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Norm Estimates of the Pre–Schwarzian
Derivatives for Two Certain Subclasses of
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Abstract. Let α ∈ [π/2, π) and γ1, γ2 ∈ (0, 1]. For a normalized
analytic functions f in the open unit disc ∆ we consider

M(α) :=

{
f ∈ A : 1 +

α− π
2 sinα

< Re

{
zf ′(z)

f(z)

}
< 1 +

α

2 sinα
, z ∈ ∆

}
,

and

S∗t (γ1, γ2) :=

{
f ∈ A : −πγ1

2
< arg

{
zf ′(z)

f(z)

}
<
πγ2
2
, z ∈ ∆

}
.

In the present paper, we establish a sharp norm estimate of the pre–
Schwarzian derivative for functions f belonging two these subclasses of
analytic and normalized functions.

AMS Subject Classification: 30C45
Keywords and Phrases: Univalent, starlike, locally univalent, sub-
ordination, pre-Schwarzian norm.

1 Introduction

Let H be the class of functions f analytic in the open unit disc ∆ = {z ∈
C : |z| < 1} and A be a subclass of H that its members are normalized
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2 H. MAHZOON

by the condition f(0) = 0 = f ′(0) − 1. Therefore each f ∈ A has the
following form

f(z) = z +
∞∑
n=2

anz
n (z ∈ ∆).

The subclass of all functions in A which are univalent (one–to–one) in
∆ is denoted by U .

Recently, Kargar et al. (see [7]) introduced and studied the class
M(α) as follows:

M(α) :=

{
f ∈ A : 1 +

α− π
2 sinα

< Re

{
zf ′(z)

f(z)

}
< 1 +

α

2 sinα

}
(z ∈ ∆),

where α ∈ [π/2, π). The classM(α) is a subclass of the starlike functions
of order γ where γ ∈ [0.2146, 0.5), see [12]. We recall that a function
f ∈ A is starlike of order γ (0 ≤ γ < 1) if, and only if,

Re

{
zf ′(z)

f(z)

}
> γ (z ∈ ∆).

The class of the starlike functions of order γ in ∆ is denoted by S∗(γ).
It is known that S∗(γ) ⊂ U for each γ ∈ [0, 1). According to the above
we have M(α) ⊂ U where π/2 ≤ α < π. The class of starlike functions
is denoted by S∗ ≡ S∗(0). Also, we say that a function f ∈ A is strongly
starlike of order β, where 0 < β ≤ 1 if, and only if,∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ < πβ

2
(z ∈ ∆).

The class of strongly starlike functions of order β is denoted by SS∗(β).
We note that every strongly starlike function f of order β ∈ (0, 1) is
bounded, see [3].

Another class that we are interested to study in this paper is the
class S∗t (γ1, γ2). We say that a function f ∈ A belongs to the class
S∗t (γ1, γ2), if f satisfies the following two–sided inequality

−πγ1

2
< arg

{
zf ′(z)

f(z)

}
<
πγ2

2
(z ∈ ∆),
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where 0 < γ1, γ2 ≤ 1. The class S∗t (γ1, γ2) was introduced by Takahashi
and Nunokawa (see [18]). It is clear that S∗t (γ1, γ2) ⊂ S∗ and that
S∗t (γ1, γ2) is a subclass of the class of strongly starlike functions of order
β = max{γ1, γ2}, i.e. S∗t (γ1, γ2) ⊂ S∗(β, β) ≡ SS∗(β).

Now let LU denote the subclass ofH consisting of all locally univalent
functions, namely, LU := {f ∈ H : f ′(z) 6= 0, z ∈ ∆}. For a f ∈ LU the
pre–Schwarzian and Schwarzian derivatives of f are defined as follows

Tf (z) :=
f ′′(z)

f ′(z)
and Sf (z) := T ′f (z)− 1

2
T 2
f (z),

respectively. We note that the quantity Tf (resp. Sf ) is analytic on ∆
precisely when f is analytic (resp. meromorphic) and locally univalent
on ∆. Since LU is a vector space over C (see [6]), thus we can define
the norm of f ∈ LU by

||f || = sup
z∈∆

(1− |z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ .
This norm has significance in the theory of Teichmüller spaces, see [1].
It is known that ||f || <∞ if and only if f is uniformly locally univalent.
This means that there exists a constant ε := ε(f) > 0 such that f is
univalent in each disk{

z ∈ C :

