Journal of Mathematical Extension

Vol. XX, No. XX, (2014), pp-pp (Will be inserted by layout editor)

ISSN: 1735-8299

URL: http://www.ijmex.com

Norm estimates of the pre—schwarzian derivatives for two certain subclasses of starlike functions

Hesam Mahzoon

Department of Mathematics, Islamic Azad University, West Tehran Branch, Tehran, Iran

Abstract. Let $\alpha \in [\pi/2, \pi)$ and $\gamma_1, \gamma_2 \in (0, 1]$. For a normalized analytic functions f in the open unit disc Δ we consider

$$\mathcal{M}(\alpha) := \left\{ f \in \mathcal{A} : 1 + \frac{\alpha - \pi}{2 \sin \alpha} < \operatorname{Re} \left\{ \frac{z f'(z)}{f(z)} \right\} < 1 + \frac{\alpha}{2 \sin \alpha}, \quad z \in \Delta \right\},\,$$

and

$$\mathcal{S}_t^*(\gamma_1,\gamma_2) := \left\{ f \in \mathcal{A} : -\frac{\pi\gamma_1}{2} < \arg\left\{\frac{zf'(z)}{f(z)}\right\} < \frac{\pi\gamma_2}{2}, \quad z \in \Delta \right\}.$$

In the present paper, we establish a sharp norm estimate of the pre–Schwarzian derivative for functions f belonging two these subclasses of analytic and normalized functions.

AMS Subject Classification: 30C45

Keywords and Phrases: Univalent, starlike, locally univalent, sub-ordination, pre-Schwarzian norm.

1 Introduction

Let \mathcal{H} be the class of functions f analytic in the open unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{A} be a subclass of \mathcal{H} that its members are normalized

Received: XXXX; Accepted: XXXX (Will be inserted by editor)

by the condition f(0) = 0 = f'(0) - 1. Therefore each $f \in \mathcal{A}$ has the following form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in \Delta).$$

The subclass of all functions in \mathcal{A} which are univalent (one–to–one) in Δ is denoted by \mathcal{U} .

Recently, Kargar *et al.* (see [7]) introduced and studied the class $\mathcal{M}(\alpha)$ as follows:

$$\mathcal{M}(\alpha) := \left\{ f \in \mathcal{A} : 1 + \frac{\alpha - \pi}{2 \sin \alpha} < \operatorname{Re} \left\{ \frac{z f'(z)}{f(z)} \right\} < 1 + \frac{\alpha}{2 \sin \alpha} \right\} \quad (z \in \Delta),$$

where $\alpha \in [\pi/2, \pi)$. The class $\mathcal{M}(\alpha)$ is a subclass of the starlike functions of order γ where $\gamma \in [0.2146, 0.5)$, see [12]. We recall that a function $f \in \mathcal{A}$ is starlike of order γ (0 $\leq \gamma < 1$) if, and only if,

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma \quad (z \in \Delta).$$

The class of the starlike functions of order γ in Δ is denoted by $\mathcal{S}^*(\gamma)$. It is known that $\mathcal{S}^*(\gamma) \subset \mathcal{U}$ for each $\gamma \in [0,1)$. According to the above we have $\mathcal{M}(\alpha) \subset \mathcal{U}$ where $\pi/2 \leq \alpha < \pi$. The class of starlike functions is denoted by $\mathcal{S}^* \equiv \mathcal{S}^*(0)$. Also, we say that a function $f \in \mathcal{A}$ is strongly starlike of order β , where $0 < \beta \leq 1$ if, and only if,

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi\beta}{2} \quad (z \in \Delta).$$

The class of strongly starlike functions of order β is denoted by $\mathcal{SS}^*(\beta)$. We note that every strongly starlike function f of order $\beta \in (0,1)$ is bounded, see [3].

