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Abstract. In the present world, there are many of two-stage systems
that their information of inputs, outputs, and intermediate measures
are imprecise (like stochastic, fuzzy, interval, etc). In these conditions,
two-stage data envelopment analysis (two-stage DEA) cannot evaluate
the efficiencies of these systems. In many two-stage systems, the si-
multaneous presence of the stages is necessary for the final product.
Hence, in this paper, firstly we shall propose the stochastic multiplica-
tive model and the deterministic equivalent to measure the efficiencies of
these systems in presence of stochastic data under the constant returns
to scale (CRS) assumption by using the non-compensatory property of
the multiplication operator. Then, we will use the reparative property of
additive operation to propose the additive models and the deterministic
equivalents to calculate the efficiencies of two-stage systems in presence
of stochastic data under the constant returns to scale (CRS) and vari-
able returns to scale (VRS) assumptions that the simultaneous presence
of the stages is not necessary for the final product and one stage com-
pensates the another stage’s shortcomings. Likewise, we shall convert
each of these deterministic equivalents to quadratic programming prob-
lems. Based on the proposed stochastic models, the whole system is
efficient if and only if the first and the second stages are efficient. At
last, we will illustrate in the proposed multiplicative model by using the
data of Taiwanese non-life insurance companies that extracted from the
extant literature.
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1. Introduction
DEA is a non-parametric mathematical approach that evaluates the ef-
ficiency and the performance of decision making units (DMUs). The
first time, DEA was presented by Charnes, Cooper, and Rhodes that
their first proposed model was called CCR [2]. Afterward, many of
models have proposed that measure the efficiency of DMUs by consider-
ing DMUs as the black box systems. In variety applications, data may
not be precisely such as stochastic data. The stochastic DEA (SDEA)
was presented to measure the efficiency of black box systems in pres-
ence of stochastic data by extending the classical DEA. In this field,
some researchers are presented the Stochastic models (see, e.g, [4], [5],
[10], [11]). These authors consider the envelopment form of DEA mod-
els and proposed the stochastic DEA models by using the chance con-
strained programming method. And also, Mirbolouki et al. [14] used
the chance constrained programming method and presented a stochas-
tic DEA model based on the multiplier form of DEA that measures the
stochastic efficiency of the black box systems. To do this, they solved
two problems (exist equally constraint and random variable in the ob-
jective function). In the real applications, there are systems with an
internal structure such as network systems. Hence, a group of DEA
models was presented in order to assess the efficiency of these systems.
These models were called Network DEA (NDEA) models (see, e.g, [1],
[3], [6], [7], [8], [9], [12], [13], [15]). The special case of network systems is
their two-stage systems. Therefore, in this paper, we will combine SDEA
and NDEA to propose the stochastic multiplicative and additive models
that measure the stochastic efficiency of two-stage systems in presence
of stochastic data. Note that in the proposed multiplicative model, the
simultaneous presence of stages is necessary in the final product and
the shortcoming (default) of one stage is not compensated by another
stage. And also, the overall efficiency of the system is considered as a
geometric average of the stages efficiencies under CRS assumption which
is in the form of the overall efficiency of black box systems. Likewise,
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this model is not able to calculate the overall efficiency and efficiency
of stages under VRS assumption. Hence, in the two-stage systems that
the simultaneous presence of the stages is not necessary for the final
product, the stochastic additive models can be measured the overall ef-
ficiency and efficiency of stages under CRS and VRS assumptions by
using the weights that indicate the relative importance of stages. And
also, in the proposed additive models the overall efficiency of the system
is the arithmetic average of the stages efficiencies. In this case, the first
and the second stages are present in evaluating the overall efficiency.
This paper is organized as follows: In section 2, we briefly review the
Kao and Hwang (2008) and Chen et al. (2009) models that measure
the efficiency of two-stage systems. In section 3, firstly we propose the
structure of stochastic efficiency of the two-stage systems in presence of
stochastic data. Then, we apply the chance-constrained programming
method on the Kao and Hwang (2008) model and determine correspond-
ing deterministic equivalent form. And also, the stochastic versions of
the Chen et al. (2009)’s models and the deterministic equivalents are
presented. Finally, in section 4, the introduced stochastic models are
illustrated by a case of 10 Taiwanese non-life insurance companies.

