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Abstract. Regarding the Gauss multiplication formula for I'-type
functions, we introduce its dual formula for limit summand functions,
namely Gauss summation formula. Also, we show that not only the
Gauss multiplication for I'-type functions is a simple result of this for-
mula, but also provide an its improvement with several consequences
and applications. Finally, as a note, we mention that a condition in two
Webster’s theorems is extra.
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1. Introduction

One of the most famous and useful mathematical constants is Euler-
Mascheroni constant which is limit of the sequence > 7_; 1 — log(n),
denoted by v = 0.57722156649... (see [1]). There are many Euler-type
constants and thier generalization some of them were studied in [3, 8]. On
the other hand, regarding to uniqueness of the gamma function, Bohr
and Mollerup proved that the only log-convex solution f of the functional
equation f(x + 1) = xf(z), for x > 0, satisfying f(1) = 1 is the gamma
function I'. As a generalization of the theorem, Webster studied I'-type
functions satisfying the functional equation f(z+1) = g(z)f(x), in 1997
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[9]. In the paper, he coressponded to every function g : Rt — RT, the
following limit function g* defined by

g(n)- - g(1)g(n)*
e noo g(n + @) - - g(a)

;o x>0,

which we call it gamma type function of g. In 2001, M.H. Hooshmand in-
troduced a new concept entitled limit summability of functions [4] and he
proved that [-type functions can be considered as an its sub-topic. Also,
in 2016 and 2017 he introduced two others type of such summabilities
entitled analytic and trigonometric summability of functions [6, 7].

2. Limit Summability and I'-Type Functions

Let f be areal or complex function with N* C Dy, where N* = {1,2,3, ...}
and N = {0,1,2,...}. The summand set of Dy is defined by

Yr={z|le+N"CDs} ={al{x+1,2+2,24+3,---} C Dy}.

Hence x € ¥y if and only if {x + 1,2 +2,--- ;2 4+ n,---} C Dy. Also,
for any positive integer n and z € Xy set

R, (f,x) :== Ry(z) = f(n) — f(z +n),

fan( - +ZRk

When z € Dy, we may use the notation O’n<f($)) instead of f,, (x). The
function f is called limit summable at zg € ¥y (resp. on S C Xy) if the
sequence {f,, (x)} is convergent at xo (resp. on S). The limit function

of fo,(z) (resp. R,(f,z)) is denoted by f,(z) (resp. R(f,z) or R(x))
and it is called the limit summand function of f. Note that the domain

of f, is
Dy, = {x € X¢|f is limit summable at z},

and if + € Dy and R,(f,1) is convergent, then R(f,z) = R(z

= )
zR(1). It is important to know that Dy N ¥y = ¥; + 1, f,(0) =0 s
0 € Dy. Also, if 0 € Dy, then —1 € Dy, and we have f,(—1) = (0)
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R, (f,1) is convergent, then Dy N Dy = Dy + 1. A necessary condition
for limit summability of f at z is

lim (R, (z) —xRy—1(1)) = 0.

n—oo

If R(1) =0, then

for all m € N* and
falm) == " f(=4), (2)

if m € Z7 NXy. It is proved that the following conditions are equivalent
and every function satisfying one of them is called limit summable:

a) f is limit summable;
b) fo(x) = f(x) + fo(x — 1) for all x € Dy;
C) Dfa = Ef, R(l) =0.

The most important criteria for limit summability which were introduced
in [5] stated that convexity or concavity of f together with boundedness
of R, (f,1), or monotonity with boundedness of f,, imply limit summabil-
ity of real functions f. In [4], some connections between limit summand
and gamma type functions (if exist) are stated. Also, it is shown that
gamma type functions can be considered as a subtopic of limit summa-
bility. It is proved that Theorem 1.3 of [9] is a result of Corollary 3.3
of [4] for the special case M = 0. Moreover, a main relation between
gamma type function of g : RT — R™ and limit summand function of
In g is proved as follow

g (z) = eM9el@=1). 5 50,

Also, one of the results for the generalized I'-type functions is Gauss
multiplication formula which was introduced in Theorem 5.2 of [9].
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3. Limit Summand of Shifted Functions and Gauss
Summation Formula

In order to find a sum relationship corresponding to Gauss multiplication
formula (in the topic of I'-type functions) for limit summand functions,
we are led to a fact which not only fulfills that objective but also it
provides a more developed and indicates that the related summation
formula is a consequence of the limit summand of the integer-shifted
f(x—m) or f(x+m). We mention that if m is a positive integer number,
then the functions f(x — m) and f(x + m) are called backward and
forward shift function of f, respectivly. The following theorem in fact
presents a relationship for summand function of backward and forward
shift and ential several important results.