Another class that we are interested to study in this paper is the class $\mathcal{S}_t^*(\gamma_1, \gamma_2)$. We say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{S}_t^*(\gamma_1, \gamma_2)$, if f satisfies the following two–sided inequality

$$-\frac{\pi\gamma_1}{2} < \arg\left\{\frac{zf'(z)}{f(z)}\right\} < \frac{\pi\gamma_2}{2} \quad (z \in \Delta),$$

where $0 < \gamma_1, \gamma_2 \le 1$. The class $\mathcal{S}_t^*(\gamma_1, \gamma_2)$ was introduced by Takahashi and Nunokawa (see [18]). It is clear that $\mathcal{S}_t^*(\gamma_1, \gamma_2) \subset \mathcal{S}^*$ and that $\mathcal{S}_t^*(\gamma_1, \gamma_2)$ is a subclass of the class of strongly starlike functions of order $\beta = \max\{\gamma_1, \gamma_2\}$, i.e. $\mathcal{S}_t^*(\gamma_1, \gamma_2) \subset \mathcal{S}^*(\beta, \beta) \equiv \mathcal{S}\mathcal{S}^*(\beta)$.

Now let $\mathcal{L}\mathcal{U}$ denote the subclass of \mathcal{H} consisting of all locally univalent functions, namely, $\mathcal{L}\mathcal{U} := \{ f \in \mathcal{H} : f'(z) \neq 0, z \in \Delta \}$. For a $f \in \mathcal{L}\mathcal{U}$ the pre–Schwarzian and Schwarzian derivatives of f are defined as follows

$$T_f(z) := \frac{f''(z)}{f'(z)}$$
 and $S_f(z) := T'_f(z) - \frac{1}{2}T_f^2(z)$,

respectively. We note that the quantity T_f (resp. S_f) is analytic on Δ precisely when f is analytic (resp. meromorphic) and locally univalent on Δ . Since $\mathcal{L}\mathcal{U}$ is a vector space over \mathbb{C} (see [6]), thus we can define the norm of $f \in \mathcal{L}\mathcal{U}$ by

$$||f|| = \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right|.$$

This norm has significance in the theory of Teichmüller spaces, see [1]. It is known that $||f|| < \infty$ if and only if f is uniformly locally univalent. This means that there exists a constant $\varepsilon := \varepsilon(f) > 0$ such that f is univalent in each disk

$$\left\{ z \in \mathbb{C} : \left| \frac{z - \xi}{1 - \overline{\xi}z} \right| < \varepsilon, \quad |\xi| < 1 \right\},\,$$

see for example [19]. On the other hand, by the norm ||f||, we can give univalence criteria for a non–constant meromorphic function f on Δ . Indeed, if $||f|| \le 1$, then f is univalent in Δ and conversely, if f univalent in Δ , then $||f|| \le 6$ and the equality is attained for the Koebe function and its rotation. In fact, both of these bounds are sharp, see [2]. Also, if f is starlike of order $\gamma \in [0,1)$, then we have the sharp estimate $||f|| \le 6 - 4\gamma$ (see e.g. [20]). For more details on the geometric and analytic properties of the norm ||f|| one can refer to [10]. Moreover, many authors have given norm estimates for classical subclasses of univalent functions, see for instance [4, 9, 11, 13, 14, 15, 16, 17, 20].

Let f and g belong to the class \mathcal{H} . We say that a function f is subordinate to g, written as

$$f(z) \prec g(z)$$
 or $f \prec g$,

if there exists a Schwarz function $\phi:\Delta\to\Delta$ with the following properties

$$\phi(0) = 0$$
 and $|\phi(z)| < 1$ $(z \in \Delta)$,

such that $f(z) = g(\phi(z))$ for all $z \in \Delta$. In particular, if $g \in \mathcal{U}$, then we have the following geometric equivalence relation

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$$
 and $f(\Delta) \subset g(\Delta)$.

We need the following lemmas.

