Note on the Covariance Coset of the Moore-Penrose Inverses in C^*-Algebras

M. H. Alizadeh
Islamic Azad University-Noor Branch

Abstract. We will introduce and study several algebraic properties of the covariance cosets in C^*-algebras. Indeed, we will characterize the covariance coset in terms of commutators. Also, we will show that for an invertible element b, the covariance coset of b^{-1} coincides with the covariance coset of b^*. Moreover, if b is normal, then the covariance coset of b coincides with the covariance coset of b^*. In addition, we will prove that the covariance coset is a cone.

AMS Subject Classification: 47A05; 46L05; 15A09
Keywords and Phrases: Moore-Penrose inverse; covariance set

1. Introduction

The concept of a generalized inverse seems to have been first mentioned in 1903 by Fredholm and the class of all pseudoinverses was characterized in 1912 by Hurwitz [2]. Generalized inverses of differential and integral operators thus antedated the generalized inverses of matrices, whose existence was first introduced and studied by Moore [13, 14] during the years 1910-1920. This notion was rediscovered by Penrose [9] in 1955, and is nowadays called the Moore-Penrose inverse. In recent years, generalized inverses and their properties have received a lot of attention (see for example [2, 3, 4, 10], and the references therein). The notion of generalized inverses in C^*-algebra, was introduced in the seminal paper by Harte and Mbekhta [4]. Harte and Mbekhta have shown that many important properties of Moore-Penrose inverses in C^*-algebra. A part of

Received: June 2012; Accepted: December 2012
literature has been dedicated to weighted Moore-Penrose inverse, spectral theory, closed range operators, linear preserver problems and numerical computations in the area of optimization, statistics and ill-posed problem, etc. (see [2, 5, 10, 14]). All these reasons have convinced many mathematicians, to start research in this rich and important branch of mathematics.

Throughout this paper \(\mathcal{A} \) be a unital \(C^\ast \)-algebra. An element \(a \in \mathcal{A} \) is called regular if it has a generalized inverse (in the sense of von Neumann) in \(\mathcal{A} \), i.e., there exists \(b \in \mathcal{A} \) such that

\[
aba = a.
\]

An element \(a \in \mathcal{A} \) is Moore-Penrose invertible if there exists \(b \in \mathcal{A} \) such that

\[
aba = a, \quad bab = b, \quad (ab)^\ast = ab \quad \text{and} \quad (ba)^\ast = ba.
\]

It is well known that each regular element in a \(C^\ast \)-algebra, has the Moore-Penrose inverse (denoted by MP– inverse from now on.). Generally MP– inverse is uniquely determined in \(\mathcal{A} \) if it exists. We will denote the MP–inverse of \(a \) by \(a^\dagger \).

In the following, we will denote by \(\mathcal{A}^{-1} \) and \(\mathcal{A}^\dagger \) the set of all invertible and MP– invertible elements of \(\mathcal{A} \), respectively. An element \(a \) in \(\mathcal{A} \) is called idempotent if \(a^2 = a \). A projection \(p \in \mathcal{A} \) satisfies \(p = p^\ast = p^2 \).

It should be noticed that if \(x \in \mathcal{A}^\dagger \), then \(xx^\dagger \) and \(x^\dagger x \) are projections. Moreover,

\[
(x x^\dagger)^\dagger = x x^\dagger \quad \text{and} \quad (x^\dagger x)^\dagger = x^\dagger x.
\]

The commutator of a pair of elements \(x \) and \(y \) in \(\mathcal{A} \) is defined by

\[
[x, y] = xy - yx.
\]

Obviously \([x, y] = 0 \) if and only if \(x \) and \(y \) commute.

