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Abstract. Let a € [7/2,7) and 71,72 € (0,1]. For a normalized
analytic functions f in the open unit disc A we consider

M(a)::{feAzlJra_ﬂ<Re{zf,(z)}<1+ — zeA},
2sin «

2sin « f(2)
and
S/ (y1,72) = {f eA: -1 < arg{zf/(z)} <2 e A}
R T2 (2) 2’ ‘

In the present paper, we establish a sharp norm estimate of the pre—
Schwarzian derivative for functions f belonging two these subclasses of
analytic and normalized functions.
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1 Introduction

Let H be the class of functions f analytic in the open unit disc A = {z €
C:|z| <1} and A be a subclass of H that its members are normalized
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by the condition f(0) = 0 = f’(0) — 1. Therefore each f € A has the

following form
f(z)=z+ Zanz" (z € A).
n=2

The subclass of all functions in A which are univalent (one-to—one) in
A is denoted by U.

Recently, Kargar et al. (see [7]) introduced and studied the class
M(«a) as follows:

M(a) = {f€A21+ S <Re{zf/(z)}<1+

b oea)

2sin « f(2) 2sin «
where o € /2, 7). The class M(«) is a subclass of the starlike functions
of order v where v € [0.2146,0.5), see [12]. We recall that a function

f € A is starlike of order v (0 < v < 1) if, and only if,

Re{sz;S)} > (z€A).

The class of the starlike functions of order v in A is denoted by S*(7).
It is known that S*(y) C U for each vy € [0,1). According to the above
we have M(«a) C U where /2 < o < . The class of starlike functions
is denoted by §* = §*(0). Also, we say that a function f € A is strongly
starlike of order 5, where 0 < 5 < 1 if, and only if,

()% e

The class of strongly starlike functions of order § is denoted by SS*(53).
We note that every strongly starlike function f of order g € (0,1) is
bounded, see [3].

Another class that we are interested to study in this paper is the
class Sf(v1,72). We say that a function f € A belongs to the class
S/ (71,72), if f satisfies the following two-sided inequality

—% < arg{z}f;ij)} < % (z € A),
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where 0 < y1,72 < 1. The class S/ (71, 72) was introduced by Takahashi
and Nunokawa (see [18]). It is clear that S;(y1,72) € S* and that
S/ (71,72) is a subclass of the class of strongly starlike functions of order
B = max{v1,72}, i.e. Sf(71,72) C S*(B,0) =SS*(H).

Now let LU denote the subclass of H consisting of all locally univalent
functions, namely, LU :={f € H: f'(z) #0, z € A}. Fora f € LU the
pre—Schwarzian and Schwarzian derivatives of f are defined as follows

_ ")
- f()
respectively. We note that the quantity T (resp. Sf) is analytic on A
precisely when f is analytic (resp. meromorphic) and locally univalent

on A. Since LU is a vector space over C (see [0]), thus we can define
the norm of f € LU by

T4 (2) and  57(z) = T)(z) %Tf(z),

f"(z)

)|
This norm has significance in the theory of Teichmiiller spaces, see [1].
It is known that ||f|| < oo if and only if f is uniformly locally univalent.

This means that there exists a constant € := (f) > 0 such that f is
univalent in each disk

{ZEC:‘Z_£‘<€, §|<1},
1-¢&2

11l = sup(1 — [2])
zEA

see for example [19]. On the other hand, by the norm ||f||, we can give
univalence criteria for a non—constant meromorphic function f on A.
Indeed, if || f|| < 1, then f is univalent in A and conversely, if f univalent
in A, then ||f|| < 6 and the equality is attained for the Koebe function
and its rotation. In fact, both of these bounds are sharp, see [2]. Also, if
f is starlike of order v € [0,1), then we have the sharp estimate ||f|| <
6 — 47 (see e.g. [20]). For more details on the geometric and analytic
properties of the norm || f|| one can refer to [10]. Moreover, many authors
have given norm estimates for classical subclasses of univalent functions,
see for instance [4, 9, 11, 13, 14, 15, 16, 17, 20].

Let f and g belong to the class H. We say that a function f is
subordinate to g, written as

f(z) <g(z) or f=y,
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if there exists a Schwarz function ¢ : A — A with the following proper-
ties
6(0)=0 and |6(z)| <1 (z€A),
such that f(z) = g(¢(2)) for all z € A. In particular, if g € U, then we
have the following geometric equivalence relation
f(z) <g(z) = f(0) = g(0) and f(A)Cg(A).
We need the following lemmas.

