Signed Complete Graphs with Negative Paths

S. Dalvandi
Karaj Branch, Islamic Azad University
F. Heydari*
Karaj Branch, Islamic Azad University
\section*{M. Maghasedi}
Karaj Branch, Islamic Azad University

Abstract

Let $\Gamma=(G, \sigma)$ be a signed graph, where G is the underlying simple graph and $\sigma: E(G) \longrightarrow\{-,+\}$ is the sign function on the edges of G. The adjacency matrix of a signed graph has -1 or +1 for adjacent vertices, depending on the sign of the connecting edges. Let $\Gamma=\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$be a signed complete graph whose negative edges induce a subgraph which is the disjoint union of m distinct paths. In this paper, by a constructive method, we obtain $n-1+\sum_{i=1}^{m}\left(\left\lfloor\frac{r_{i}}{2}\right\rfloor-r_{i}\right)$ eigenvalues of Γ, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.

AMS Subject Classification: 05C22; 05C50
Keywords and Phrases: Signed graph, complete graph, path, adjacency matrix

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with the vertex set $V(G)$ and the edge set $E(G)$. The order of G is defined $|V(G)|$. Let K_{n} denote the

[^0]complete graph of order n. We denote the path of order r, by P_{r}. The matrix $J_{r \times s}$ is all-one matrix of size $r \times s$.

A signed graph Γ is an ordered pair (G, σ), where $G=(V(G), E(G))$ is a simple graph (called the underlying graph), and let $\sigma: E(G) \longrightarrow\{-,+\}$ be a mapping defined on the edge set of G. Signed graphs were introduced by Harary [5] in connection with the study of theory of social balance in social psychology proposed by Heider [6]. The adjacency matrix of a signed graph $\Gamma=(G, \sigma)$ is a square matrix $A(\Gamma)=A(G, \sigma)=\left(a_{i j}^{\sigma}\right)$, where $a_{i j}^{\sigma}=\sigma\left(v_{i} v_{j}\right) a_{i j}$ and $A(G)=\left(a_{i j}\right)$ is the adjacency matrix of G. The characteristic polynomial of a matrix A is denoted by $\varphi(A)$. If Γ is a signed graph, $\varphi(\Gamma)$ denotes $\varphi(A(\Gamma))$. The eigenvalues of the adjacency matrix of a graph are often referred to as the eigenvalues of the graph. The spectrum of a signed graph Γ is the set of all eigenvalues of Γ along with their multiplicities. Let $m(\lambda)$ denote the multiplicity of the eigenvalue λ. The spectrum of graphs, in particular, signed graphs has been studied extensively by many authors, for instance see $[1,3,4]$.

Let $\left(K_{n}, H^{-}\right)$be a signed complete graph whose negative edges induce a subgraph H. In this paper, by a constructive method, we obtain $n-r-$ $1+\left\lfloor\frac{r}{2}\right\rfloor$ eigenvalues of $\left(K_{n}, P_{r}^{-}\right)$, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Next, we determine the characteristic polynomial of $\left(K_{n}, P_{r}^{-}\right)$, for $2 \leqslant r \leqslant 8$. Let $\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$be a signed complete graph whose negative edges induce a subgraph which is the disjoint union of m distinct paths. In the sequel, we find $n-1+\sum_{i=1}^{m}\left(\left\lfloor\frac{r_{i}}{2}\right\rfloor-r_{i}\right)$ eigenvalues of $\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$.

2. Eigenvalues of $\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$

In this section, we study the spectrum of $\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$. Before stating the main theorem, we need the following results.
Theorem 2.1. [7, Theorem 2.2] Let $T_{n}(a, b, c)$ be an $n \times n$ tridiagonal matrix defined by

$$
T_{n}(a, b, c)=\left[\begin{array}{cccc}
a & c & & \mathbf{0} \\
b & \ddots & \ddots & \\
& \ddots & \ddots & c \\
\mathbf{0} & & b & a
\end{array}\right]
$$

where $a, b, c \in \mathbb{R}$. Then the eigenvalues of $T_{n}(a, b, c)$ are

$$
\lambda_{k}=a-2 \sqrt{b c} \cos \frac{k \pi}{n+1}, \text { for } k=1, \ldots, n
$$