∣∣∣∣ z − ξ1− ξz

∣∣∣∣ < ε, |ξ| < 1

}
,

see for example [19]. On the other hand, by the norm ||f ||, we can give
univalence criteria for a non–constant meromorphic function f on ∆.
Indeed, if ||f || ≤ 1, then f is univalent in ∆ and conversely, if f univalent
in ∆, then ||f || ≤ 6 and the equality is attained for the Koebe function
and its rotation. In fact, both of these bounds are sharp, see [2]. Also, if
f is starlike of order γ ∈ [0, 1), then we have the sharp estimate ||f || ≤
6 − 4γ (see e.g. [20]). For more details on the geometric and analytic
properties of the norm ||f || one can refer to [10]. Moreover, many authors
have given norm estimates for classical subclasses of univalent functions,
see for instance [4, 9, 11, 13, 14, 15, 16, 17, 20].

Let f and g belong to the class H. We say that a function f is
subordinate to g, written as

f(z) ≺ g(z) or f ≺ g,
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if there exists a Schwarz function φ : ∆→ ∆ with the following proper-
ties

φ(0) = 0 and |φ(z)| < 1 (z ∈ ∆),

such that f(z) = g(φ(z)) for all z ∈ ∆. In particular, if g ∈ U , then we
have the following geometric equivalence relation

f(z) ≺ g(z)⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

We need the following lemmas.

Lemma 1.1. (Kargar et al. [7, Lemma 1.1]) Let f(z) ∈ A and α ∈
[π/2, π). Then f ∈M(α) if, and only if,(

zf ′(z)

f(z)
− 1

)
≺ Bα(z) (z ∈ ∆),

where

Bα(z) :=
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
(z ∈ ∆). (1)

We note that

Bα(∆) =

{
ζ ∈ C :

α− π
2 sinα

< Re {ζ} < α

2 sinα
,
π

2
≤ α < π

}
=: Ωα.

Lemma 1.2. (Kargar et al. [8, Lemma 1.1]) Let f(z) ∈ A, 0 < γ1, γ2 ≤
1, c = eπiθ and θ = γ2−γ1

γ2+γ1
. Then f ∈ S∗t (γ1, γ2) if, and only if,

zf ′(z)

f(z)
≺ G(z) (z ∈ ∆),

where

G(z) := G(γ1, γ2, c)(z) =

(
1 + cz

1− z

)(γ1+γ2)/2

(G(0) = 1, z ∈ ∆). (2)

We note that the function G is convex univalent in ∆ and maps ∆
onto Ωγ1,γ2 where

Ωγ1,γ2 :=
{
w ∈ C : −πγ1

2
< arg{w} < πγ2

2

}
.

In this paper, we give the best possible estimate of the norms of pre–
Schwarzian derivatives for the functions f belonging to the subclasses
M(α) and S∗t (γ1, γ2).
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2 Main Results

The first result is continued in the following form.

Theorem 2.1. Let α ∈ [π/2, π). If a function f ∈ A belongs to the
class M(α), then

||f || ≤ 2

sinα

√
π2 + sin2 α− 2 sinα√

π2 + sin2 α
.

The result is sharp.

Proof. Let f ∈ A belongs to the class M(α) and α ∈ [π/2, π). Then
by Lemma 1.1 we have

zf ′(z)

f(z)
≺ 1 +

1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
(z ∈ ∆). (3)

Now by definition of subordination, the relation (3) implies that there
exists a Schwarz function φ : ∆→ ∆ with φ(0) = 0 and |φ(z)| < 1 such
that

zf ′(z)

f(z)
= 1 +

1

2i sinα
log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)
(z ∈ ∆). (4)

By taking the derivative of the logarithmic on both sides of (4), after
simplification, we get

f ′′(z)

f ′(z)
=

1

2iz sinα
log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)
+

2i sinαw′(z)

(1 + φ(z)eiα) (1 + φ(z)e−iα)
(

2i sinα+ log
(

1+φ(z)eiα

1+φ(z)e−iα

)) .
(5)

It is known that for each Schwarz function φ we have |φ(z)| ≤ |z| (cf.
[5]). Also by the Schwarz–Pick lemma, we have the following inequality
for a Schwarz function φ

|φ′(z)| ≤ 1− |φ(z)|2

1− |z|2
(z ∈ ∆). (6)
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On the other hand if log is the principal branch of the complex logarithm,
then we have

log z = ln |z|+ i arg z (z ∈ ∆ \ {0},−π < arg z ≤ π). (7)

