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1 Introduction

Two- and three-dimensional nonlinear mixed Volterra-Fredholm integral
equations (VFIE) of the second kind arise in the theory of the nonlin-
ear parabolic boundary value problems and the mathematical model of
the spatiotemporal development of various physical, mechanical, and
biological problems [5, 15]. Several algorithms have been proposed for
solving VFIE. In [7], a hybrid Legendre block-pulse method is used to
solve mixed Volterra-Fredholm integral equations. In the case of two-
dimensional VFIE, Hadizadeh et al. in [(] obtained a numerical solu-
tion of Volterra-Fredholm integral equations of mixed type using the
bivariate Chebyshev collocation approach. A continuous time colloca-
tion method for the linear VFIE with discrete convergence properties
was presented in [8]. Also, Banifatemi et al. [3] introduced a method
for solving VFIE using two-dimensional Legendre wavelets. Two meth-
ods based on Adomian decomposition series for approximation of the
solution of VFIE are presented in [10, 16]. The nonlinear systems of
mixed Volterra-Fredholm integral equations are solved numerically by
Maleknejad and Fadaei Yami [9]. Assari and Dehghan [2] introduced a
numerical scheme to solve two-dimensional nonlinear Volterra integral
equations of the second kind based on Galerkin method and moving least
squares (MLS) approach. Furthermore, some researchers investigated
numerical schemes to solve three-dimensional nonlinear mixed Volterra-
Fredholm integral equations. Mirzaee et al. [12] obtained a numerical
solution for three-dimensional nonlinear mixed Volterra-Fredholm inte-
gral equations via three-dimensional block-pulse functions. Also, Zigan
et al. [17] used the reduced differential transform method for solving the
three-dimensional Volterra integral equations.

This paper is organized as follows: In Section 2, we review an itera-
tive method for solving nonlinear functional equations. In Section 3, an
extension of the iterative method is presented for two-dimensional non-
linear mixed Volterra-Fredholm integral equations. We use the iterative
method to solve nonlinear three-dimensional Volterra-Fredholm integral
equations in Section 4. Finally, some conclusions are given in Section 5.
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2 Review of an iterative method

Daftardar-Gejji and Jafari [1] introduced an iterative technique to solve
nonlinear functional equations. Consider the following general functional
equation

y=DN(y) +g, (1)

where NN is a nonlinear operator in Banach space and ¢ is a known
function. An iterative method for solving (1) is as follows [1]:

Yo = G,
y1 = N(yﬁ)v

Yni1=Nyo+ - +ym) = N@o+ -+ Yn-1), m=12--- (2)

Definition 2.1. Let B be Banach space. The nonlinear operator N :
B — B is a contraction, if for any x,y € B there exists a constant
0 < L <1 such that

IN(z) = N()|| < Lllz =yl
The constant L is called the contraction coefficient [17].

Theorem 2.2 (Banach’s Fixed Point Theorem [13]). Let B be Banach
space and N be a contraction on B. Then, there exists a unique z* € B
such that N(x*) = z*.

Based on Theorem 2.2, Daftardar-Gejji and Jafari prove that

o0
y=g9+> v
i=1

is convergent to the solution of functional equation (1).

3 Two-dimensional integral equations

Consider the nonlinear two-dimensional Volterra-Fredholm integral equa-
tion (2DVFIE)

T b
f(z,t) = g(x,t) +/ / H(az,t,y,s,f(y,s))dsdy, x € [a,b), (3)
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where f(z,t) € L?(£2) is an unknown function, the function g(z,t) €
L*(Q) and H(z,t,y, s, f(y,s)) € L*(Q* xR)) are given and Q = [a,b) x
[a,b). From the iterative scheme (2), we get

fo(x,t) = g(x,t),

)
fl(mvt):/ /H(‘/EvtayvsafO(va))deya
b
/ H(x,t,y, 5, foly,s) + fi(y, s))dsdy

b
/ H(.’L‘,t,y, S, fo(yv 3))d8dya

xz b

fra(e.t) = [ [ b5 folwes) o )y
xz rb

/ /H(:CatvyasafO(yas)+"'+fm71(ya 8))d5dya (4)

m=2.3,...

a

Hence, we can obtain the solution of the nonlinear two-dimensional
Volterra-Fredholm integral equation (3) as

f(.%',t) = g(xat) + Zfz(x7t)
=1

Now, to establish the uniformly convergent (4) to the solution (3), we
consider the following standard assumptions.