Assume that \(a \) is an element in \(\mathcal{A}^{-1} \). Its inverse \(a^{-1} \) is covariant with respect to \(\mathcal{A}^{-1} \), i.e., for all \(b \in \mathcal{A}^{-1} \) we have

\[
(ba b^{-1})^{-1} = ba^{-1} b^{-1}.
\]
In general, the elements of A^\dagger are not covariant under A^{-1} (see [1]). For a given element $a \in A^\dagger$ with MP–inverse a^\dagger, we will denote the covariance set by $C(a)$ and define

$$C(a) = \{ b \in A^{-1} : (bab^{-1})^\dagger = ba^\dagger b^{-1} \}. \quad (1)$$

Covariance set was studied by [1], [6], [11] and [13]. In this note we introduce the notion of covariance coset of the Moore-Penrose inverses in C^*-algebras. In fact we define this set by reversing the roles of a and b in $C(a)$ and denote it by $B(b)$. i.e.,

$$B(b) = \{ a \in A^\dagger : (bab^{-1})^\dagger = ba^\dagger b^{-1} \}. \quad (2)$$

The notion of covariance coset was introduced by Robinson in [12] for matrices. In this paper we will characterize the covariance coset in terms of commutators. Also, we will show that for an invertible element $b \in A$ we have $B(b^{-1}) = B(b^*)$. Moreover, if b is normal, then $B(b) = B(b^{-1}) = B(b^*)$. In Proposition 4 and related corollaries we will describe the main properties of the covariance coset in C^*-algebras. We conclude the results by showing that for any non-zero scalar λ, $B(b) = B(\lambda b)$.

2. Main Results

In the following proposition we characterize $B(b)$ in terms of commutators.

Proposition 2.1. Assume $b \in A^{-1}$. Then the following statements are equivalent:

(i) $a \in B(b)$;

(ii) $[a^\dagger a, b^*b] = 0$ and $[aa^\dagger, b^*b] = 0$.

Proof. (i) \Rightarrow (ii): Suppose $a \in B(b)$. Therefore $ba^\dagger b^{-1}$ is the MP–inverse of bab^{-1}. Thus, $(ba^\dagger ab^{-1})^* = ba^\dagger ab^{-1}$. Therefore, $(b^*)^{-1} a^\dagger ab^*b = ba^\dagger a$. From here one can conclude that $[a^\dagger a, b^*b] = 0$. In a similar manner from $(baa^\dagger b^{-1})^* = ba^\dagger ab^{-1}$ we get that $[aa^\dagger , b^*b] = 0$.

(ii) \Rightarrow (i): Since a^\dagger is MP–inverse of a, it suffices to show that $(ba^\dagger ab^{-1})^* = ba^\dagger ab^{-1}$ and $(baa^\dagger b) = baa^\dagger b$. By the assumptions $[a^\dagger a, b^* b] = 0$. From this we obtain $(b^*)^{-1}a^\dagger ab^* b = ba^\dagger b$. Thus, $(ba^\dagger ab^{-1})^* = ba^\dagger ab^{-1}$. In a similar manner from $[aa^\dagger, b^* b] = 0$ we get $(baa^\dagger b^{-1})^* = baa^\dagger b^{-1}$.

Note that if $a \in A^\dagger$ with MP–inverse a^\dagger and $b \in A^{-1}$, then from the above proposition and Lemma 2.1 in [1], we conclude that

$$b \in C(a) \text{ if and only if } a \in B(b).$$

Also, we remark that $C(a) \subset A^{-1} \subset B(b) \subset A^\dagger$ for all $a \in A^\dagger$ and for each $b \in A^{-1}$.

Proposition 2.2. Assume that $b \in A^{-1}$. Then $B(b^*) = B(b^{-1})$.

Proof. By Proposition 2.1.

$$a \in B(b^*) \text{ if and only if } [a^\dagger a, bb^*] = 0 \text{ and } [aa^\dagger, bb^*] = 0.$$

This is equivalent to

$$a^\dagger abb^* = bb^* a^\dagger a \quad \text{and} \quad aa^\dagger bb^* = bb^* aa^\dagger. \quad (3)$$

Multiply (3) from left and right by $(bb^*)^{-1}$, we get

$$[a^\dagger a, (b^{-1})^* b^{-1}] = 0 \quad \text{and} \quad [aa^\dagger, (b^{-1})^* b^{-1}] = 0. \quad (4)$$

Again Proposition 1.1, shows that (4) holds if and only if $a \in B(b^{-1})$. □

Proposition 2.3. Assume that $b \in A^{-1}$ and b is normal. Then $B(b) = B(b^{-1})$.

Proof. Since b is normal, the equality is an immediate consequence of Proposition 2.2. □

We recall that a set $K \subset A$ is a cone if $x \in K$ implies $\lambda x \in K$ for each $\lambda \geq 0$. Also, an element $a \in A$ is called simply polar [4] if it has a commuting generalized inverse, that is, there exists a generalized inverse c of a, such that $[a, c] = 0$.
In the following proposition we collect some main properties of the covariance coset.

