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Abstract. Let Γ = (G, σ) be a signed graph, whereG is the underlying
simple graph and σ : E(G) −→ {−,+} is the sign function on the
edges of G. The adjacency matrix of a signed graph has −1 or +1 for
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eigenvalues of Γ, where x denotes the largest integer less than or equal
to x.
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complete graph of order n. We denote the path of order r, by Pr. The
matrix Jr×s is all-one matrix of size r × s.
A signed graph Γ is an ordered pair (G, σ), where G = (V (G), E(G)) is a
simple graph (called the underlying graph), and let σ : E(G) −→ {−,+}
be a mapping defined on the edge set of G. Signed graphs were intro-
duced by Harary [5] in connection with the study of theory of social bal-
ance in social psychology proposed by Heider [6]. The adjacency matrix
of a signed graph Γ = (G, σ) is a square matrix A(Γ) = A(G, σ) = (aσij),
where aσij = σ(vivj)aij and A(G) = (aij) is the adjacency matrix of
G. The characteristic polynomial of a matrix A is denoted by ϕ(A). If
Γ is a signed graph, ϕ(Γ) denotes ϕ(A(Γ)). The eigenvalues of the ad-
jacency matrix of a graph are often referred to as the eigenvalues of the
graph. The spectrum of a signed graph Γ is the set of all eigenvalues of
Γ along with their multiplicities. Let m(λ) denote the multiplicity of
the eigenvalue λ. The spectrum of graphs, in particular, signed graphs
has been studied extensively by many authors, for instance see [1, 3, 4].

Let (Kn,H
−) be a signed complete graph whose negative edges induce a

subgraph H. In this paper, by a constructive method, we obtain n− r−
1+ r2 eigenvalues of (Kn, P

−
r ), where x denotes the largest integer less

than or equal to x. Next, we determine the characteristic polynomial of
(Kn, P

−
r ), for 2  r  8. Let (Kn,

m
i=1 P

−
ri ) be a signed complete graph

whose negative edges induce a subgraph which is the disjoint union of m
distinct paths. In the sequel, we find n− 1+Σmi=1

�
 ri2 − ri


eigenvalues

of (Kn,
m
i=1 P

−
ri ).

2. Eigenvalues of (Kn,
m
i=1 P−

ri
)

In this section, we study the spectrum of (Kn,
m
i=1 P

−
ri ). Before stating

the main theorem, we need the following results.
Theorem 2.1. [7, Theorem 2.2] Let Tn(a, b, c) be an n × n tridiagonal
matrix defined by

Tn(a, b, c) =





a c 0

b
. . . . . .
. . . . . . c

0 b a




,
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where a, b, c ∈ R. Then the eigenvalues of Tn(a, b, c) are

λk = a− 2
√
bc cos

kπ

n+ 1
, for k = 1, . . . , n.

Theorem 2.2. [8, Theorem 2] Let An(a, b, c) be an n× n special tridi-
agonal matrix defined by

An(a, b, c) =





√
bc+ a c

b a
. . . 0

. . . . . . . . .
. . . . . . . . .

0
. . . a c

b a





,

where a, b, c ∈ R. Then the eigenvalues of An(a, b, c) are

λk = a+ 2
√
bc cos

(2k − 1)π
2n+ 1

, for k = 1, . . . , n.

Corollary 2.3. [2, Corollary 1] Let (Kn,H
−) be a signed complete

graph whose negative edges induce a subgraph H of order k < n. Then

ϕ(Kn,H
−) = (λ+ 1)n−k−1ϕ








A(Kk,H

−) (n− k)Jk×1

J1×k n− k − 1







 ,

and so m(−1)  n− k − 1.

Now, we prove the main results.

Theorem 2.4. Let Γ = (Kn, P
−
r ) be a signed complete graph. Then the

following statements hold:

(a) −1 is an eigenvalue of Γ with the multiplicity at least n− r − 1.

(b) If r is odd, then r−1
2 eigenvalues of Γ are

λk = −1− 4 cos
2kπ
r + 1

, for k = 1, . . . ,
r − 1
2
.
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(c) If r is even, then r
2 eigenvalues of Γ are

λk = −1 + 4 cos
(2k − 1)π
r + 1

, for k = 1, . . . ,
r

2
.

Proof. (a) If r < n, by Corollary 2.3, we have m(−1)  n − r − 1. If
r = n, there is nothing to proof.

For Parts (b) and (c), we assume that r < n. The proof for the case
r = n is similar. By Corollary 2.3, we have

ϕ(Kn, P
−
r ) = (λ+ 1)n−r−1 detD,

where

D =

λIr −A(Kr, P

−
r ) (r − n)Jr×1

−J1×r λ+ 1 + r − n


.

Let

λIr −A(Kr, P
−
r ) =





λ 1 −1

1
. . . . . .
. . . . . . 1

−1 1 λ




.