(H1) The nonlinear function H is Lipschitz continuous, i.e., there exist
a constant 0 < L1 < 1 such that

‘H(x,t, Y, s, ®1) —H(m,t,y,s,CDQ)‘ < L1|®1 — @4, YV, &y € LA(R).

(H2) The function H(x, t,y, s, <I>) is bounded, i.e., there exists a constant
By > 0 such that

Hwtys®)| < B, Vo e LA(R)
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(H3) There exists a constant o > 0 such that
|z —al < a, Vz € [a,b).

Theorem 3.1. Suppose that (H1)-(H3) hold. Then,

> fila,t),
i=1

s uniformly convergent to the solution of the nonlinear two-dimensional
Volterra-Fredholm integral equation (3).

Proof. From (H2)—-(H3) and (4), we get

‘fl(:z’t)‘ =

H(z,t,y,s, foly, 8))d8dy‘
H(z,t,y,5,9(y,s)) )dsdy

<Bl/ / dsdy = B1(b—a)(x — a)
< Bla b— a Ml.
Also, (H1)—-(H3) result in

) =| [ [t o) + 1109

— H(:c, t,y,s, foly, s))} dsdy’

b
H(z,t,y,5, foly,s) + fi(y,s))

- H(CU, tvyv S, fO(y7 S)) ’dey

z b
éLl/ / | f1(y. s)|dsdy
<BlL1/ / —a)(b— a)dsdy

= B1Li(b— )2(2@

2
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Similarly

| frtr (2, 0)] = )/ /ab M (ot y,5 foly ) + -+ fnly,9))

- H(ﬁ,t, Y, s, fO(y, 3) + -+ fmfl(y, s))}dsdy‘

<L /x/b!fm(y,s>\dsdy
o)™

~ Iy (m+1)!

Hence

Therefore, > 2, fi(x,t) is absolutely and uniformly convergent to the
solution of 2DVFIE. [

3.1 Numerical experiments for 2DVFIE

To compare numerical results of the iterative method (4) with some ex-
isting methods to solve the two dimensional Volterra-Fredholm integral
equations, we consider three examples in which their exact solutions are
available. These examples have been solved using the proposed method
and the results have been reported in Tables 1-3. In order to analyze the
error of the new method, we introduce the absolute error at the selected
points of the given interval as

eit1(x,t) = |f(z,t) — fi(z, )], i=0,1,2,--- V(z,t) € Q,

where f(x,t) denotes the exact solution and f;(x,t) is the approximate
solution of 2DVFIE. Also, to show the accuracy and efficiency of the new
method, we compare the absolute error obtained from our method with
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absolute error achieved from operational matrix method (OM)[11] and
the method of multiquadric (MQs) radial basis functions [1]. Our codes
are implemented in Matlab 2017 programming environment on a 2.3Hz
Intel core i3 processor laptop and 4GB of RAM.
Example 3.2. Consider the following two-dimensional linear Volterra-
Fredholm integral equation of the second kind [1, 11]
T 1
fat) =gt~ [ [ Peristy.  0<a<1,
o Jo
where .
g(z,t) = §x2(3et + xt?).
The exact solution is f(x,t) = z2e’. The absolute error obtained by the
new method, OM and MQs are reported in Table 1.
Table 1: Absolute error for Example 3.2
Nodes OM [11] MQs [1] New method
m=me=16 N=5¢=1.9
(z,t) e1(x,t) ea(z,t) es(x,t)
(0,0) 0 2.4656F — 05 0 0 0
(0.1,0.1) 8.5538E — 04 1.4696E — 05 3.3333E — 06 1.3383E —08 4.2988F — 11
(0.2,0.2)  6.5403F — 04 3.3702F — 04 1.0666F — 04 8.5654F — 07 5.5025F — 09
(0.3,0.3) 7.2516FE — 04 2.4509F — 03 8.1000E — 04 9.7566E — 06 9.4016E — 08
(0.4,0.4) 1.0695E — 03 1.0058E — 02 3.4133E —03 5.4819E —05 7.0432FE — 07
(0.5,0.5) 3.5914FE — 04 3.0642FE — 02 1.0416E —02 2.0911F —04 3.3584E — 06
(0.6,0.6) 1.2525FE — 03 7.5896F — 02  2.5920F — 02 6.2442FE — 04 1.2034F — 05
(0.7,0.7)  1.0928E — 03 1.6355FE — 01  5.6023F — 02 1.5745E — 03 3.5403F — 05
(0.8,0.8) 1.2101E — 03 3.1748FE — 01  1.0922F — 01 3.5084F — 03 9.0153F — 05
(0.9,0.9) 1.6056E — 03 5.6960F — 01 1.9683F — 01 7.1125E —03 2.0561E — 04