2. preliminaries
In this section, we briefly present the models to evaluate the CRS and
VRS efficiency of two-stage systems with deterministic data that pre-
sented by Kao and Hwang (2008) and Chen et al. (2009). Suppose there
are n DMUs with two-stage structure. Each DMUj (j = 1, . . . , n) in the
stage 1 consumes m input xij(i = 1, . . . ,m) to produce D intermediate
measure zdj(d = 1, . . . , n). Then, stage 2, uses D intermediate measure
zdj(d = 1, . . . , n) to generate s output yrj(r = 1, . . . , s). The structure
of a two-stage system is shown in figure 1.

xij zdj yrj
Stage1 Stage2

Figure 1. Two-stage system
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Kao and Hwang (2008) presented the following model that measures the
overall efficiency of the system and the efficiency of stages under CRS
assumption, simultaneusly:

Es
o = max

s∑
r=1

uryro

s.t
m∑
i=1

vixio = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (1)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

If (u∗, v∗, w∗) be an optimal solution of this model, we have:

Es
o =

s∑
r=1

u∗ryro

m∑
i=1

v∗i xio

, EI
o =

D∑
d=1

w∗
dzdo

m∑
i=1

v∗i xio

, EII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗
dzdo

.

That Es
o , EI

o , EII
o indicate the overall efficiency of the system and effi-

ciency of the first and second stages respectively.

Theorem 2.1. DMUo is overall efficient if and only if EI
o = EII

o = 1.

Proof. Refer to [8] □
Their proposed model cannot measures the VRS efficiency of two-stage
systems. Chen et al. (2009) proposed the models that calculate the
overall efficiency of the system and efficiency of the stages under CRS
and VRS assumptions. The following model is presented to measure the
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CRS efficiency of two-stage systems by Chen et al. (2009):

E(chen−CRS)s
o = max w1

D∑
d=1

wdzdo

m∑
i=1

vixio

+ w2

s∑
r=1

uryro

D∑
d=1

wdzdo

s.t

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n

(2)D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Note that w1, w2 are defined as

w1 = (

m∑
i=1

vixio)/(

m∑
i=1

vixio+

D∑
d=1

wdzdo),

w2 = (
D∑

d=1

wdzdo)/(
m∑
i=1

vixio+
D∑

d=1

wdzdo)

That demonstrate the relative importance of the stages. Therefore,
model (2) can be converted the following form:

E(chen−CRS)s
o = max

s∑
r=1

uryro +
D∑

d=1

wdzdo

s.t

m∑
i=1

vixio −
D∑

d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (3)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m
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If (u∗, v∗, w∗) be an optimal solution of this model, we have:

E(chen−CRS)s
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗
dzdo

m∑
i=1

v∗i xio +
D∑

d=1

w∗
dzdo

, EI
o =

D∑
d=1

w∗
dzdo

m∑
i=1

v∗i xio

,

EII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗
dzdo

.

E
(chen−CRS)s
o , EI

o , EII
o indicate the overall efficiency of the system and

efficiency of the first and second stages respectively. Also, we have
E

(chen−CRS)s
o = w1E

I
o + w2E

II
o . And also, Chen et al. (2009) proposed

a model to compute the efficiency of two-stage system under VRS as-
sumption.
Their proposed model is as follows:

E(chen−CRS)s
o = max w1

D∑
d=1

wdzdo + u01

m∑
i=1

vixio

+ w2

s∑
r=1

uryro + u02

D∑
d=1

wdzdo

s.t

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n (4)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

By applying w1, w2 in this model, the following model is obtained:

E(chen−CRS)s
o = max

s∑
r=1

uryro +
D∑

d=1

wdzdo + u01 + u02
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s.t

m∑
i=1

vixio +

D∑
d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n

(5)D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

After solving this model, the overall efficiency of the system and effi-
ciency of the stage 1, 2 (E

(chen−CRS)s
o , EI

o , E
II
o ) can be determined as

follows:

E(chen−CRS)s
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗
dzdo + u01 + u02

m∑
i=1

v∗i xio +
D∑

d=1

w∗
dzdo

, EI
o =

D∑
d=1

w∗
dzdo + u01

m∑
i=1

v∗i xio

,

EII
o =

s∑
r=1

u∗ryro + u02

D∑
d=1

w∗
dzdo

.