Theorem 2.2. [8, Theorem 2] Let $A_{n}(a, b, c)$ be an $n \times n$ special tridiagonal matrix defined by

$$
A_{n}(a, b, c)=\left[\begin{array}{cccccc}
\sqrt{b c}+a & c & & & & \\
b & a & \ddots & & \mathbf{0} & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& \mathbf{0} & & \ddots & a & c \\
& & & & b & a
\end{array}\right]
$$

where $a, b, c \in \mathbb{R}$. Then the eigenvalues of $A_{n}(a, b, c)$ are

$$
\lambda_{k}=a+2 \sqrt{b c} \cos \frac{(2 k-1) \pi}{2 n+1}, \text { for } k=1, \ldots, n
$$

Corollary 2.3. [2, Corollary 1] Let $\left(K_{n}, H^{-}\right)$be a signed complete graph whose negative edges induce a subgraph H of order $k<n$. Then

$$
\varphi\left(K_{n}, H^{-}\right)=(\lambda+1)^{n-k-1} \varphi\left(\left[\begin{array}{cc}
A\left(K_{k}, H^{-}\right) & (n-k) J_{k \times 1} \\
J_{1 \times k} & n-k-1
\end{array}\right]\right)
$$

and so $m(-1) \geqslant n-k-1$.
Now, we prove the main results.
Theorem 2.4. Let $\Gamma=\left(K_{n}, P_{r}^{-}\right)$be a signed complete graph. Then the following statements hold:
(a) -1 is an eigenvalue of Γ with the multiplicity at least $n-r-1$.
(b) If r is odd, then $\frac{r-1}{2}$ eigenvalues of Γ are

$$
\lambda_{k}=-1-4 \cos \frac{2 k \pi}{r+1}, \text { for } k=1, \ldots, \frac{r-1}{2}
$$

(c) If r is even, then $\frac{r}{2}$ eigenvalues of Γ are

$$
\lambda_{k}=-1+4 \cos \frac{(2 k-1) \pi}{r+1}, \text { for } k=1, \ldots, \frac{r}{2}
$$

Proof. (a) If $r<n$, by Corollary 2.3, we have $m(-1) \geqslant n-r-1$. If $r=n$, there is nothing to proof.

For Parts (b) and (c), we assume that $r<n$. The proof for the case $r=n$ is similar. By Corollary 2.3, we have

$$
\varphi\left(K_{n}, P_{r}^{-}\right)=(\lambda+1)^{n-r-1} \operatorname{det} D
$$

where

$$
D=\left[\begin{array}{cc}
\lambda I_{r}-A\left(K_{r}, P_{r}^{-}\right) & (r-n) J_{r \times 1} \\
-J_{1 \times r} & \lambda+1+r-n
\end{array}\right]
$$

Let

$$
\lambda I_{r}-A\left(K_{r}, P_{r}^{-}\right)=\left[\begin{array}{cccc}
\lambda & 1 & & -\mathbf{1} \\
1 & \ddots & \ddots & \\
& \ddots & \ddots & 1 \\
-\mathbf{1} & & 1 & \lambda
\end{array}\right]
$$

We apply finitely many elementary row and column operations on the matrix D to obtain the matrix $\left[\begin{array}{cc}A & B \\ \mathbf{0} & C\end{array}\right]$, where C is a tridiagonal matrix.
(b) First, suppose that $r \geqslant 7$. Consider the matrix D and add the last r columns to the first column. This leads to the following matrix,

$$
D_{1}=\left[\begin{array}{cccccc}
\lambda+3-n & 1 & & & & r-n \\
\lambda+5-n & \lambda & 1 & & \mathbf{- 1} & r-n \\
\vdots & 1 & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \\
\lambda+5-n & & \ddots & \ddots & 1 & r-n \\
\lambda+3-n & -\mathbf{1} & & 1 & \lambda & r-n \\
\lambda+1-n & & & & -1 & \lambda+1+r-n
\end{array}\right]
$$