Example 3.3. Consider the following two-dimensional nonlinear Volterra-

Fredholm integral equation of the second kind [1, 11]

T 1
fat) =gt + [ [ Eep sy, 0<a<t,
0 0



J. KHAZAEIAN et al.

where

2o, € =1, 4 4 2 3 4
g(x,t) =z%e +Wt e 9”(12:6—36 T4 24x° + 322° + 32z —1—3).
The exact solution is f(z,t) = 22e¢?. The absolute error of desired

methods are given in Table 2.

Table 2: Absolute error for Example 3.3

Nodes OM [11] MQs [1] New method
my=mo=16 N =5,¢=0.6

(z,t) e1(x,t) es(x,t) es(x,t)

(0,0) 0 6.4387E — 03 0 0 0
(0.1,0.1) 9.3910E — 04 6.9441F — 03 1.9233F — 07 5.5982F — 11 5.5977F — 11
(0.2,0.2) 6.3588E — 04 4.3133EF — 02 1.7728E — 05 3.0233FE — 08 3.0218F — 08
(0.3,0.3) 6.6109F — 04 9.8257TFE — 02  2.1893F — 04 9.2761FE — 07 9.2645F — 07
(0.4,0.4) 1.0241FE — 03 1.6816F£ — 01 1.1899F — 03 8.8489F — 06 8.8296F — 06
(0.5,0.5) 1.6976E — 04 2.6325F — 01  4.1339FE — 03 4.4737E —05 4.4597FE — 05
(0.6,0.6) 1.2434F — 03 3.8837F — 01 1.0838FE — 02 1.5208E — 04 1.5147E — 04
(0.7,0.7)  1.1309E — 03 5.3340FE — 01  2.3440F — 02 3.9481FE — 04 3.9294F — 04
(0.8,0.8) 1.4257FE — 03 6.9169F — 01  4.4095F — 02 8.4481F — 04 8.4029F — 04
(0.9,0.9) 2.1739E — 03 8.8598F — 01 7.4676FE — 02 1.5654F — 03 1.5563F — 03

Example 3.4. Consider the following two-dimensional linear Volterra-
Fredholm integral equation of the second kind [, 11]

x 1
fat) =g+ [ [ s= e i, 0<az,

where

Nz 4t - 2et 4
= ST — =€ —.
6 6

The exact solution is f(z,t) = sinz + ¢. The absolute error obtained
from the new method, OM and MQs are reported in Table 3.

g(z,t)

The iterative method (4) for solving two dimensional mixed Volterra-
Fredholm integral equations has many benefits some of which are listed
as follows:
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Table 3: Absolute error for Example 3.4