Therefore, the relationship between E
(chen−CRS)s
o , EI

o , EII
o can be de-

fined as follows: E
(chen−CRS)s
o = w1E

I
o + w2E

II
o .

3. Stochastic efficiency of two-stage systems
In many stitutions, the input, intermediate product and output vec-
tors might be stochastic variables. Therefore, in this case, providing
a stochastic model is necessary in order to measure the efficiency of
two-stage systems under CRS and VRS assumptions. Suppose we have
n DMUs with two-stage structure. Corresponding to the first stage of
DMUj(j = 1, . . . , n), x̃j , z̃j are the random inputs and intermediate
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measures vectors. Then, the second stage, consumes these intermedi-
ate measures to produce the random output vector ỹj . With no loss
of generality, we suppose that all components of inputs, intermediate
measures and output s have normal distribution:

x̃ij ∼ N(xij , σ
2
ij), ỹrj ∼ N(yrj , σ

2
rj), z̃dj ∼ N(zdj , σ

2
dj)

Wherein, xij , yrj , zdj (i = 1, . . . ,m r = 1, . . . , s d = 1, . . . , D) are vec-
tors of the expected values of inputs, intermediate measures and outputs
of DMUj(j = 1, . . . , n).

3.1. Stochastic efficiency of multiplicative model
 In this subsection, firstly, we will propose a stochastic model of by
using the multiplicative model. Then, the deterministic equivalent of the
proposed model will be provided. The stochastic model that measures
the efficiencies of the two-stage systems under CRS can be described as
follows:

Es
o = max

s∑
r=1

urỹro

s.t p

{
m∑
i=1

vix̃io = 1

}
≥ (1− α)

p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n (6)

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

In this model, p means probability. And also, α indicates the level of
error that is predetermined. In the objective function of model (6), there
is random variable and also, we have the following wrong expression

p

{
m∑
i=1

vix̃io = 1

}
= 0 ≥ (1− α) ⇒ α ≥ 1
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for the first constraint of model (6). Thus we consider an alternative
form of model (1) and also we replace this constraint by (1) and also
we replace this constraint by p {

∑m
i=1 vix̃io ≤ 1} ≥ (1−α) (refer to Mir-

bolouki et al. [14]). Therefore, the following model can be constructed
as an alternative form of the proposed model [6]:

Ẽs′
o = max k

s.t p

{
s∑

r=1

urỹro ≥ k

}
≥ (1− α)

p

{
m∑
i=1

vix̃io ≤ 1

}
≥ (1− α)

(7)
p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Note that the model (6) and model (7) , have equal objective values.
Hence, we have the following theorem:

Theorem 3.1. In the model (6) and model (7), we have: Ẽs
o = Ẽs′

o

Proof. Suppose S, S′ indicate the feasible regions related to the models
(6) and (7) respectively. Note that S ⊆ S′ and k ≤

m∑
i=1

vix̃io ≤ 1. Thus,

according to the theorem 2.1 1 of Mirbolouki et al. [14], the proof is
obvious. □

3.1.1. Deterministic equivalent of model (7)

In this subsection, we will exhibit a deterministic equivalent of model (7)
using Cooper et al. (2004). Firstly, consider the following constraint:

p

{
m∑
i=1

vix̃io ≤ 1

}
≥ (1− α).
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In order to achieve the equality constraint, we define ζ1 > 0 as external
slack:

p

{
s∑

r=1

urỹro ≥ k

}
= (1− α) + ζ1.

Thus, there is S1 > 0 such that

p

{
s∑

r=1

urỹro − k ≥ s1

}
= (1− α).

Note that ζ1 = 0 if and only if s1 = 0. And also, by defining ζ2 > 0 as
an external slack, we have

p

{
m∑
i=1

vix̃io ≤ 1

}
= (1− α) + ζ2.

Hence there is s2 > 0 such that

p

{
m∑
i=1

vix̃io ≤ 1 + s2

}
= (1− α).