We apply finitely many elementary row and column operations on the

matrix D to obtain the matrix

A B
0 C


, where C is a tridiagonal matrix.

(b) First, suppose that r  7. Consider the matrix D and add the last
r columns to the first column. This leads to the following matrix,

D1 =





λ+ 3− n 1 r − n
λ+ 5− n λ 1 −1 r − n

... 1
. . . . . .

...
...

. . . . . . . . .
...

λ+ 5− n . . . . . . 1 r − n
λ+ 3− n −1 1 λ r − n
λ+ 1− n −1 λ+ 1 + r − n





.

Next, subtract the 2th row from all the lower rows except the last two
rows and then subtract the first row from the rth row to obtain the
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following matrix,

D2 =





λ+ 3− n 1 −1 −1 · · · · · · · · · −1 r − n
λ+ 5− n λ 1 −1 · · · · · · · · · −1 r − n

0 −λ+ 1 λ− 1 2 0
... −λ− 1 0 λ+ 1

. . . 0
...

...
... −2 2

. . . . . .
...

...
...

...
. . . . . . . . .

...
... −λ− 1 −2 0

. . . . . . 2
...

0 −2 0 2 λ+ 1 0
λ+ 1− n −1 −1 · · · · · · · · · · · · −1 λ+ 1 + r − n





.

Now, add the (r−i)th column to the (i+1)th column, i = 1, . . . , r−32 . Next,
subtract the ith row from the (r+1− i)th row, for i = 3, . . . , r−12 . Hence
one can obtain the following matrix,

D3 =





λ+ 3− n X1 −J1× r−1
2

r − n
λ+ 5− n X2 −J1× r−1

2
r − n

0 r−5
2
×1 Y r−5

2
× r−1

2
0 r−5

2
× r−1

2
0 r−5

2
×1

0 X3 X4 0

0 r−1
2
×1 0 r−1

2
λI − T r−1

2
0 r−1

2
×1

λ+ 1− n X5 −J1× r−1
2

λ+ 1 + r − n





,

where

Y =





−λ+ 1 λ− 1 2

−λ− 1 0 λ+ 1
. . . 0

... −2 2
. . . . . .

...
...

. . . . . . . . .
−λ− 1 −2 0 2 λ+ 1 2





,
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r − n
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×1 Y r−5
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× r−1

2
0 r−5

2
× r−1

2
0 r−5

2
×1

0 X3 X4 0

0 r−1
2
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2
λI − T r−1

2
0 r−1

2
×1

λ+ 1− n X5 −J1× r−1
2

λ+ 1 + r − n





,

where

Y =





−λ+ 1 λ− 1 2
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. . . . . .
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and
X1 =


0 −2 · · · −2 −1


1× r−1

2

,

X2 =

λ− 1 0 −2 · · · −2 −1


1× r−1

2

,

X3 =

−λ− 1 −2 0 · · · 0 4 λ+ 1


1× r−1

2

,

X4 =

2 0 · · · 0


1× r−1

2

,

X5 =

−2 · · · −2 −1


1× r−1

2

.

Also, T r−1
2

= T r−1
2
(−1,−2,−2), see Theorem 2.1. Note that if r =

7, then X2 =

λ− 1 0 −1


, X3 =


−λ− 1 2 λ+ 1


and Y =

−λ+ 1 λ− 1 2

. If r = 9, then we haveX3 =


−λ− 1 −2 4 λ+ 1


.

Now, apply the cyclic permutation (1, 2, . . . , r + 1) on the index of
columns and rows of D3. This leads to the following matrix,

D4 =





λ+ 1 + r − n λ+ 1− n X5 −J1× r−1
2

r − n λ+ 3− n X1 −J1× r−1
2

r − n λ+ 5− n X2 −J1× r−1
2

0 r−5
2
×1 0 r−5

2
×1 Y r−5

2
× r−1

2
0 r−5

2
× r−1

2

0 0 X3 X4

0 r−1
2
×1 0 r−1

2
×1 0 r−1

2
λI − T r−1

2





.

Let D5 be the principle submatrix of D4 over the rows and columns
1, 2, . . . , r+32 . Therefore the following holds:

ϕ(Kn, P
−
r ) = (λ+ 1)n−r−1 det(λI − T r−1

2
) detD5.

If r < 7, then we apply elementary row and column operations on the
matrix D as we did above, one can see that

ϕ(Kn, P
−
5 ) = (λ+1)n−6 det(λI−T2) det





λ+ 6− n λ+ 1− n −2 −1
5− n λ+ 3− n 0 −1
5− n λ+ 5− n λ− 1 1
0 0 3− λ λ− 1



 ,

(1)
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and

ϕ(Kn, P
−
3 ) = (λ+ 1)n−4(λ+ 1) det




λ+ 4− n λ+ 1− n −1
3− n λ+ 3− n 1
3− n λ+ 5− n λ



 , (2)

where T2 = T2(−1,−2,−2). So, by Theorem 2.1, the proof of Part (b)
is complete.