Next, subtract the 2th row from all the lower rows except the last two rows and then subtract the first row from the r th row to obtain the
following matrix,
$D_{2}=\left[\begin{array}{ccccccccc}\lambda+3-n & 1 & -1 & -1 & \cdots & \cdots & \cdots & -1 & r-n \\ \lambda+5-n & \lambda & 1 & -1 & \cdots & \cdots & \cdots & -1 & r-n \\ 0 & -\lambda+1 & \lambda-1 & 2 & & & & & 0 \\ \vdots & -\lambda-1 & 0 & \lambda+1 & \ddots & & \mathbf{0} & & \vdots \\ \vdots & \vdots & -2 & 2 & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \vdots & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & -\lambda-1 & -2 & & 0 & \ddots & \ddots & 2 & \vdots \\ 0 & -2 & 0 & & & & 2 & \lambda+1 & 0 \\ \lambda+1-n & -1 & -1 & \cdots & \cdots & \cdots & \cdots & -1 & \lambda+1+r-n\end{array}\right]$.
Now, add the $(r-i)$ th column to the $(i+1)$ th column, $i=1, \ldots, \frac{r-3}{2}$. Next, subtract the i th row from the $(r+1-i)$ th row, for $i=3, \ldots, \frac{r-1}{2}$. Hence one can obtain the following matrix,

$$
D_{3}=\left[\begin{array}{cccc}
\lambda+3-n & X_{1} & -J_{1 \times \frac{r-1}{2}} & r-n \\
\lambda+5-n & X_{2} & -J_{1 \times \frac{r-1}{2}} & r-n \\
\mathbf{0}_{\frac{r-5}{2} \times 1} & Y_{\frac{r-5}{2} \times \frac{r-1}{2}} & \mathbf{0}_{\frac{r-5}{2} \times \frac{r-1}{2}} & \mathbf{0}_{\frac{r-5}{2} \times 1} \\
0 & X_{3} & X_{4} & 0 \\
\mathbf{0}_{\frac{r-1}{2} \times 1} & \mathbf{0}_{\frac{r-1}{2}} & \lambda I-T_{\frac{r-1}{2}} & \mathbf{0}_{\frac{r-1}{2} \times 1} \\
\lambda+1-n & X_{5} & -J_{1 \times \frac{r-1}{2}} & \lambda+1+r-n
\end{array}\right]
$$

where

$$
Y=\left[\begin{array}{ccccccc}
-\lambda+1 & \lambda-1 & 2 & & & & \\
-\lambda-1 & 0 & \lambda+1 & \ddots & & \mathbf{0} & \\
\vdots & -2 & 2 & \ddots & \ddots & & \\
\vdots & \vdots & & \ddots & \ddots & \ddots & \\
-\lambda-1 & -2 & \mathbf{0} & & 2 & \lambda+1 & 2
\end{array}\right]
$$

and

$$
\begin{gathered}
X_{1}=\left[\begin{array}{lllll}
0 & -2 & \cdots & -2 & -1
\end{array}\right]_{1 \times \frac{r-1}{2}} \\
X_{2}=\left[\begin{array}{llllll}
\lambda-1 & 0 & -2 & \cdots & -2 & -1
\end{array}\right]_{1 \times \frac{r-1}{2}} \\
\left.X_{3}=\left[\begin{array}{llllll}
-\lambda-1 & -2 & 0 & \cdots & 0 & 4
\end{array}\right]+1\right]_{1 \times \frac{r-1}{2}}, \\
X_{4}=\left[\begin{array}{llll}
2 & 0 & \cdots & 0
\end{array}\right]_{1 \times \frac{r-1}{2}} \\
X_{5}=\left[\begin{array}{llll}
-2 & \cdots & -2 & -1
\end{array}\right]_{1 \times \frac{r-1}{2}}
\end{gathered}
$$

Also, $T_{\frac{r-1}{2}}=T_{\frac{r-1}{2}}(-1,-2,-2)$, see Theorem 2.1. Note that if $r=$ 7, then $X_{2}=\left[\begin{array}{lll}\lambda-1 & 0 & -1\end{array}\right], X_{3}=\left[\begin{array}{lll}-\lambda-1 & 2 & \lambda+1\end{array}\right]$ and $Y=$ $\left[\begin{array}{lll}-\lambda+1 & \lambda-1 & 2\end{array}\right]$. If $r=9$, then we have $X_{3}=\left[\begin{array}{llll}-\lambda-1 & -2 & 4 & \lambda+1\end{array}\right]$. Now, apply the cyclic permutation $(1,2, \ldots, r+1)$ on the index of columns and rows of D_{3}. This leads to the following matrix,