Proposition 2.4. Assume that \(b \in \mathcal{A}^{-1} \). Then, the following statements are equivalent:

(i) \(a \in \mathcal{B}(b) \);
(ii) \(a^\dagger \in \mathcal{B}(b) \);
(iii) \(a^* \in \mathcal{B}(b) \);
(iv) \(aa^\dagger \in \mathcal{B}(b) \) and \(a^\dagger a \in \mathcal{B}(b) \);
(v) \(\lambda a \in \mathcal{B}(b) \) for any non-zero scalar \(\lambda \).

Proof. First we show that (i) and (ii) are equivalent: By Proposition 1.1, \(a \in \mathcal{B}(b) \) if and only if

\[
\begin{bmatrix}
 a^\dagger a, b^* b
\end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix}
 aa^\dagger, b^* b
\end{bmatrix} = 0.
\]

(5)

Since \((a^\dagger)^\dagger = a \). Thus (5) is equivalent to

\[
\begin{bmatrix}
 a^\dagger (a^\dagger)^\dagger, b^* b
\end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix}
 (a^\dagger)^\dagger a^\dagger, b^* b
\end{bmatrix} = 0.
\]

(6)

Again, Proposition 1.1, shows that (6) holds if and only if \(a^\dagger \in \mathcal{B}(b) \).

(i) \(\iff \) (iii): In a similar manner, since \(a^\dagger a \) and \(aa^\dagger \) are normal elements we infer that \(a^\dagger a = a^* (a^*)^\dagger \) and \(aa^\dagger = (a^*)^\dagger a^* \) by applying Proposition 1.1, we get \(a \in \mathcal{B}(b) \iff a^* \in \mathcal{B}(b) \).

(i) \(\implies \) (iv): \(a \in \mathcal{B}(b) \) if and only if (5) holds. Since \(aa^\dagger = aa^\dagger aa^\dagger \) and \((aa^\dagger)^\dagger = aa^\dagger \). Thus (5) is equivalent to

\[
\begin{bmatrix}
 aa^\dagger (aa^\dagger)^\dagger, b^* b
\end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix}
 (aa^\dagger)^\dagger aa^\dagger, b^* b
\end{bmatrix} = 0.
\]

(7)

This implies that \(aa^\dagger \in \mathcal{B}(b) \). Similarly we get

\[
\begin{bmatrix}
 a^\dagger a (a^\dagger a)^\dagger, b^* b
\end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix}
 (a^\dagger a)^\dagger a^\dagger a, b^* b
\end{bmatrix} = 0.
\]

(8)

Thus, \(a^\dagger a \in \mathcal{B}(b) \).

For the proof of (iv) \(\implies \) (i); It is easy to verify that (iv) satisfies if and only if (5) and (8) hold. These together imply (5), that is, (i) holds.
(i) \(\iff\) (v): Since \(\lambda \neq 0\), \((\lambda a)^\dagger = \frac{1}{\lambda} a^\dagger = (a\lambda)^\dagger\). Now applying the Proposition 1.1, we obtain the result. \(\Box\)

Corollary 2.5. If \(b \in A^{-1}\), then \(B(b)\) is a cone.

It is well known that every normal element is simply polar. Hence

Corollary 2.6. If \(a\) is normal, then

\[a \in B(b) \iff aa^\dagger \in B(b) \iff a^\dagger a \in B(b).\]

Proposition 2.7. Assume that \(b \in A^{-1}\) and \(\lambda \neq 0\) is any scalar. Then \(B(b) = B(\lambda b)\).

Proof. By Proposition 1.1, \(a \in B(b)\) if and only if (5) satisfies which is equivalent to

\[
\left[a^\dagger a, (\lambda b)^* (\lambda b) \right] = 0 \quad \text{and} \quad \left[aa^\dagger, (\lambda b)^* (\lambda b) \right] = 0.
\]

This holds if and only if \(a \in B(\lambda b)\). \(\Box\)

References

Mohammad Hossein Alizadeh
Department of Mathematics
Assistant Professor of Mathematics
Islamic Azad University, Noor Branch
Noor, Iran
E-mail: alizadeh@aegean.gr