Nodes OM [11] MQs [1] New method

m=mo=16 N=5,¢c=2
(x,t) e1(z,t) ea(x,t) es(z,t)
(0,0) 0 1.9281F — 05 0 0 0

( ) 1.9057E — 02 3.5065E — 02 1.7528E —02 1.4733E—3 1.4733E — 03
( ) 5.0202E —02 7.3797E —02 3.6900E — 02 6.2382F —03 6.2382E — 03
( ) T7.7732E—02 1.1661E —01 5.8310E —02 1.4823F —02 1.4823F — 02
(0.4,0.4) 2.0232E—01 1.6394FE —01 8.1971F—02 2.7761E—02 2.7761F —02
(0.5,0.5) 5.2930E — 01  2.1625F —01 1.0812F — 01 4.5568E — 02 4.5568F — 02
( ) 3.9886E —01 2.7404FE —01 1.3702E —01 6.8723F —02 6.8723F — 02
( ) 3.8816E —01 3.3791E —01 1.6895E —01 9.7635F —02 9.7635E — 02
( ) 4.6088E —01 4.0851E —01 2.0426E—01 1.3261F—01 1.3261E —01
( ) 9.3261E — 01 4.8654F — 01 2.4327E —01 1.7378E —01 1.7378E —01

e It has a simple structure and new iteration can be obtained without
computational complex operations.

e From Tables 1-3, after three iteration the approximate solutions
approach to the exact answer with high accuracy.

4 Three-dimensional integral equations

In this section, we suppose the nonlinear three-dimensional Volterra-
Fredholm integral equation (3DVFIE) as

T 1 1
u(z,y, z) =v(z,y,2) + / / / K(m,y, z, s,t,r,u(s,t,r))drdtds,
0 0 0

where u(x,y, z) is an unknown function and the function v(z,y, z) and
lC(x, Y, 2,8, t,ru(s, t, 7“)) are known functions. Similar to (4), we intro-
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Figure 1: Comparing the absolute error of the new method, es(x,t),
with OM and MQs for Example 3.2 (top), Example 3.3 (middle), Ex-
ample 3.4 (down).
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duce an iterative method to solve 3DVFIE. Take

(l‘ Y,z )—v(x,y,z),

1,1
1(z,y, 2 —///IC:J;y,z,s,t,r,uo(s,t,r))drdtds,

0

o
o

1,1
(x,y,2 / / IC a: Yy 2y Syt ug(s, tyr) + u (s, t, T))drdtds
0o Jo

o

1,1
/ / K(z,y,2,s,t,ruo(s, t,r))drdtds,
o Jo Jo

Um+1 (T, Yy, 2 /// xy,zstruo(str)

4 um (s, t, 7)) drdtds

/// (2,5, 2,5, 0 (5,1,7)

st Upm—1(s, t, 7)) drdtds, =2,3,. (5)

Hence, the approximate solution to the nonlinear three-dimensional Volterra-
Fredholm integral equation is

[e's)
U(l‘,y, Z) = 'U(CB,y, Z) + Zuz(xa Y, Z)

Similar to Theorem 3.1, to establish the uniformly convergent (5) to the
solution of 3DVFIE, we consider the following assumptions.

(H4) The nonlinear function K is Lipschitz continuous, i.e., there exists
a constant 0 < Ly < 1 such that for all U1, ¥y € L?(R)

’K(x,y,z,s,t, r,\Ill) — K(m,y,z,s,t,r, \112)‘ < Lo| Uy — Uyl

(H5) The function IC(:L‘,y,z,s,t,r, \I/) is bounded, i.e., there exists a
constant By > 0 such that

‘K(x,y,z,s,t,r, \Il)‘ < Bo, V¥ € L*(R).
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Theorem 4.1. Suppose that (H3)-(H5) hold. Then,

00
Z Ui(ZC, Y, Z)>
=1

s uniformly convergent to the solution of nonlinear 3DVFIE.

Proof. The proof of this theorem is similar to Theorem 3.1. Hence, we
omit some details. From (H3), (H5) and (5), we have

T 1 1
/ / / lC(a:, Y, 2,8, t, 7, uo(s,t,r))drdtds
o Jo Jo

T 1 1
< Bg/ / / drdtds = Bsx
o Jo Jo

< Bya := Dy.

|u1(x,y, 2)‘ =

Now, (H4) gives us

z prl 1
uate2)| = | [ [ [ etz bt +usen)

- IC(ac, Y, 2, 8, t, 1, up(s, t, r))] drdtds‘

x 1 1
ng/ / / (s, t,7)
0o Jo Jo
x 1 1
§BQL2/ / / sdrdtds
o Jo Jo
2

B2 (Ong)
< — = Ds.
— Lo 2! 2

drdtds

Similarly, we get

T 1 1
‘um+1($,y72)‘=’/0/0/0 {K(w,y,z,s,t,r,uo(s,t,r)—i—-~+um(s,t,7~))