$$
D_{4}=\left[\begin{array}{cccc}
\lambda+1+r-n & \lambda+1-n & X_{5} & -J_{1 \times \frac{r-1}{2}} \\
r-n & \lambda+3-n & X_{1} & -J_{1 \times \frac{r-1}{2}} \\
r-n & \lambda+5-n & X_{2} & -J_{1 \times \frac{r-1}{2}} \\
\mathbf{0}_{\frac{r-5}{2} \times 1} & \mathbf{0}_{\frac{r-5}{2} \times 1} & Y_{\frac{r-5}{2} \times \frac{r-1}{2}} & \mathbf{0}_{\frac{r-5}{2} \times \frac{r-1}{2}} \\
0 & 0 & X_{3} & X_{4} \\
\mathbf{0}_{\frac{r-1}{2} \times 1} & \mathbf{0}_{\frac{r-1}{2} \times 1} & \mathbf{0}_{\frac{r-1}{2}} & \lambda I-T_{\frac{r-1}{2}}
\end{array}\right] .
$$

Let D_{5} be the principle submatrix of D_{4} over the rows and columns $1,2, \ldots, \frac{r+3}{2}$. Therefore the following holds:

$$
\varphi\left(K_{n}, P_{r}^{-}\right)=(\lambda+1)^{n-r-1} \operatorname{det}\left(\lambda I-T_{\frac{r-1}{2}}\right) \operatorname{det} D_{5}
$$

If $r<7$, then we apply elementary row and column operations on the matrix D as we did above, one can see that

$$
\varphi\left(K_{n}, P_{5}^{-}\right)=(\lambda+1)^{n-6} \operatorname{det}\left(\lambda I-T_{2}\right) \operatorname{det}\left[\begin{array}{cccc}
\lambda+6-n & \lambda+1-n & -2 & -1 \tag{1}\\
5-n & \lambda+3-n & 0 & -1 \\
5-n & \lambda+5-n & \lambda-1 & 1 \\
0 & 0 & 3-\lambda & \lambda-1
\end{array}\right]
$$

and

$$
\varphi\left(K_{n}, P_{3}^{-}\right)=(\lambda+1)^{n-4}(\lambda+1) \operatorname{det}\left[\begin{array}{ccc}
\lambda+4-n & \lambda+1-n & -1 \tag{2}\\
3-n & \lambda+3-n & 1 \\
3-n & \lambda+5-n & \lambda
\end{array}\right]
$$

where $T_{2}=T_{2}(-1,-2,-2)$. So, by Theorem 2.1, the proof of Part (b) is complete.
(c) By a similar argument as we did in Part (b), one can obtain the following matrix which is equivalent to the matrix D, when $r \geqslant 6$.

$$
D_{4}^{\prime}=\left[\begin{array}{cccc}
\lambda+1+r-n & \lambda+1-n & -2 J_{1 \times \frac{r-2}{2}} & -J_{1 \times \frac{r}{2}} \\
r-n & \lambda+3-n & X_{1}^{\prime} & -J_{1 \times \frac{r}{2}} \\
r-n & \lambda+5-n & X_{2}^{\prime} & -J_{1 \times \frac{r}{2}} \\
\mathbf{0}_{\frac{r-6}{2} \times 1} & \mathbf{0}_{\frac{r-6}{2} \times 1} & Y_{\frac{r-6}{2} \times \frac{r-2}{2}} & \mathbf{0}_{\frac{r-6}{2} \times \frac{r}{2}} \\
0 & 0 & X_{3}^{\prime} & X_{4}^{\prime} \\
\mathbf{0}_{\frac{r}{2} \times 1} & \mathbf{0}_{\frac{r}{2} \times 1} & \mathbf{0}_{\frac{r}{2} \times \frac{r-2}{2}} & \lambda I-A_{\frac{r}{2}}
\end{array}\right],
$$

where $A_{\frac{r}{2}}=A_{\frac{r}{2}}(-1,-2,-2)$, see Theorem 2.2. Also

$$
\begin{gathered}
X_{1}^{\prime}=\left[\begin{array}{lllll}
0 & -2 & \cdots & -2
\end{array}\right]_{1 \times \frac{r-2}{2}} \\
X_{2}^{\prime}=\left[\begin{array}{llllll}
\lambda-1 & 0 & -2 & \cdots & -2
\end{array}\right]_{1 \times \frac{r-2}{2}} \\
X_{3}^{\prime}=\left[\begin{array}{llllll}
-\lambda-1 & -2 & 0 & \cdots & 0 & 2
\end{array} \lambda+3\right]_{1 \times \frac{r-2}{2}} \\
X_{4}^{\prime}=\left[\begin{array}{lllll}
2 & 0 & \cdots & 0
\end{array}\right]_{1 \times \frac{r}{2}}
\end{gathered}
$$