Corresponding to other constraints, we suppose there are s3j , s4j > 0
such that

p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ s3j

}
= (1− α), j = 1, . . . , n

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ s4j

}
= (1− α), j = 1, . . . , n

Now, we set:

E(x̃ij) = xij , E(ỹrj) = yrj , E(z̃dj) = zdj ,

E(

s∑
r=1

urỹro − k) =

s∑
r=1

uryro − k
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Hence: p

{
s∑

r=1
urỹro − k ≥ s1

}
= (1− α) conclude that

p

{
s∑

r=1

u∗r ỹro − k

}
≤ s1 = α

Thus,

p


(

s∑
r=1

urỹro − k)− (
s∑

r=1
uryro − k)√

var(
s∑

r=1
urỹro − k)

≤
s1 −

(
s∑

r=1
uryro − k

)
√
var

(
s∑

r=1
urỹro − k

)
 = α

(8)

By considering Φ as standard normal distribution function, we recall
that p(Z̃ ≤ z) = α ⇒ Φ(z) = α ⇒ Φ−1(α) = z Hence, (8) can be
converted to

s1 − (
s∑

r=1
uryro − k)√

var(
s∑

r=1
urỹro − k)

= Φ−1(α).

In order to simplify, we denote

(σo(k, u))2 = var(
s∑

r=1

urỹro − k) =
s∑

r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o)

(σI(k, v))2 = var(1−
m∑
i=1

vix̃io) = var(
m∑
i=1

vix̃io)

=
m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

(σj(w, u))
2 = var(

D∑
d=1

wdz̃dj −
s∑

r=1

urỹrj) =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j)

+
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj)
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(σ′
j(v, w))

2 = var(

m∑
i=1

vix̃ij −
D∑

d=1

wdz̃dj) =
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

+

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

Therefore,
s1 − (

s∑
r=1

uryro − k)

σo(k, u)
= Φ−1(α). By applying the same ap-

proach for other constraints, the deterministic equivalent form of model
(7) will be as follows:

Ẽs′
o = max k

s.t

s∑
r=1

uryro − k +Φ−1(α)σo(k, u) = s1

m∑
i=1

vixio − Φ−1(α)σI(k, v) + s2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u) + s3j = 0 j = 1, . . . , n

(9)D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)σ′
j(v, w) + s4j = 0 j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

s3j , s4j ≥ 0 j = 1, . . . , n

s1, s2 ≥ 0

Note that this model is a nonlinear programming. Thus, follow Cooper
et al. (2004), we transform this model to a quadratic programming
problem. For this purpose we use the non-negative variables λ, λ′, λj ,
λ′
j and obtain the quadratic programming problem as follows:

Ẽs′
o = max k

s.t

s∑
r=1

uryro − k +Φ−1(α)λ− s1 = 0
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m∑
i=1

vixio − Φ−1(α)λ′ + s2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)λj + s3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)λ′
j + s4j = 0 j = 1, . . . , n

λ2 =

s∑
r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o)

λ′2 =

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

(10)
λ2
j =

s∑
r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj)

λ′2
j =

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

λ, λ′, λj , λ
′
j , s3j , s4j ≥ 0 j = 1, . . . , n

s1, s2 ≥ 0

Theorem 3.2. For α ∈ (0, 0.5] and any optimal solution (u∗r , w
∗
d, v

∗
i , λ

∗, λ′∗ , s∗1, s
∗
2, s

∗
3j , s

∗
4j)

be an optimal solution, we have 0 < Ẽs′
∗
≤ 1.
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Proof. If α ∈ (0, 0.5], then Φ−1(α) ≤ 0. In each optimal solution, we
have: 

s∑
r=1

u∗ryrj −
D∑

d=1

w∗
dzdj ≤ 0

D∑
d=1

w∗
dzdj −

m∑
i=1

v∗i xij ≤ 0

⇒
s∑

r=1

u∗ryrj −
m∑
i=1

v∗i xij ≤ 0

And also, based on the constraints
s∑

r=1
u∗ryro ≥ k,

m∑
i=1

v∗i xio ≤ 1 of model

(10) the proof is complete. □
Now for α ∈ (0, 0.5] and any optimal solution (u∗r , w

∗
d, v

∗
i , λ

∗, λ′∗ , s∗1, s
∗
2, s

∗
3j , s

∗
4j)

of model (10), the overall efficiency and efficiency of the first and the
second stages are defined as

Ẽs′
o =

s∑
r=1

u∗ryro

m∑
i=1

v∗i xio

, ẼI
o =

D∑
d=1

w∗
dzdo

m∑
i=1

v∗i xio

, ẼII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗
dzdo

.