_ /C(:E,y, z, 5, ug(s, tr) + -+ um_l(s,t,r))}drdtdé;’

T 1 1
< BQ/ / / ‘um(s,t,r)‘drdtds
0 0 0

I m—+1

By (O‘ 2)

< ==~ 7 =D
=1

(m+1)! mL
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So
2 3
S o, mll) olb)
uz LY 2) = L2 1! Lo 2! Lo 3!
By aLg
- 1) = D",
LQ(

Therefore, (5) is absolutely and uniformly convergent to the solution of
3DVFIE. O

4.1 Numerical experiments for 3DVFIE

Now, we solve the nonlinear three-dimensional mixed Volterra-Fredholm
integral equations. Numerical results are reported in Tables 4-5 which
show that our proposed method has a higher accuracy than other meth-
ods. Note that to analyze the error of the new method for 3DVFIE, we
introduce the absolute error at the selected points of the given interval
as

Ey(z,t) = |u(z,y, 2) —ui(x,y, 2)],

where u(z,y, z) denotes the exact solution and w1 (z,y, z) is the approx-
imate solution.

Example 4.2. Consider the following three-dimensional nonlinear Volterra-
Fredholm integral equation of the second kind [12, 14]

u(z,y, z) =v(z,y, 2 / / / x4+ 8)(y +1")ztu (s,t,r)drdtds,

where

3
v(z,y,2) = 2%yz = 2ty P (14 297).

The exact solution is u(x,y, z) = x?yz. Table 4 illustrates the numerical
results for this example.

Example 4.3. Consider the following three-dimensional nonlinear Volterra-
Fredholm integral equation of the second kind [12, 11]

u(z,y,2) =v(x,y,2 / / / t(yz + sr)u’(s,t,r)drdtds,
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Table 4: Absolute errors for Example 4.2
Nodes 3DBPF [12] 3D-JCM [14] New method
m =3 N=3
(I’,y,Z) :2il EQ(mvt)
l= 2.2880F — 03 3.3951F — 05 9.4925F — 06
= 2.87T73FE — 03 7.6182F — 06 3.5346F — 07
=3 7.848F — 04 1.0490F — 06 2.7774F — 09
= 1.0137E — 03 1.1149F — 06 2.1448F — 11
=5 1.0280F — 03 1.1137E — 06 1.6695F — 13
= 1.0289F — 03 7.1648F — 07 1.3030F — 15
where

1

v(z,y,2) =yzsinz — 6%

34323 sin® w(x + 4yz).

The exact solution is u(z,y, z) = yzsinz. Table 5 illustrates the numer-
ical results for example 4.3.

Table 5: Absolute errors for Example 4.3

Nodes 3DBPF [12] 3D-JCM[ 1] New method
m=3 N =3
(CL‘,y,Z) =27 EQ(m’t)
=1 5.329F — 04 4.2354F — 05 3.0631F — 05
[ = 1.5094F — 04 5.3470F — 06 3.3029F — 07
= 2.6389F — 03 1.2354F — 07 2.2671F — 09
[ = 4.3430E — 03 2.5478E — 07 1.6333EF — 11
=5 4.5565EF — 03 2.3697FE — 07 1.2205F — 13
[ = 4.5832E — 03 8.2548F — 07 9.3161F — 16
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Figure 2: Comparing the absolute error of the new method with 3DBPF
and 3D-JCM for Example 4.2 (top) and Example 4.3 (down).

5 Conclusion

In this paper, we used an iterative method to solve two- and three-
dimensional nonlinear mixed Volterra-Fredholm integral equations of
the second kind. Our approach is based on an iterative method for solv-
ing nonlinear functional equations.
obtained for generating the sequence of approximate solutions where
advantages of our method are the simple structure and cheap compu-
tational cost. The numerical results show that the accuracy of the ob-
tained solutions of the new method is good in compared to some existing
methods to solve 2DVFIE and 3DVFIE.

A simple recurrence formula was
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