Theorem 3.1. Let f be a real or complex function with domain Dy
such that R(f,1) = 0 and m a fized integer number. If N* C Dy +m,
then

o(f(z—m)) = fo(x —m) = fo(=m), 3)

for x € Dy +m+1. Moreover, if m > 0 then

o(f(z+m)) = fo(x +m) = fo(m) = fo(z) = fo,,(x) + xf(m), (4)
forxz e Dy —m+ 1.

Proof. Let m > 0. If v € Dy +m+1,thenz—m € Dy +1= Dy NDy.
Thus  —m € Dy and x —m € Dy, . Hence the both f(x —m) and
fo(x — m) are defined. Now, put g(z) := f(x — m). Then, due to
R(f,1) = 0 and relation (2), we can write

go, () =xf(n—m —|—ka m) — f(k+x —m)

—zf(n—m)+ > f(—k)— k:+x+Zf flk+2)
k=1
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Gon (@) =xf(n—m)+ > f(k—m)— f(k+xz—m)
k=1

m—1 n—m
=zf(n—m)+ ) f(=k)—f(=k+z)+ ) f(k)—f(k+2)
k=0 k=1
m—1
=z(f(n—m) = f(n) + fo,() + ) _ f(=k) = f(=k + )
m—1 =
- Rn—k(x)
k=0
Therefore,
m—1 m—1
9o (%) = fo, (x f(=k+2) = fo(=m) + 2Rp_m(m) — >  Rn_p(x)
k=0 k=0

Now, If x € Dy, +m + 1, then z € Dy, +m C Dy and considering
R(f,1) =0, we conclude that R(f,z) = lim R, (xz) = 0. Thus, g is limit
Tr—00

summable at z as n — oo, and

m—1
9o(x) = fol@) = Y f(=k+z) = fo(—m)
k=0
= fo(x - m) - fa(_m)a

by Corollary 2.13 of [4]. Therefore, f satisfies (3).

Also, if x € Dy, —m + 1, then x +m € Dy, +1 = Dy N Dy . Thus
x+m € Dy and x +m € Dy, . Now, putting h(z) := f(z +m), and
similar to the above part, we obtain
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n

hoo (@) =z f(n+m)+ > fk+m)— f(k+z+m)

k=1
n+m
=zf(n+m)+ ) flk)— flk+a)+ > fk) - fk+z)
k=1 k=n+1
=Y f(k) = fk+x)
k=1
=af(n+m)+ fo,(x) —zf(n) =Y _ f(k) + )
k=1
+ Z Rn—&-k(m)
k=1

Therefore,

hoo (@) = fo, (@) + Y flk+2) = fo(m) — xRn(m) + > Ruip(2)
k=1 k=1

= for () = for (@) + 2 f(m) — 2Ry (m) + Z Ryi(z

On the other hand, if x € Dy, —m +1, then x +m € Dy, +1C Dy, .
Since x +m € Dy, and considering R, (z) = Ry,(—m) + Ry—m(x + m),
so x € Dy and due to R(f,1) = 0, we conclude that R(f,z) = 0. Thus,
h is limit summable at = as n — oo, and

ha(x) = fU(‘T) + Zf(k + l’) - fa(m)
k=1
= fo(x) = fo,.(x) + zf(m).

Hence, we arrive at (4) similar to the first case. Therefore, the proof is
complete.

Corollary 3.2. If f be a real or complex limit summable function with
Dy =[1,+00), then

o(flx—m)) = fo(x —m) = fo(-m);  z=m+1, ()
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Example 3.4. For any fixed real numbers o > 0 and § < 0, put f(x) =
z%e®. Then, Dy = [0,+00), R(f,1) = 0 and for every integer m < 1
we have