Lemma 1.1. (Kargar et al. [7, Lemma 1.1]) Let $f(z) \in \mathcal{A}$ and $\alpha \in [\pi/2, \pi)$. Then $f \in \mathcal{M}(\alpha)$ if, and only if,

$$\left(\frac{zf'(z)}{f(z)}-1\right) \prec \mathcal{B}_{\alpha}(z) \quad (z \in \Delta),$$

where

4

$$\mathcal{B}_{\alpha}(z) := \frac{1}{2i \sin \alpha} \log \left(\frac{1 + ze^{i\alpha}}{1 + ze^{-i\alpha}} \right) \quad (z \in \Delta). \tag{1}$$

We note that

$$\mathcal{B}_{\alpha}(\{z:z\in\Delta\}) = \left\{\zeta\in\mathbb{C}: \frac{\alpha-\pi}{2\sin\alpha} < \operatorname{Re}\left\{\zeta\right\} < \frac{\alpha}{2\sin\alpha}, \quad \frac{\pi}{2} \le \alpha < \pi\right\} =: \Omega_{\alpha}.$$

Lemma 1.2. (Kargar et al. [8, Lemma 1.1]) Let $f(z) \in \mathcal{A}$, $0 < \gamma_1, \gamma_2 \le 1$, $c = e^{\pi i \theta}$ and $\theta = \frac{\gamma_2 - \gamma_1}{\gamma_2 + \gamma_1}$. Then $f \in \mathcal{S}_t^*(\gamma_1, \gamma_2)$ if, and only if,

$$\frac{zf'(z)}{f(z)} \prec G(z) \quad (z \in \Delta),$$

where

$$G(z) := G(\gamma_1, \gamma_2, c)(z) = \left(\frac{1+cz}{1-z}\right)^{(\gamma_1+\gamma_2)/2} \quad (G(0) = 1, z \in \Delta). \quad (2)$$

We note that the function G is convex univalent in Δ and maps Δ onto $\Omega_{\gamma_1,\gamma_2}$ where

$$\Omega_{\gamma_1,\gamma_2}:=\left\{w\in\mathbb{C}:-\frac{\pi\gamma_1}{2}<\arg\{w\}<\frac{\pi\gamma_2}{2}\right\}.$$

In this paper, we give the best possible estimate of the norms of pre–Schwarzian derivatives for the functions f belonging to the subclasses $\mathcal{M}(\alpha)$ and $\mathcal{S}_t^*(\gamma_1, \gamma_2)$.

2 Main Results

The first result is continued in the following form.

Theorem 2.1. Let $\alpha \in [\pi/2, \pi)$. If a function $f \in \mathcal{A}$ belongs to the class $\mathcal{M}(\alpha)$, then

$$||f|| \le \frac{2}{\sin \alpha} \sqrt{\pi^2 + \sin^2 \alpha} - \frac{2\sin \alpha}{\sqrt{\pi^2 + \sin^2 \alpha}}.$$

The result is sharp.

Proof. Let $f \in \mathcal{A}$ belongs to the class $\mathcal{M}(\alpha)$ and $\alpha \in [\pi/2, \pi)$. Then by Lemma 1.1 we have

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{1}{2i\sin\alpha}\log\left(\frac{1+ze^{i\alpha}}{1+ze^{-i\alpha}}\right) \quad (z \in \Delta). \tag{3}$$

Now by definition of subordination, the relation (3) implies that there exists a Schwarz function $\phi: \Delta \to \Delta$ with $\phi(0) = 0$ and $|\phi(z)| < 1$ such that

$$\frac{zf'(z)}{f(z)} = 1 + \frac{1}{2i\sin\alpha}\log\left(\frac{1+\phi(z)e^{i\alpha}}{1+\phi(z)e^{-i\alpha}}\right) \quad (z \in \Delta).$$
 (4)