Therefore, by the above equation (7), it is well–known that if |z| ≥ 1,
then

| log z| ≤
√
|z − 1|2 + π2, (8)

while for 0 < |z| < 1, we have

| log z| ≤

√∣∣∣∣z − 1

z

∣∣∣∣2 + π2. (9)

Now we consider the two following cases.
Case 1. Let ∣∣∣∣ 1 + φ(z)eiα

1 + φ(z)e−iα

∣∣∣∣ ≥ 1.

Therefore, by (8) and the inequality |φ(z)| ≤ |z| for all z ∈ ∆, we obtain

∣∣∣∣log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)∣∣∣∣ ≤
√∣∣∣∣ 1 + φ(z)eiα

1 + φ(z)e−iα
− 1

∣∣∣∣2 + π2

=

√
4 sin2 α|φ(z)|2 + π2 |1 + φ(z)e−iα|2

|1 + φ(z)e−iα|

≤

√(
π2 + 4 sin2 α

)
|φ(z)|2 + π2 (1 + 2|φ(z)|)

1− |φ(z)|

≤

√(
π2 + 4 sin2 α

)
|z|2 + π2 (1 + 2|z|)

1− |z|
. (10)

Using (6), (10) and the triangular inequality, (5) yields that
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∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣
=

∣∣∣∣ 1

2iz sinα
log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)

+
2i sinαw′(z)

(1 + φ(z)eiα) (1 + φ(z)e−iα)
(

2i sinα+ log
(

1+φ(z)eiα

1+φ(z)e−iα

))
∣∣∣∣∣∣

≤ 1

2|z| sinα

∣∣∣∣log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)∣∣∣∣
+

2 sinα|φ′(z)|

(1− |φ(z)|)2
(

2 sinα−
∣∣∣log

(
1+φ(z)eiα

1+φ(z)e−iα

)∣∣∣)
≤ 1

2|z| sinα

√(
π2 + 4 sin2 α

)
|z|2 + π2 (1 + 2|z|)

1− |z|

+
2 sinα

(1− |φ(z)|)2

(
2 sinα−

√
(π2+4 sin2 α)|z|2+π2(1+2|z|)

1−|z|

) .1− |φ(z)|2

1− |z|2

≤ 1

2|z| sinα

√(
π2 + 4 sin2 α

)
|z|2 + π2 (1 + 2|z|)

1− |z|

+
2 sinα

2(1− |z|) sinα−
√(

π2 + 4 sin2 α
)
|z|2 + π2 (1 + 2|z|)

.
1 + |z|
1− |z|2

Thus, we conclude that

||f || = sup
z∈∆

(1− |z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣
≤ sup

z∈∆

{
1 + |z|

2|z| sinα

√(
π2 + 4 sin2 α

)
|z|2 + π2 (1 + 2|z|)

+
2(1 + |z|) sinα

2(1− |z|) sinα−
√(

π2 + 4 sin2 α
)
|z|2 + π2 (1 + 2|z|)


=

2

sinα

√
π2 + sin2 α− 2 sinα√

π2 + sin2 α
.
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Case 2. Let ∣∣∣∣ 1 + φ(z)eiα

1 + φ(z)e−iα

∣∣∣∣ < 1.

Using (9) and simple calculation, we have

∣∣∣∣log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)∣∣∣∣ ≤
√√√√√
∣∣∣∣∣∣

1+φ(z)eiα

1+φ(z)e−iα
− 1

1+φ(z)eiα

1+φ(z)e−iα

∣∣∣∣∣∣
2

+ π2

=

√
4 sin2 α|φ(z)|2 + π2 |1 + φ(z)eiα|2

|1 + φ(z)eiα|

≤

√
4 sin2 α|φ(z)|2 + π2 (1 + |φ(z)|)2

1− |φ(z)|

≤

√(
π2 + 4 sin2 α

)
|z|2 + π2 (1 + 2|z|)

1− |z|
.