(c) By a similar argument as we did in Part (b), one can obtain the
following matrix which is equivalent to the matrix D, when r  6.

D4 =





λ+ 1 + r − n λ+ 1− n −2J1× r−2
2

−J1× r
2

r − n λ+ 3− n X 1 −J1× r
2

r − n λ+ 5− n X 2 −J1× r
2

0 r−6
2
×1 0 r−6

2
×1 Y r−6

2
× r−2

2
0 r−6

2
× r
2

0 0 X 3 X 4

0 r
2
×1 0 r

2
×1 0 r

2
× r−2

2
λI −A r

2





,

where A r
2
= A r

2
(−1,−2,−2), see Theorem 2.2. Also

X 1 =

0 −2 · · · −2


1× r−2

2

,

X 2 =

λ− 1 0 −2 · · · −2


1× r−2

2

,

X 3 =

−λ− 1 −2 0 · · · 0 2 λ+ 3


1× r−2

2

,

X 4 =

2 0 · · · 0


1× r

2

.

Note that if r = 6, then we have X 2 =

λ− 1 0


, X 3 =


1− λ λ+ 1



and also the matrices 0 r−6
2
×1, Y r−6

2
× r−2

2
, 0 r−6

2
× r
2
are removed. If r = 8,

thenX 3 =

−λ− 1 0 λ+ 3


, and if r = 10, thenX 3 =


−λ− 1 −2 2 λ+ 3


.

Let D5 be the principle submatrix of D4 over the rows and columns
1, 2, . . . , r+22 . Then the following holds:

ϕ(Kn, P
−
r ) = (λ+ 1)n−r−1 det(λI −A r

2
) detD5.
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Similarly, if r < 6, then one can see that

ϕ(Kn, P
−
4 ) = (λ+1)n−5 det(λI−A2) det




λ+ 5− n λ+ 1− n −2
4− n λ+ 3− n 0
4− n λ+ 5− n λ+ 1



 ,

(3)
and

ϕ(Kn, P
−
2 ) = (λ+ 1)n−3(λ− 1) det


λ+ 3− n λ+ 1− n
2− n λ+ 3− n


, (4)

where A2 = A2(−1,−2,−2). Hence by Theorem 2.2, the proof of Part
(c) is complete. 
By a similar argument as we did in the proof of Theorem 2.4, we can
find n− 1 + Σmi=1

�
 ri2  − ri


eigenvalues of (Kn,

m
i=1 P

−
ri ).

Corollary 2.5. Let Γ = (Kn,
m
i=1 P

−
ri ) be a signed complete graph. Then

the following statements hold:

(a) −1 is an eigenvalue of Γ with the multiplicity at least n− 1− Σmi=1ri.

(b) If ri is odd (1  i  m), then ri−1
2 eigenvalues of Γ are

λk = −1− 4 cos
2kπ
ri + 1

, for k = 1, . . . ,
ri − 1
2
.

(c) If ri is even (1  i  m), then ri
2 eigenvalues of Γ are

λk = −1 + 4 cos
(2k − 1)π
ri + 1

, for k = 1, . . . ,
ri
2
.

In the sequel we would like to determine ϕ(Kn, P
−
r ), for 2  r  8. By

Equations (1), (2), (3), (4) and what we did in the proof of Theorem
2.4, we have the following result.

Corollary 2.6. The characteristic polynomials of signed complete graphs
(Kn, P

−
r ), for r = 2, 3, 4, 5, 6, 7, 8 are as follows:

ϕ(Kn, P
−
2 ) = (λ+ 1)n−3(λ− 1)


λ2 + (4− n)λ+ 7− 3n


,

ϕ(Kn, P
−
3 ) = (λ+ 1)n−3


λ3 + (3− n)λ2 + (3− 2n)λ+ 7n− 23


,
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ϕ(Kn, P
−
4 ) = (λ+ 1)n−5(λ2 − 5)


λ3 + (5− n)λ2 + (15− 4n)λ+ n− 5


,

ϕ(Kn, P
−
5 ) = (λ+1)n−5(λ−1)(λ+3)


λ3+(3−n)λ2+(7−2n)λ+11n−51


,

ϕ(Kn, P
−
6 ) = (λ+1)n−7

3

k=1

(λ−λk)

λ4+(6−n)λ3+(24−5n)λ2+(n−6)λ+13n−73


,

where λk = −1 + 4 cos
(2k − 1)π

7
.

ϕ(Kn, P
−
7 ) = (λ+ 1)n−8

3

k=1

(λ− λk)f(λ),

where λk = −1− 4 cos 2kπ8 and
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