Note that if $r=6$, then we have $X_{2}^{\prime}=\left[\begin{array}{ll}\lambda-1 & 0\end{array}\right], X_{3}^{\prime}=\left[\begin{array}{ll}1-\lambda & \lambda+1\end{array}\right]$ and also the matrices $\mathbf{0}_{\frac{r-6}{2} \times 1}, Y_{\frac{r-6}{2} \times \frac{r-2}{2}}, \mathbf{0}_{\frac{r-6}{2} \times \frac{r}{2}}$ are removed. If $r=8$, then $X_{3}^{\prime}=\left[\begin{array}{lll}-\lambda-1 & 0 & \lambda+3\end{array}\right]$, and if $r=10$, then $X_{3}^{\prime}=\left[\begin{array}{llll}-\lambda-1 & -2 & 2 & \lambda+3\end{array}\right]$. Let D_{5}^{\prime} be the principle submatrix of D_{4}^{\prime} over the rows and columns $1,2, \ldots, \frac{r+2}{2}$. Then the following holds:

$$
\varphi\left(K_{n}, P_{r}^{-}\right)=(\lambda+1)^{n-r-1} \operatorname{det}\left(\lambda I-A_{\frac{r}{2}}\right) \operatorname{det} D_{5}^{\prime} .
$$

Similarly, if $r<6$, then one can see that
$\varphi\left(K_{n}, P_{4}^{-}\right)=(\lambda+1)^{n-5} \operatorname{det}\left(\lambda I-A_{2}\right) \operatorname{det}\left[\begin{array}{ccc}\lambda+5-n & \lambda+1-n & -2 \\ 4-n & \lambda+3-n & 0 \\ 4-n & \lambda+5-n & \lambda+1\end{array}\right]$,
and

$$
\varphi\left(K_{n}, P_{2}^{-}\right)=(\lambda+1)^{n-3}(\lambda-1) \operatorname{det}\left[\begin{array}{cc}
\lambda+3-n & \lambda+1-n \tag{4}\\
2-n & \lambda+3-n
\end{array}\right]
$$

where $A_{2}=A_{2}(-1,-2,-2)$. Hence by Theorem 2.2 , the proof of Part (c) is complete.

By a similar argument as we did in the proof of Theorem 2.4, we can find $n-1+\sum_{i=1}^{m}\left(\left\lfloor\frac{r_{i}}{2}\right\rfloor-r_{i}\right)$ eigenvalues of $\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$.
Corollary 2.5. Let $\Gamma=\left(K_{n}, \bigcup_{i=1}^{m} P_{r_{i}}^{-}\right)$be a signed complete graph. Then the following statements hold:
(a) -1 is an eigenvalue of Γ with the multiplicity at least $n-1-\Sigma_{i=1}^{m} r_{i}$.
(b) If r_{i} is odd $(1 \leqslant i \leqslant m)$, then $\frac{r_{i}-1}{2}$ eigenvalues of Γ are

$$
\lambda_{k}=-1-4 \cos \frac{2 k \pi}{r_{i}+1}, \text { for } k=1, \ldots, \frac{r_{i}-1}{2}
$$

(c) If r_{i} is even $(1 \leqslant i \leqslant m)$, then $\frac{r_{i}}{2}$ eigenvalues of Γ are

$$
\lambda_{k}=-1+4 \cos \frac{(2 k-1) \pi}{r_{i}+1}, \text { for } k=1, \ldots, \frac{r_{i}}{2}
$$

In the sequel we would like to determine $\varphi\left(K_{n}, P_{r}^{-}\right)$, for $2 \leqslant r \leqslant 8$. By Equations (1), (2), (3), (4) and what we did in the proof of Theorem 2.4, we have the following result.