Lemma 1.1. (Kargar et al. [7, Lemma 1.1]) Let f(z) € A and o €
[7/2,m). Then f € M(c) if, and only if,

(ZJ{(S) - 1) < Ba(2) (z€A),

where

Bo(z) i — 1og< Lt ze ) (2 € A). (1)

~ 2isina 14 ze—ia
We note that
Ba({z:zGA}):{CGC:

— T «

o
2sin <Refc} <

Lemma 1.2. (Kargar et al. [8, Lemma 1.1]) Let f(z) € A, 0 < 71,72 <

1, c=e™ and § = % Then f € Sf(71,7v2) if, and only if,

2sina’ 2 T

2f'(2)
) <G(z) (z€A),

where

1 (y1+72)/2
+ cz) (GO) =1,z € A). (2)

1—2z

G(2) = Gl 12, ) (2) = (

We note that the function G is convex univalent in A and maps A
onto €2, 4, where

O {w eC: —%% <arg{w} < 777’72}

In this paper, we give the best possible estimate of the norms of pre—
Schwarzian derivatives for the functions f belonging to the subclasses
M(a) and Sf (71, 72)-

™
, <a<7r}::
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2 Main Results

The first result is continued in the following form.

Theorem 2.1. Let « € [7/2,7). If a function f € A belongs to the
class M(a), then

2 2 si
Il € ——— /72 + sin? _ o ssma
S V72 4 sin?
The result is sharp.

Proof. Let f € A belongs to the class M(a) and « € [7/2, 7). Then
by Lemma 1.1 we have

2f'(2) 1 1 4 zeie
f(2) <1+27;smah)g<1+ze-.m> (z € Q). (3)

Now by definition of subordination, the relation (3) implies that there
exists a Schwarz function ¢ : A — A with ¢(0) = 0 and |¢(z)| < 1 such

that
Zf,(Z) o 1 o 1+¢(z)em B
f(2) _1+2isina1 g<1+¢(2)6—m> (z€4). (4)

By taking the derivative of the logarithmic on both sides of (4), after
simplification, we get

TH O <1+¢(z)eia>

f'(2) ~ 2izsina 1+ ¢(z)e i
2i sin cw'(2)
(1+¢@kmﬂl+¢@k%%<%$na+kg(%%%g%))
(5)
It is known that for each Schwarz function ¢ we have |¢(2)| < |z| (cf.

[5]). Also by the Schwarz—Pick lemma, we have the following inequality
for a Schwarz function ¢

_l’_

_ 2 2
() < L PEE (e p), (6)

11z
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On the other hand if log is the principal branch of the complex logarithm,
then we have

logz=In|z|+iargz (z€ A\{0},—7 <argz <m). (7)

Therefore, by the above equation (7), it is well-known that if |z| > 1,
then

[log 2| < V/|z =1 + 72, (8)

while for 0 < |z] < 1, we have

2

z—1
|log z| < ‘z + m2. 9)

Now we consider the two following cases.
Case 1. Let

’ 1+ ¢(z)e™@
14+ ¢(z)e x| —

Therefore, by (8) and the inequality |¢(z)| < |z| for all z € A, we obtain

’10g<1+¢ \/'1+¢ z)ete 1
1+ ¢(z)e w‘ 14+ ¢(z)e
Vasin? alg(=)[2 + 72 [1 + (z)ee?
- [T+ 6(z)e ]
\/(ﬁ +4sin? @) [¢(2)]2 + 72 (1 + 2/¢(2)])
= =16
\/(71'2 +4sin® @) [z]2 4+ 72 (1 + 2|z])
1—|[z]

2
+ 72

<

(10)
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Using (6), (10) and the triangular inequality, (5) yields that

‘f//(z)

f'(2)

_ 1 o < 14 ¢(2)e™ >
21z sin « 1+ ¢(z)e i

2i sin aw’(2)

+ N
u+¢@kmﬂ1+¢@k4@(%ﬁna+bg62%%§ﬁ)

1 1+ ¢(z)e™
< 1 '
o 2’2‘ sin o 08 (1 + Qs(Z)e_Za
+ 2sin a|¢/(2)|
(=) (2ane o (35555
1 \/(71'2 +4Sin2 a) ‘Z|2 + 72 (1 4 2’2‘)
<
~ 2z|sina 1—|7]
2sin o 1— [¢(2)]?
) Pt4sin® o)z 472 L
T sin“ a )|z 22(14-2|2 —_
(L%M@W(%ma_¢(+4 £Q+<+|v
1 /(@ +dsin?a) |2 + 7 (1+2]2)
<