By taking the derivative of the logarithmic on both sides of (4), after simplification, we get

$$\frac{f''(z)}{f'(z)} = \frac{1}{2iz\sin\alpha} \log\left(\frac{1+\phi(z)e^{i\alpha}}{1+\phi(z)e^{-i\alpha}}\right) + \frac{2i\sin\alpha w'(z)}{\left(1+\phi(z)e^{i\alpha}\right)\left(1+\phi(z)e^{-i\alpha}\right)\left(2i\sin\alpha + \log\left(\frac{1+\phi(z)e^{i\alpha}}{1+\phi(z)e^{-i\alpha}}\right)\right)}.$$
(5)

It is known that for each Schwarz function ϕ we have $|\phi(z)| \leq |z|$ (cf. [5]). Also by the Schwarz–Pick lemma, we have the following inequality for a Schwarz function ϕ

$$|\phi'(z)| \le \frac{1 - |\phi(z)|^2}{1 - |z|^2} \quad (z \in \Delta).$$
 (6)

On the other hand if log is the principal branch of the complex logarithm, then we have

$$\log z = \ln|z| + i\arg z \quad (z \in \Delta \setminus \{0\}, -\pi < \arg z \le \pi). \tag{7}$$

Therefore, by the above equation (7), it is well–known that if $|z| \ge 1$, then

$$|\log z| \le \sqrt{|z-1|^2 + \pi^2},$$
 (8)

while for 0 < |z| < 1, we have

$$|\log z| \le \sqrt{\left|\frac{z-1}{z}\right|^2 + \pi^2}.\tag{9}$$

Now we consider the two following cases.

Case 1. Let

$$\left| \frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right| \ge 1.$$

Therefore, by (8) and the inequality $|\phi(z)| \leq |z|$ for all $z \in \Delta$, we obtain

$$\left|\log\left(\frac{1+\phi(z)e^{i\alpha}}{1+\phi(z)e^{-i\alpha}}\right)\right| \leq \sqrt{\left|\frac{1+\phi(z)e^{i\alpha}}{1+\phi(z)e^{-i\alpha}} - 1\right|^2 + \pi^2}$$

$$= \frac{\sqrt{4\sin^2\alpha|\phi(z)|^2 + \pi^2|1+\phi(z)e^{-i\alpha}|^2}}{|1+\phi(z)e^{-i\alpha}|}$$

$$\leq \frac{\sqrt{(\pi^2 + 4\sin^2\alpha)|\phi(z)|^2 + \pi^2(1+2|\phi(z)|)}}{1-|\phi(z)|}$$

$$\leq \frac{\sqrt{(\pi^2 + 4\sin^2\alpha)|z|^2 + \pi^2(1+2|z|)}}{1-|z|}. (10)$$

Using (6), (10) and the triangular inequality, (5) yields that

$$\left| \frac{f''(z)}{f'(z)} \right|$$

$$= \left| \frac{1}{2iz \sin \alpha} \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right|$$

$$+ \frac{2i \sin \alpha w'(z)}{(1 + \phi(z)e^{i\alpha}) (1 + \phi(z)e^{-i\alpha}) \left(2i \sin \alpha + \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right)} \right|$$

$$\leq \frac{1}{2|z|\sin \alpha} \left| \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right|$$

$$+ \frac{2\sin \alpha|\phi'(z)|}{(1 - |\phi(z)|)^2 \left(2\sin \alpha - \left| \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right| \right)}$$

$$\leq \frac{1}{2|z|\sin \alpha} \frac{\sqrt{(\pi^2 + 4\sin^2 \alpha)|z|^2 + \pi^2 (1 + 2|z|)}}{1 - |z|}$$

$$+ \frac{2\sin \alpha}{(1 - |\phi(z)|)^2 \left(2\sin \alpha - \frac{\sqrt{(\pi^2 + 4\sin^2 \alpha)|z|^2 + \pi^2 (1 + 2|z|)}}{1 - |z|} \right)} \cdot \frac{1 - |\phi(z)|^2}{1 - |z|^2}$$

$$\leq \frac{1}{2|z|\sin \alpha} \frac{\sqrt{(\pi^2 + 4\sin^2 \alpha)|z|^2 + \pi^2 (1 + 2|z|)}}{1 - |z|}$$

$$+ \frac{2\sin \alpha}{2(1 - |z|)\sin \alpha - \sqrt{(\pi^2 + 4\sin^2 \alpha)|z|^2 + \pi^2 (1 + 2|z|)}} \cdot \frac{1 + |z|}{1 - |z|^2}$$