Thus, we have: Ẽs′
o = ẼI

o · ẼII
o .

Lemma 3.3. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. In any optimal solution (u∗r , w
∗
d, v

∗
i , λ

∗, λ′∗ , s∗1, s
∗
2, s

∗
3j , s

∗
4j) of the

model (10), for j = o, we have
s∑

r=1

u∗ryro −
D∑

d=1

w∗
dzdo − Φ(−1)(α)λ∗

o + s∗3o = 0,

D∑
d=1

w∗
dzdo −

m∑
i=1

v∗i xio − Φ(−1)(α)λ′∗
o + s∗4o = 0.

Φ(−1)(α), λ∗
o, λ

′∗
o ≥ 0, S∗

3o, s
∗
4o ≥ 0

Thus, in any optimal solution, we have:
s∑

r=1

u∗ryro −
D∑

d=1

w∗
dzdo ≤ 0,

D∑
d=1

w∗
dzdo −

m∑
i=1

v∗i xio ≤ 0
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These constraints mean that 0 < ẼI
o ≤ 1, 0 < ẼII

o ≤ 1 and the proof is
complete. □

Lemma 3.4. For α ∈ (0, 0.5], DMUo, is stochastic overall efficient
under the model (10) if and only if the first and the second stages are
stochastic efficient, i.e. Ẽs′

o = 1 if and only if ẼI
o = ẼII

o = 1.

Proof. Suppose Ẽs′
o = 1, i.e

s∑
r=1

u∗ryro =
m∑
i=1

v∗i xio. And also, for α ∈

(0, 0.5], we have

s∑
r=1

u∗ryro −
D∑

d=1

w∗
dzdo ≤ 0,

D∑
d=1

w∗
dzdo −

m∑
i=1

v∗i xio ≤ 0

Therefore, we conclude that ẼI
o = ẼII

o = 1. Conversely, if ẼI
o = ẼII

o = 1,
the proof is obviuse. □

3.2. Stochastic efficiency of additive models
In this subsection, the stochastic versions of the additive models will
be presented in presence of stochastic data. Then, the deterministic
equivalent forms of these stochastic models are obtained. The proposed
model of the previous section, cannot able to calculate the efficiency of
two-stage system under VRS assumption. Thereby, follow Chen et al.
(2009) we provide the stochastic models that measure the efficiency of
the two-stage systems under CRS and VRS assumptions respectively.
Our proposed models are as follows:

Ẽs(CRS)
o = max

s∑
r=1

urỹro +

D∑
d=1

wdz̃do

s.t P

{
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do = 1

}
≥ (1− α)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n

(11)
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P

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Ẽs(V RS)
o = max

s∑
r=1

urỹro +

D∑
d=1

wdz̃do + u01 + u02

s.t P

{
m∑
i=1

vix̃io +

D∑
d=1

wdz̃do = 1

}
≥ (1− α)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj + u02 ≤ 0

}
≥ (1− α), j = 1, . . . , n

(12)
P

{
d∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij + u01 ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

Note that in these models, p means probability. And also, amount of α
is predetermined that determines the level of error. In the he objective
functions of model (11) and model (12), there is random variable and
also, we have the following wrong expression

p

{
m∑
i=1

v∗i xio +
D∑

d=1

w∗
dzdo = 1

}
= 0 ≥ (1− α) ⇒ α ≥ 1

(refer to Mirbolouki et al. [14]). Thus we obtain an alternative form of
model (11) as follows:

Ẽs(CRS)′
o = max k

s.t P

{
s∑

r=1

urỹro +

D∑
d=1

wdz̃do ≥ k

}
≥ (1− α)

P

{
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do ≤ 1

}
≥ (1− α)
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(13)
P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n