Corollary 2.6. The characteristic polynomials of signed complete graphs $\left(K_{n}, P_{r}^{-}\right)$, for $r=2,3,4,5,6,7,8$ are as follows:

$$
\begin{gathered}
\varphi\left(K_{n}, P_{2}^{-}\right)=(\lambda+1)^{n-3}(\lambda-1)\left(\lambda^{2}+(4-n) \lambda+7-3 n\right) \\
\varphi\left(K_{n}, P_{3}^{-}\right)=(\lambda+1)^{n-3}\left(\lambda^{3}+(3-n) \lambda^{2}+(3-2 n) \lambda+7 n-23\right)
\end{gathered}
$$

$$
\begin{aligned}
& \varphi\left(K_{n}, P_{4}^{-}\right)=(\lambda+1)^{n-5}\left(\lambda^{2}-5\right)\left(\lambda^{3}+(5-n) \lambda^{2}+(15-4 n) \lambda+n-5\right) \\
& \varphi\left(K_{n}, P_{5}^{-}\right)=(\lambda+1)^{n-5}(\lambda-1)(\lambda+3)\left(\lambda^{3}+(3-n) \lambda^{2}+(7-2 n) \lambda+11 n-51\right), \\
& \varphi\left(K_{n}, P_{6}^{-}\right)=(\lambda+1)^{n-7} \prod_{k=1}^{3}\left(\lambda-\lambda_{k}\right)\left(\lambda^{4}+(6-n) \lambda^{3}+(24-5 n) \lambda^{2}+(n-6) \lambda+13 n-73\right), \\
& \text { where } \lambda_{k}=-1+4 \cos \frac{(2 k-1) \pi}{7}
\end{aligned}
$$

$$
\varphi\left(K_{n}, P_{7}^{-}\right)=(\lambda+1)^{n-8} \prod_{k=1}^{3}\left(\lambda-\lambda_{k}\right) f(\lambda)
$$

where $\lambda_{k}=-1-4 \cos \frac{2 k \pi}{8}$ and

$$
\begin{gathered}
f(\lambda)=\lambda^{5}+(5-n) \lambda^{4}+(18-4 n) \lambda^{3}+(10 n-54) \lambda^{2}+(28 n-179) \lambda+113-17 n \\
\varphi\left(K_{n}, P_{8}^{-}\right)=(\lambda+1)^{n-9} \prod_{k=1}^{4}\left(\lambda-\lambda_{k}\right) g(\lambda)
\end{gathered}
$$

where $\lambda_{k}=-1+4 \cos \frac{(2 k-1) \pi}{9}$ and

$$
g(\lambda)=\lambda^{5}+(7-n) \lambda^{4}+(34-6 n) \lambda^{3}+6 \lambda^{2}+(30 n-211) \lambda+9 n-61
$$

Acknowledgements

The authors would like to express their deep gratitude to the referees for their careful reading.

References

[1] S. Akbari, F. Belardo, F. Heydari, M. Maghasedi, and M. Souri, On the largest eigenvalue of signed unicyclic graphs, Linear Algebra and its Applications, 581 (2019), 145-162.
[2] S. Akbari, S. Dalvandi, F. Heydari, and M. Maghasedi, On the eigenvalues of signed complete graphs, Linear and Multilinear Algebra, 67 (2019), 433441.
[3] S. Akbari, S. Dalvandi, F. Heydari, and M. Maghasedi, On the multiplicity of -1 and 1 in signed complete graphs, Utilitas Mathematica, to appear.
[4] F. Belardo and P. Petecki, Spectral characterizations of signed lollipop graphs, Linear Algebra and its Applications, 480 (2015), 144-167.
[5] F. Harary, On the notion of balance in a signed graph, Michigan Mathematical Journal, 2 (1953), 143-146.
[6] F. Heider, Attitude and cognitive organization, Psychologia, 21 (1946), 107-112.
[7] D. Kulkarni, D. Schmidt, and S. K. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Algebra and its Applications, 297 (1999), 63-80.
[8] W. C. Yueh, Eigenvalues of several tridiagonal matrices, Applied Mathematics E-Notes, 5 (2005), 66-74.

Soudabeh Dalvandi

Ph.D Candidate of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Karaj, Iran
E-mail: s.dalvandi@kiau.ac.ir

Farideh Heydari

Assistant Professor of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Karaj, Iran
E-mail: f-heydari@kiau.ac.ir

Mohammad Maghasedi

Assistant Professor of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Karaj, Iran
E-mail: maghasedi@kiau.ac.ir

[^0]: Received: June 2019; Accepted: December 2019

 * Corresponding author