2|z| sin « 1— |z
2sin o 1+ |z2|

: 2
2(1 — |z|)sina — \/(71’2 + 4 sin? a) |22 + 72 (1 + 2|2]) 1— |z

+
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Thus, we conclude that

/(=)
fll = sup(l—|z|?
A1) ZGA( |21%) 72
1
< sup ﬂ (72 4+ 4sin® @) [2]2 + 72 (1 + 2|z|)
2eA | 2]z]sina
N 2(1+ |z|)sina
21— |2])sina — \/ (n2 + 4sin® @) |22 + 72 (14 2[2])
= ,2 772+sin2a7281$.
Case 2. Let
1+ ¢(2)e™
1+ p(z)e~i@

Using (9) and simple calculation, we have

o

. 1+¢(z)ete 2
1+ ¢(z)e™™ < LHg(z)e—" — 1 42
1+ ¢(2)e—ia 1+¢(z)et™

1+¢(z)e—t@

- \/4 sin? al|p(2)[2 + 72 |1 + ¢(2)eie)?
- 1+ ¢(z)ete|
\/4 sin? a|g(2)|2 + 72 (1 + |¢(2)])?
<
- 1—|o(2)]
\/(71'2 + 4sin? a) |22 + 72 (1 + 2|z|)
1—|z| .

<

Therefore, in this case 2 we have the equal estimate for

o (et |
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too. Now, by the same argument, we get the desired result. Some
calculations as above show that the result is sharp for the function

f1(z) == zexp {/0 Bat(t)dt} (z € A)

1 1
:z—l—22+§(1 —cosa)z3+1—8(1—90080z+800820¢)z4+--- ,

or one of its rotations, where B, is defined in (1) and « € [7/2, 7). This
is the end of proof. U

Corollary 2.2. As an application of Theorem 2.1 define

ha) = —— /2 fsinta— ——0Y e /2, 7).

S o 72 + sin? «

It is easy to see that lim,_,.— h(a) = co. Also, it is a simple exercise
that h is an increasing function on [r/2,m) and thus we have

5.9871877... ~ h(r/2) < h(a) < .

The above estimate means that if f € M(«), then it is uniformly locally
univalent.

Now, we have the following.

Theorem 2.3. Let 1 € (0,1] and v2 € (0,1]. If f € A belongs to the
class S;(y1,72), then

AT < 2(7 + 72)-

The result is sharp.

Proof. Let 71 € (0,1], 72 € (0,1] and f € A belongs to the class
S (71,72). Then by Lemma 1.2 and by definition of subordination,
there exists a Schwarz function ¢ : A — A with ¢(0) = 0 and |¢(2)| < 1
such that

2f'(2) <1 + co(z)
f(2)

~\1-¢(2) )7 (v = (1 +12)/2), (11)
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where ¢ = ™ and 6 = 2t If we take the derivative of logarithmic
on both sides of (11), then we get

J;(()) - KW) - 1} 7 (1 C+¢;§<)z> * 1qi/€;<)z>> |

By triangle inequality and (6) and since |c¢| = 1, we obtain

") _ 1 Klﬂngb(z)\)7 } 1+ [¢(2)|
<= F1] 42y PN 12
o< m (ke e
So, using this inequality |¢(z)| < |z|, the last inequality (12) yields that
1" (2) 1 [(1—|—|z|>W ] 1+ |2|
< — +1] 42y . 13
)| = L\ E 1
Multiplying the last inequality (13) by (1 — |2|?) gives us
f"(2)
= sup(1l — |z|?
I £1] ZEE( |2]%) f(2)
1—z2 [/1 v
Ssup{ 12 {( +|Z|> —l—l] +2'y(1+|2])}:4’y
z€EA ’Z| 1- |Z|

and concluding the proof.
For the sharpness, consider the function

fg(z)::zexp{/OZG(t)t_ldt}:z+Az2+... (zeA), (14)

where G is defined in (2). It is easy to see that fo € A and
z2f5(2)
fa(2)

and thus we have fy € §/(71,72). With the same argument we get the
desired result and thus the details will be omitted. Here the proof ends.
O

Corollary 2.4. Let v1 € (0,1], 72 € (0,1] and f € A belongs to the
class 8§ (y1,72). Since f is univalent in A and 2(y1 + v2) < 4, thus by
Theorem 2.3 we have

feSi(m,m) =|Ifll <4<6.

This shows that the Becker and Pommerenke criterion is established [].

=G(z) <= G(z) (z€A)
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Remark 2.5. It was proved in [3] that

/ 7(;(75) — 1dt = &z”,
0 t n

n=1

is convex univalent in A where

=t =3 (1) (M aror w2y

k=1

and ¢ = ™ and 0 = 7;%71 Therefore, we conclude that the function
f2 given by (14) is convex univalent in A, too.

1]
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