P

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Theorem 3.5. For model (11) and model (13), we have Ẽ
s(CRS)
o =

Ẽ
s(CRS)′
o

Proof. The proof is similar to the proof of theorem (3.1). □

3.2.1. Deterministic equivalent of model (13)

In this section, the deterministic equivalent of model (13) can be ob-
tained as deterministic equivalent of model (7). Therefore, by using the
similar procedure, the deterministic equivalent form of model (13) is
obtained as follows:

Ẽs(CRS)′
o = max k

s.t

s∑
r=1

uryro +

D∑
d=1

wdzdj − k +Φ−1(α)σo(k, u, w) = s′1

m∑
i=1

vixio +
D∑

d=1

wdzdj − Φ−1(α)σI(k, v, w) + s′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u) + s′3j = 0 j = 1, . . . , n

(14)D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)σ′
j(v, w) + s′4j = 0 j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

s′3j , s
′
4j ≥ 0 j = 1, . . . , n

s′1, s
′
2 ≥ 0
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That:

(σo(k, u, w))2 = var(

s∑
r=1

urỹro +

D∑
d=1

wdz̃do − k) =

s∑
r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o)

+

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o) + 2cov((
s∑

r=1

urỹro), (
D∑

d=1

wdz̃do − k))

(σI(k, v, w))2 = var(1− (
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do)) = var(
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do) =

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)
D∑

d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o) + cov(

m∑
i=1

vix̃io,

D∑
d=1

wdz̃do)

(σj(w, u))
2 = var(

D∑
d=1

wdz̃dj −
s∑

r=1

uryrj) =

s∑
r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j)

+

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)− 2cov(

D∑
d=1

wdz̃dj ,

s∑
r=1

urỹro)

(σ′
j(w, u))

2 = var(

m∑
i=1

vix̃ij −
D∑

d=1

wdz̃dj) =

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

+

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

This model is a nonlinear programming. In order to convert this model
to a quadratic programming problem, the non-negative variables γ, γ′,
γj , γ′j are introduced. Therefore the following quadratic programming
problem is obtained:

Ẽ(chen−CRS)
o = max k

s.t
s∑

r=1

uryro +
D∑

d=1

wdzdo − k +Φ−1(α)γ − s′1 = 0

m∑
i=1

vixio +

D∑
d=1

wdzdo − Φ−1(α)γ′ + s′2 = 1
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s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)γj + s′3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)γ′j + s′4j = 0 j = 1, . . . , n

γ2 =

s∑
r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ 2cov((

s∑
r=1

urỹro), (

D∑
d=1

wdz̃do − k))

γ′
2
=

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

(15)
+ cov(

m∑
i=1

vix̃io,
D∑

d=1

wdz̃do)

γ2j =

s∑
r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

− 2cov(

D∑
d=1

wdz̃dj ,

s∑
r=1

urỹrj)

γ′
2

j =
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +
m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(
m∑
i=1

vix̃ij ,
D∑

d=1

wdz̃dj)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

γj , γ
′
j , s

′
3j , s

′
4j ≥ 0 j = 1, . . . , n

s′1, s
′
2, γ, γ

′ ≥ 0

Theorem 3.6. For α ∈ (0, 0.5], if (u∗r , w∗
d, v

∗
i , γ

∗, γ′
∗
, γ∗j , γ

′∗
j , s

′∗
1 , s

′∗
2 , s

′∗
3j , s

′∗
4j)

be an optimal solution of model (15), we have 0 < Ẽ
(chen−CRS)∗
o ≤ 1.
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Proof. The proof is similar to the proof of theorem 3.2. □
Now, if (u∗r , w∗

d, v
∗
i , γ

∗, γ′
∗
, γ∗j , γ

′∗
j , s

′∗
1 , s

′∗
2 , s

′∗
3j , s

′∗
4j) be an optimal solution

of model (15), for, the efficiency of the first and the second stages are
defined:

ẼI
o =

D∑
d=1

w∗
dzdo/

m∑
i=1

v∗i xio, Ẽ
II
o =

s∑
r=1

u∗ryro/
D∑

d=1

w∗
dzdo.