folx —m) = lim ((x — m)n®e™ + Z ke — (k + o — m)@efkra=m))
r—00
e eﬁk eﬁ(m_m) eﬁ(x_m) i eﬁ(k'i_x_m)
_;ka + (x—m)=® (z—m)® — (k+2x—m)—@
eBlz—m)
— Li_ (&P ePla—m)
Za(e)+(:c—m) Zk+x—
Blz—m)
i (eBy _ Ba—myp B ¢
= LZ,O[(G ) — € (@ m)L(Tm,IL‘ —m, —Oé) + m,
for x > m, where L(\, z,t) = > >, (ZI;; is the Lerch zeta function
and Lig(z) => 02, Z—Z is the polylogarithm function. Also, we have
—Bm
. _ e
fg(—m) = Lz,a(eﬂ) — € [377/]‘_171(2£7_[_Z7 —m, —Oé) + W
thus,
Bla—m)
Ba—my _ ™ Ba-myp B _
o((x —m)®ePEm)) = @ —m) (@ m)L(Qm,,x m, —a)+
—Bm
efﬁmL(ﬂ,, —-m, —a) — -
271 (—m)—«
Therefore, putting m = 0, we obtain
o(z%eP?) = L(i 0,—a) — 5IL(£,$, —a) + 2% >0,
2mi’ 27

that is a closed form for limit summand function of x%e”?.

In order to obtain a summation dual of Gauss multiplication formula,
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it is sufficient, we collect the relationships sides obtained from (5) for
values 1,2,--- ,m — 1, up to we reach to the Gauss summation formula
(for limit summand functions) as follows.

Corollary 3.5. (Gauss Summation Formula). Let f : [1,4+00) — R be
a concave function such that R(f,1) =0 and m a fized positive integer
number. Then,

—_

m—1 m—
f(x_])): fO’(x_j)_fO'(_j)'

J=0 J=0

Proof. This is a direct consequence of Corollary 2. and Theorem 3.3 in
[b]. O

Example 3.6. If f(x) = logy(x), then f is concave and R(f,1) =
0. Thus, by using Example 2.5 of [4], we get

m—1 1 m—1
Jj=0 7=0
m—1 1 m—1
‘ fo( b 4 (1 —3),
7=0 7=0
for > 1. Therefore
1 m—1
ZIOgb =] :ﬁ( I(z+1-7)-T(1-7j)),
=0

for x > 1.

Due to the basic relationship between the limit summand function and
the I'-type function, the following result can also be obtained.
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Corollary 3.7. Let f : RT — RT be a function and m a fized positive

integer number. If f(féi)l)

— 1 as n — oo, then,

o(logf(x —m)) =log f*(x —m+1) — logf*(1 —m),

for x € Do f), +m+ 1. Notice that, since log f*(x) = (log f)s (v — 1),
then Dlog f* = D(log f)o"

Corollary 3.8. Suppose that f : [1,+00) — R is a convezx or concave
(resp. monotone) function such that R(f,1) =0 (resp. f(n) is conver-
gent) and m a fized positive integer number. Then, f satisfies (3) for
r>m+1.

Now, by making use of a technique which is used in [4], we generalize
the Theorem 3. in the case of R, (f,1) being convergent (not necessary
to zero).

Theorem 3.9. Let f be a real or complex function with domain Dy
such that Ry (f,1) is convergent and m a fized integer number. If N* C
D¢ +m, then

o(f(x —m)) = fo(x —m) = fo(—=m) + mR(f,1)z; € Dy, +m+ 2)
6

Proof. Put h(z) := f(z) + R(f,1)z. Then ¥, = ¢, hy,(z) = fo,(2)
and Ry(h,z) = Ru(f,z) — R(f,1)z. Since x € Dy, and R,(f,1) —
R(f,1) as n — oo, then R, (f,z) — zR(f,1), as n — oo, thus R(h,x) =
IILH;O R, (h,xz) =0 and h is limit summable at = and

o(f(z —m)+ R(f,1)(x —m)) = folzx —m) — fo(=m),
thus,

o(flx —=m)) = fo(x —m) — fo(—m) — R(f,1)o(z —m)
= fo(x —m) — fo(=m) + mR(f, 1)z,
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therefore, the relation (6) is proved. [

Note. In the studies conducted in this resarch, we realized that in the
Theorem 5.1 (ii) in [9] the condition £ € G is extra, for if g1,92 € G,

then there exists ¢ and g5, and so Z—i = (£:)" holds. Also, the condition
2

hm € G can be removed from Theorem 5.2 in the paper (because g € G
implies that ¢* exists and g,,, € G, thus g}, and also 5—* = h, exist).
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