Thus, we conclude that

8

$$||f|| = \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right|$$

$$\leq \sup_{z \in \Delta} \left\{ \frac{1 + |z|}{2|z| \sin \alpha} \sqrt{(\pi^2 + 4\sin^2 \alpha) |z|^2 + \pi^2 (1 + 2|z|)} \right.$$

$$+ \frac{2(1 + |z|) \sin \alpha}{2(1 - |z|) \sin \alpha - \sqrt{(\pi^2 + 4\sin^2 \alpha) |z|^2 + \pi^2 (1 + 2|z|)}} \right\}$$

$$= \frac{2}{\sin \alpha} \sqrt{\pi^2 + \sin^2 \alpha} - \frac{2\sin \alpha}{\sqrt{\pi^2 + \sin^2 \alpha}}.$$

Case 2. Let

$$\left| \frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right| < 1.$$

Using (9) and simple calculation, we have

$$\begin{split} \left| \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right| &\leq \sqrt{ \left| \frac{\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} - 1}{\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}}} \right|^2 + \pi^2} \\ &= \frac{\sqrt{4 \sin^2 \alpha |\phi(z)|^2 + \pi^2 \left| 1 + \phi(z)e^{i\alpha} \right|^2}}{|1 + \phi(z)e^{i\alpha}|} \\ &\leq \frac{\sqrt{4 \sin^2 \alpha |\phi(z)|^2 + \pi^2 \left(1 + |\phi(z)| \right)^2}}{1 - |\phi(z)|} \\ &\leq \frac{\sqrt{\left(\pi^2 + 4 \sin^2 \alpha\right) |z|^2 + \pi^2 \left(1 + 2|z| \right)}}{1 - |z|} \end{split}$$

Therefore, in this case 2 we have the equal estimate for

$$\left| \log \left(\frac{1 + \phi(z)e^{i\alpha}}{1 + \phi(z)e^{-i\alpha}} \right) \right|,$$

too. Now, by the same argument, we get the desired result. Some calculations as above show that the result is sharp for the function

$$f_1(z) := z \exp\left\{ \int_0^z \frac{\mathcal{B}_{\alpha}(t)}{t} dt \right\} \quad (z \in \Delta)$$

= $z + z^2 + \frac{1}{2} (1 - \cos \alpha) z^3 + \frac{1}{18} (1 - 9\cos \alpha + 8\cos^2 \alpha) z^4 + \cdots,$

or one of its rotations, where \mathcal{B}_{α} is defined in (1) and $\alpha \in [\pi/2, \pi)$. This is the end of proof. \square

Corollary 2.2. As an application of Theorem 2.1 define

$$h(\alpha) := \frac{2}{\sin \alpha} \sqrt{\pi^2 + \sin^2 \alpha} - \frac{2\sin \alpha}{\sqrt{\pi^2 + \sin^2 \alpha}} \quad (\alpha \in [\pi/2, \pi)).$$

It is easy to see that $\lim_{\alpha\to\pi^-} h(\alpha) = \infty$. Also, it is a simple exercise that h is an increasing function on $[\pi/2, \pi)$ and thus we have

$$5.9871877... \approx h(\pi/2) \le h(\alpha) < \infty.$$

The above estimate means that if $f \in \mathcal{M}(\alpha)$, then it is uniformly locally univalent.

Now, we have the following.