Therefore, there is λ ∈ (0, 1) that Ẽ
(chen−CRS)
o = λẼI

o + (1− λ)ẼII
o .

Lemma 3.7. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. The proof is similar to the proof of lemma 3.3. □

Lemma 3.8. For α ∈ (0, 0.5], DMUo is stochastic overall efficient
under the model (15) if and only if the first and the second stages are
stochastic efficient, i.e. Ẽ

(chen−CRS)
o = 1 if and only if ẼI

o = ẼII
o = 1.

Proof. The proof is similar to the proof of lemma 3.4. □
By applying the aforementioned manner to the model (12), the deter-
ministic equivalent form of this model can be obtained as follows that
is a nonlinear programming:

Ẽ(chen−V RS)
o = max k

s.t
s∑

r=1

uryro +
D∑

d=1

wdzdo + u01 + u02 − k +Φ−1(α)σo(k, u, w, u01, u02) = s′′1

m∑
i=1

vixio +
D∑

d=1

wdzdo − Φ−1(α)σI(k, v, w) + s′′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u, u02) + s′′3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 − Φ−1(α)σ′
j(v, w, u01) + s′′4j = 0 j = 1, . . . , n

(16)
ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m
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s′′3j , s
′′
4j ≥ 0, j = 1, . . . , n

s′′1, s
′′
2 ≥ 0

u01, u02 free

We use the non-negative variables η, η′, ηj , η
′
j ≥ 0 in order to achieve a

quadratic programming problem. Therefore the quadratic programming
problem is as follows:

Ẽ(chen−V RS)
o = max k

s.t

s∑
r=1

uryro +

D∑
d=1

wdzdo + u01 + u02 − k +Φ−1(α)η = s′′1

m∑
i=1

vixio +

D∑
d=1

wdzdo − Φ−1(α)η′ + s′′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 − Φ−1(α)ηj + s′′3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 − Φ−1(α)η′j + s′′4j = 0 j = 1, . . . , n

η2 =

s∑
r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ 2cov((

s∑
r=1

urỹro + u01 + u02), (

D∑
d=1

wdz̃do − k))

η′
2
=

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

+

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o) + cov(

m∑
i=1

vix̃io,

D∑
d=1

wdz̃do) (17)

η2j =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +
D∑

d=1

D∑
d′=1

wdwd′=1cov(z̃dj , z̃d′j)

− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj + u02)
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η′
2

j =

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +
m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(
m∑
i=1

vix̃ij ,
D∑

d=1

wdz̃dj − u01)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

η, η′, ηj , η
′
j , s

′′
3j , s

′′
4j ≥ 0 j = 1, . . . , n

s′′1, s
′′
2,≥ 0

u01, u02 free

After solving this model for α ∈ (0, 0.5] , we define the efficiencies of the
system as follows:

Ẽ(chen−V RS)
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗
dzdo + u∗01 + u∗02

m∑
i=1

v∗i xio +
D∑

d=1

w∗
dzdo

ẼI
o =

D∑
d=1

w∗
dzdo + u∗02

m∑
i=1

v∗i xio

, ẼII
o =

s∑
r=1

u∗ryro + u∗01

D∑
d=1

w∗
dzdo

.

Wherein Ẽ
(chen−V RS)
o , ẼI

o , ẼII
o indicate the stochastic overall efficiency

and the stochastic efficiency of stage 1, 2 respectively. Therefore, there
is λ ∈ (0, 1) that Ẽ

(chen−V RS)
o = λẼI

o + (1− λ)ẼII
o .

Lemma 3.9. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. The proof is similar to the proof of lemma 3.3. □

Lemma 3.10. For α ∈ (0, 0.5], DMUo is stochastic overall efficient
under the model (15) if and only if the first and the second stages are
stochastic efficient, i.e. Ẽ

(chen−V RS)
o = 1 if and only if ẼI

o = ẼII
o = 1.
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Proof. The proof is similar to the proof of lemma 3.8. □
Finally, we note that the results of the efficiency of the system and
stages are in range (0, 1] in all of the proposed stochastic models for
α ∈ (0, 0.5]. If α ∈ (0.5, 1), may be efficiencies are negative or greater
than 1. It must be noted that in many cases the models (10), (15),
(17) have multiple optimal solutions. Thus, in these models, the over-
all efficiency decomposition will not be individual. Hence, we cannot
able to compare the stages efficiency of different DMUs together in each
model. Therefore, follow Kao and Hwang (2008) approach, we suppose
the efficiency of stage1, is the most important stage form the point of
view of the decision maker (DM) and compute the maximum efficiency
of stage 1, while the overall efficiency of system is unchanged. Then, we
calculate the maximum efficiency of stage 2, while the efficiency of stage
1 and the overall efficiency of system are unchanged.