Therefore, in this case 2 we have the equal estimate for∣∣∣∣log

(
1 + φ(z)eiα

1 + φ(z)e−iα

)∣∣∣∣ ,
too. Now, by the same argument, we get the desired result. Some
calculations as above show that the result is sharp for the function

f1(z) := z exp

{∫ z

0

Bα(t)

t
dt

}
(z ∈ ∆)

= z + z2 +
1

2
(1− cosα)z3 +

1

18
(1− 9 cosα+ 8 cos2 α)z4 + · · · ,

or one of its rotations, where Bα is defined in (1) and α ∈ [π/2, π). This
is the end of proof. �

Corollary 2.2. As an application of Theorem 2.1 define

h(α) :=
2

sinα

√
π2 + sin2 α− 2 sinα√

π2 + sin2 α
(α ∈ [π/2, π)).
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It is easy to see that limα→π− h(α) = ∞. Also, it is a simple exercise
that h is an increasing function on [π/2, π) and thus we have

5.9871877 . . . ≈ h(π/2) ≤ h(α) <∞.

The above estimate means that if f ∈M(α), then it is uniformly locally
univalent.

Now, we have the following.

Theorem 2.3. Let γ1 ∈ (0, 1] and γ2 ∈ (0, 1]. If f ∈ A belongs to the
class S∗t (γ1, γ2), then

||f || ≤ 2(γ1 + γ2).

The result is sharp.

Proof. Let γ1 ∈ (0, 1], γ2 ∈ (0, 1] and f ∈ A belongs to the class
S∗t (γ1, γ2). Then by Lemma 1.2 and by definition of subordination,
there exists a Schwarz function φ : ∆→ ∆ with φ(0) = 0 and |φ(z)| < 1
such that

zf ′(z)

f(z)
=

(
1 + cφ(z)

1− φ(z)

)γ
(γ := (γ1 + γ2)/2), (11)

where c = eπiθ and θ = γ2−γ1
γ2+γ1

. If we take the derivative of logarithmic
on both sides of (11), then we get

f ′′(z)

f ′(z)
=

1

z

[(
1 + cφ(z)

1− φ(z)

)γ
− 1

]
+ γ

(
cφ′(z)

1 + cφ(z)
+

φ′(z)

1− φ(z)

)
.

By triangle inequality and (6) and since |c| = 1, we obtain∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤ 1

|z|

[(
1 + |φ(z)|
1− |φ(z)|

)γ
+ 1

]
+ 2γ

1 + |φ(z)|
1− |z|2

. (12)

So, using this inequality |φ(z)| ≤ |z|, the last inequality (12) yields that∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤ 1

|z|

[(
1 + |z|
1− |z|

)γ
+ 1

]
+ 2γ

1 + |z|
1− |z|2

. (13)
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Multiplying the last inequality (13) by (1− |z|2) gives us

||f || = sup
z∈∆

(1− |z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣
≤ sup

z∈∆

{
1− |z|2

|z|

[(
1 + |z|
1− |z|

)γ
+ 1

]
+ 2γ(1 + |z|)

}
= 4γ

and concluding the proof.
For the sharpness, consider the function

f2(z) := z exp

{∫ z

0

G(t)− 1

t
dt

}
= z +Az2 + · · · (z ∈ ∆), (14)

where G is defined in (2). It is easy to see that f2 ∈ A and

zf ′2(z)

f2(z)
= G(z) ≺ G(z) (z ∈ ∆)

and thus we have f2 ∈ S∗t (γ1, γ2). With the same argument we get the
desired result and thus the details will be omitted. Here the proof ends.
�

Corollary 2.4. Let γ1 ∈ (0, 1], γ2 ∈ (0, 1] and f ∈ A belongs to the
class S∗t (γ1, γ2). Since f is univalent in ∆ and 2(γ1 + γ2) ≤ 4, thus by
Theorem 2.3 we have

f ∈ S∗t (γ1, γ2)⇒ ||f || ≤ 4 ≤ 6.

This shows that the Becker and Pommerenke criterion is established [2].

Remark 2.5. It was proved in [8] that∫ z

0

G(t)− 1

t
dt =

∞∑
n=1

λn
n
zn,

is convex univalent in ∆ where

λn := λn(γ1, γ2, c) =

n∑
k=1

(
n− 1

k − 1

)(
(γ1 + γ2)/2

k

)
(1 + c)k (n ≥ 1)

and c = eπiθ and θ = γ2−γ1
γ2+γ1

. Therefore, we conclude that the function
f2 given by (14) is convex univalent in ∆, too.
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