Theorem 2.3. Let $\gamma_1 \in (0,1]$ and $\gamma_2 \in (0,1]$. If $f \in A$ belongs to the class $\mathcal{S}_t^*(\gamma_1, \gamma_2)$, then

$$||f|| \le 2(\gamma_1 + \gamma_2).$$

The result is sharp.

Proof. Let $\gamma_1 \in (0,1], \ \gamma_2 \in (0,1]$ and $f \in \mathcal{A}$ belongs to the class $\mathcal{S}_t^*(\gamma_1,\gamma_2)$. Then by Lemma 1.2 and by definition of subordination, there exists a Schwarz function $\phi: \Delta \to \Delta$ with $\phi(0) = 0$ and $|\phi(z)| < 1$ such that

$$\frac{zf'(z)}{f(z)} = \left(\frac{1+c\phi(z)}{1-\phi(z)}\right)^{\gamma} \quad (\gamma := (\gamma_1 + \gamma_2)/2), \tag{11}$$

where $c=e^{\pi i\theta}$ and $\theta=\frac{\gamma_2-\gamma_1}{\gamma_2+\gamma_1}$. If we take the derivative of logarithmic on both sides of (11), then we get

$$\frac{f''(z)}{f'(z)} = \frac{1}{z} \left[\left(\frac{1 + c\phi(z)}{1 - \phi(z)} \right)^{\gamma} - 1 \right] + \gamma \left(\frac{c\phi'(z)}{1 + c\phi(z)} + \frac{\phi'(z)}{1 - \phi(z)} \right).$$

By triangle inequality and (6) and since |c| = 1, we obtain

$$\left| \frac{f''(z)}{f'(z)} \right| \le \frac{1}{|z|} \left[\left(\frac{1 + |\phi(z)|}{1 - |\phi(z)|} \right)^{\gamma} + 1 \right] + 2\gamma \frac{1 + |\phi(z)|}{1 - |z|^2}. \tag{12}$$

So, using this inequality $|\phi(z)| \leq |z|$, the last inequality (12) yields that

$$\left| \frac{f''(z)}{f'(z)} \right| \le \frac{1}{|z|} \left[\left(\frac{1+|z|}{1-|z|} \right)^{\gamma} + 1 \right] + 2\gamma \frac{1+|z|}{1-|z|^2}. \tag{13}$$

Multiplying the last inequality (13) by $(1-|z|^2)$ gives us

$$||f|| = \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right|$$

$$\leq \sup_{z \in \Delta} \left\{ \frac{1 - |z|^2}{|z|} \left[\left(\frac{1 + |z|}{1 - |z|} \right)^{\gamma} + 1 \right] + 2\gamma (1 + |z|) \right\} = 4\gamma$$

and concluding the proof.

For the sharpness, consider the function

$$f_2(z) := z \exp\left\{ \int_0^z \frac{G(t) - 1}{t} dt \right\} = z + Az^2 + \dots \quad (z \in \Delta),$$
 (14)

where G is defined in (2). It is easy to see that $f_2 \in \mathcal{A}$ and

$$\frac{zf_2'(z)}{f_2(z)} = G(z) \prec G(z) \quad (z \in \Delta)$$

and thus we have $f_2 \in \mathcal{S}_t^*(\gamma_1, \gamma_2)$. With the same argument we get the desired result and thus the details will be omitted. Here the proof ends.

Corollary 2.4. Let $\gamma_1 \in (0,1]$, $\gamma_2 \in (0,1]$ and $f \in \mathcal{A}$ belongs to the class $\mathcal{S}_t^*(\gamma_1, \gamma_2)$. Since f is univalent in Δ and $2(\gamma_1 + \gamma_2) \leq 4$, thus by Theorem 2.3 we have

$$f \in \mathcal{S}_t^*(\gamma_1, \gamma_2) \Rightarrow ||f|| \le 4 \le 6.$$

This shows that the Becker and Pommerenke criterion is established [2].