4. Case study
In this section, we will illustrate the deterministic equivalent form of
the proposed stochastic model (7) on 10 Taiwanese non-life insurance
companies with data in 2000, 2001 and 2002 years (that extracted from
Kao and Hwang (2014)). Each company has a two-stage structure. Ta-
ble 1, shows Inputs Intermediate measures and outputs that we use to
illustrate the proposed models:

Table 1. The data of case study

Inputs Intermediate outputs
measures

Operating Direct written Underwriting
expenses premiums profit (Y1)

(X1) (Z1)
Insurance Reinsurance Investment
expenses premiums profit

(X2) (Z2) (Y2)
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4.1. Results of model (8)
Table 2 show the obtained efficiencies of model (8).����

Table 2. Stochastic efficiency obtained from model (8)

Efficiency of stage 1 Efficiency of stage 2 Overall efficiency
DMUs

1 0.94 0.4 0.37
2 0.72 0.59 0.43
3 0.54 1 0.54
4 0.8 0.24 0.19
5 0.49 0.23 0.11
6 0.37 0.59 0.22
7 0.46 0.26 0.12
8 0.38 0.65 0.25
9 0.47 0.34 0.16
10 0.55 0.46 0.25

The results computed by GAMS software and have been summarized
in Table 2, by assuming α = 0.45. In Table 2, first column is the number
of each DMU . The stochastic efficiency of stage 1 and stage 2 and the
overall efficiency are listed in the Columns 2 and 3 and 4 of Table 2,
respectively. As it is clear in 2, all of DMUs are inefficient. Between
the inefficient DMUs, DMU3, DMU5 with scores 0.54, 0.11 have the
best and the lowest overall efficiency. Also, DMU3 is efficient in stage 2.
The highest efficiency belongs to DMU1 in stage 1 and DMU5 in stage
2 with scores 0.94, 0.65, respectively. DMU6 in stage 1 and DMU5 in
stage 2 with efficiency scores 0.37, 0.23 have the lowest efficiency.

5. Conclusion
In the practice, there are many systems with internal structures such
as network systems. NDEA is employed to evaluate the performance
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of the network systems in presence of deterministic data. The special
case of network systems are their two-stage systems that the first stage
consumes the inputs to produce the intermediate measures, then these
intermediate measures consume to generate the outputs of the second
stage. In practice, the observations of inputs, intermediate measures,
and outputs are imprecise and they can be considered as stochastic
data. Hence, SDEA is a useful method for measuring the efficiency
of black box systems with stochastic data. Mirbolouki et al. [14] pro-
posed a stochastic model that evaluates the efficiency of a black box
system based on multiplier form of DEA. Therefore, in this paper, by
using the non-compensatory property of the multiplication operator and
the compensatory property of the additive operator, we extended NDEA
and SDEA models and proposed the SNDEA models for computing the
stochastic efficiencies of the two-stage systems in presence of stochastic
data based on the multiplicative and additive models. Then, for our
proposed stochastic models, we obtained the deterministic equivalent
forms and converted these deterministic forms into the quadratic pro-
gramming problems. Likewise, we showed that the obtained efficiencies
of these models are positive for α ∈ (0, 0.5]. Also, the proposed stochas-
tic model (7) is illustrated on a set of data from 10 Taiwanese non-life
insurance companies in 2000, 2001 and 2002 years that studied in Kao
and Hwang (2008) by using GAMS software. For future study, this work
can be extended to non- radial DEA models for measuring the efficiency
of a two-stage system in presence of stochastic data and ranking them
that has not this weakness of efficiencies for α ∈ (0.5, 1).
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