive left weakly completely continuous element of $LUC(G)^*$. It is clear that

$$F \in \Omega(\mathrm{LUC}(G)^*).$$

That is, (b) implies (c). Let $\mu \in \Omega(\mathrm{LUC}(G)^*)$ be a left weakly completely continuous element of $\mathrm{LUC}(G)^*$. Then G is compact and $\mu \in L^1(G)$. Thus $\mu = \mu|_{C_0(G)}$. Hence $\mu = \delta_x$ for some $x \in G$; see [6]. So $\delta_x \in L^1(G)$; equivalently, G is discrete. Therefore, G is finite; that is (c) implies (a).

We conclude the paper with the following result.

Proposition 3.4 Let G be a locally compact group. Then the following assertions are equivalent.

- (a) G is finite.
- (b) Any element $F \in L^{\infty}(G)^*$ is a left weakly completely continuous element of $L^{\infty}(G)^*$.
- (c) Any positive element $F \in L^{\infty}(G)^*$ is a left weakly completely continuous element of $L^{\infty}(G)^*$.
- (d) Any positive element $\mu \in LUC(G)^*$ is a left weakly completely continuous element of $LUC(G)^*$.
- (e) Any element $\mu \in LUC(G)^*$ is a left weakly completely continuous element of $LUC(G)^*$.

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) are clear. Let μ be a positive left weakly completely continuous element of LUC(G)*. By Hahn-Banach theorem, there is positive element $F \in L^{\infty}(G)$ * such that $\mu = \pi(F)$; see [10]. If (c) holds, then F is a positive left weakly completely continuous element of $L^{\infty}(G)$ *. In view of Theorem 3.1, we have $F \in L^1(G)$. It follows that

$$\mu = \pi(F) = F \in L^1(G).$$

Therefore, μ is a positive left weakly completely continuous element of $LUC(G)^*$ by Theorem 2.1. That is, $(c)\Rightarrow(d)$. To prove $(d)\Rightarrow(e)$, we only need to note that if $\mu \in LUC(G)^*$, then $\mu = \sum_{i=1}^4 \alpha_i \mu_i$ for some positive elements μ_i of $LUC(G)^*$ and $\alpha_i \in \mathbb{C}$ (i=1,2,3,4). Finally, by Theorem 3.3, $(e)\Rightarrow(a)$.

References

- [1] C. A. Akemann, Some mapping properties of the group algebras of a compact group. Pacific J. Math. 22 (1967), 1-8.
- [2] F. Ghahramani, Compact elements of weighted group algebras. Pacific J. Math. 113 (1984), 77-84.
- [3] F. Ghahramani and A. T. Lau, Isomorphisms and multipliers on second dual algebras of Banach algebras. Math. Proc. Cambridge Philos. Soc. 111 (1992), 161-168.
- [4] F. Ghahramani and A. T. Lau, Multipliers and modulus on Banach algebras related to locally compact groups. J. Funct. Anal. 150 (1997), 478-497.
- [5] E. Hewitt and K. Ross, Abstract harmonic analysis I. Springer-Verlag, New-York, 1970.
- [6] E. Hewitt and K. Stromberg, Real and abstract analysis. Springer-Verlag. New-York, 1975.

- [7] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group. J. London Math. Soc. 41 (1990), 445-460.
- [8] V. Losert, Weakly compact multipliers on group algebras. J. Funct. Anal. 213 (2004), 466-472.
- [9] A. Medghalchi, Multipliers on L(S), $L(S)^{**}$, and $LUC(S)^{*}$ for a locally compact toplogical semigroup. IJMMS. 29 (2002), 355-359.
- [10] G. J. Murphy, C*-algebras and operator theory. Academic Press, Boston, 1990.
- [11] S. Sakai, Weakly compact operators on operator algebras. Pacific J. Math. 14 (1964), 659-664.

Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran, mehdipour@sutech.ac.ir