Remark 2.5. It was proved in [8] that

$$\int_0^z \frac{G(t) - 1}{t} dt = \sum_{n=1}^\infty \frac{\lambda_n}{n} z^n,$$

is convex univalent in Δ where

$$\lambda_n := \lambda_n(\gamma_1, \gamma_2, c) = \sum_{k=1}^n \binom{n-1}{k-1} \binom{(\gamma_1 + \gamma_2)/2}{k} (1+c)^k \quad (n \ge 1)$$

and $c = e^{\pi i \theta}$ and $\theta = \frac{\gamma_2 - \gamma_1}{\gamma_2 + \gamma_1}$. Therefore, we conclude that the function f_2 given by (14) is convex univalent in Δ , too.

References

- [1] K. Astala and F.W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, *J. Anal. Math.* 46 (1986), 16–57.
- [2] J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. **354** (1984), 74–94.
- [3] D.A. Brannan and W.E. Kirwan, On some classes of bounded univalent functions, *J. London Math. Soc.* 1 (1969), 431–443.
- [4] J.H. Choi, Y.C. Kim, S. Ponnusamy and T. Sugawa, Norm estimates for the Alexander transforms of convex functions of order alpha, *J. Math. Anal. Appl.* **303** (2005), 661–668.
- [5] P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [6] H. Hornich, Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, *Monatsh. Math.* **73** (1969), 36–45.
- [7] R. Kargar, A. Ebadian and J. Sokół, Radius problems for some subclasses of analytic functions, *Complex Anal. Oper. Theory* **11** (2017), 1639–1649.
- [8] R. Kargar, J. Sokół and H. Mahzoon, On a certain subclass of strongly starlike functions, arXiv:1811.01271 [math.CV]

- [9] Y.C. Kim, S. Ponnusamy and T. Sugawa, Geometric properties of nonlinear integral transforms of certain analytic functions, *Proc. Japan Acad. Ser. A Math. Sci.* 80 (2004) 57–60.
- [10] Y.C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, *Rocky Mountain J. Math.* 32 (2002), 179–200.
- [11] Y.C. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, *Proc. Edinb.* Math. Soc. 49 (2006) 131–143.
- [12] H. Mahzoon, Coefficient and Fekete–Szegö problem estimates for certain subclass of analytic and bi–univalent functions, arXiv:1905.08600 [math.CV]
- [13] Y. Okuyama, The norm estimates of pre–Schwarzian derivatives of spiral–like functions, Complex Var. Theory Appl. 42 (2000) 225– 239.
- [14] A. Orouji and R. Aghalary, The norm estimates of pre–Schwarzian derivatives of spirallike functions and uniformly convex α –spirallike functions, Sahand Commun. Math. Anal. 12 (2018), 89–96
- [15] R. Parvatham, S. Ponnusamy and S.K. Sahoo, Norm estimates for the Bernardi integral transforms of functions defined by subordination, *Hiroshima Math. J.* **38** (2008), 19–29.
- [16] S. Ponnusamy and S.K. Sahoo, Norm estimates for convolution transforms of certain classes of analytic functions, J. Math. Anal. Appl. 342 (2008), 171–180.
- [17] T. Sugawa, On the norm of the pre–Schwarzian derivatives of strongly starlike functions, Ann. Univ. Mariae Curie–Skłodowska Sect. A 52 (1998) 149–157.
- [18] N. Takahashi and M. Nunokawa, A certain connection between starlike and convex functions, Appl. Math. Lett. 16 (2003), 653–655.
- [19] S. Yamashita, Almost locally univalent functions, Monatsh. Math. 81 (1976), 235–240.

[20] S. Yamashita, Norm estimates for function starlike or convex of order alpha, *Hokkaido Math. J.* **28** (1999) 217–230.

Hesam Mahzoon

Department of Mathematics Associate Professor of Mathematics Islamic Azad University, West Tehran Branch Tehran, Iran

 $E\text{-}mail: \ he sammahzoon 1@gmail.com$