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Abstract. In this paper, we introduce the concept of primary sub-
modules over S which is a generalization of the concept of S-prime
submodules. Suppose S is a multiplicatively closed subset of a commu-
tative ring R and let M be a unital R-module. A proper submodule
Q of M with (Q :R M) ∩ S = ∅ is called primary over S if there is an
s ∈ S such that, for all a ∈ R, m ∈ M , am ∈ Q implies that sm ∈ Q or
san ∈ (Q :R M), for some positive integer n. We get some new results
on primary submodules over S. Furthermore, we compare the concept
of primary submodules over S with primary ones. In particular, we
show that a submodule Q is primary over S if and only if (Q :M s) is
primary, for some s ∈ S.
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1 Introduction

Throughout this paper, R will be a non-zero commutative ring with
identity and all modules are unital. Let K and L be two submodules of
an R-module M and I an ideal of R. We denote the ideal {a ∈ R | aL ⊆
K} by (K :R L) and the submodule {m ∈ M | Im ⊆ K} by (K :M I).
In particular, we use ann(M) instead of (0 :R M) and (K :M s) instead
of (K :M Rs), where Rs is the principal ideal generated by an element
s ∈ R. Also, the Jacobson radical of R is denoted by J(R) and we use
U(R) for the set of all unit elements of R. By Max(R) we mean the set
of all maximal ideals of R.

Recall that a proper submodule Q of an R-module M is primary if,
for all a ∈ R and m ∈M , am ∈ Q implies that m ∈ Q or an ∈ (Q :R M),
for some positive integer n, see, for example, [3], [4], [8], [10] and [11].
An R-module M is called a multiplication module if N = (N :R M)M ,
for every submodule N of M ([5] and [12]). A nonempty subset S of R
is called a multiplicatively closed subset (briefly, m.c.s.) of R if 0 /∈ S,
1 ∈ S and ss′ ∈ S, for all s, s′ ∈ S ([13]). Let S be a m.c.s. of R and
P a submodule of M with (P :R M) ∩ S = ∅. Then P is called an
S-prime submodule of M if there exists s ∈ S such that am ∈ P implies
that sm ∈ P or sa ∈ (P :R M), for each a ∈ R and m ∈ M . Note
that by taking s = 1, every prime submodule is an S-prime submodule.
In [9], the concept of S-prime submodules was defined. We generalize
this concept to primary submodules over S. A submodule Q of M with
(Q :R M) ∩ S = ∅ is called primary over S if there exists s ∈ S such
that, for all a ∈ R and m ∈ M , am ∈ Q implies that sm ∈ Q or
san ∈ (Q :R M), for some positive integer n. Since 1 ∈ S, all primary
submodules Q with (Q :R M) ∩ S = ∅ are primary over S . With an
additional assumption, we show that the converse is true. Being Q a
primary submodule over S is related to being (Q :R M) is so as an ideal.
Also, If M is a finitely generated R-module, then we find an equivalent
condition for a proper submodule Q to be primary over S in M .

2 Main Results

Definition 2.1. Let S be a m.c.s. of the ring R and Q a submodule of
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M as an R-module with (Q :R M) ∩ S = ∅. Then Q is called a primary
submodule over S if there exists s ∈ S such that, for all a ∈ R and
m ∈ M , am ∈ Q implies that sm ∈ Q or san ∈ (Q :R M), for some
positive integer n.

Clearly every S-prime submodule is primary over S. For instance,
in a vector space V over a field F , every proper submodule W of V is
S-prime and so primary over S, where S is an arbitrary m.c.s. of F .

Example 2.2. Let p be a fixed prime number. Each proper submodule
of the Z-module Zp∞ is of the form Gk = ( 1

pk
+ Z), for some integer

k ≥ 0 and (Gk :Z Zp∞) = 0. Take the m.c.s. S = {1, q, q2, ...}, for some
prime number q 6= p. Note that p( 1

pk+1 + Z) ∈ Gk but, for each s ∈ S,

s( 1
pk+1 + Z) /∈ Gk and spn /∈ (Gk :Z Zp∞) = 0, for all positive integer n.

Hence Gk is not primary over S, for all non-negative integers k and so
Zp∞ does not have any primary submodule over S.

Proposition 2.3. Suppose S is a m.c.s. of the ring R and M is an
R-module. If S ⊆ U(R) and Q is primary over S then Q is primary.

Proof. Since Q is primary over S, so there exists s ∈ S satisfying
the definition. Let a ∈ R, m ∈ M and am ∈ Q. By assumption, as
s ∈ S ⊆ U(R), m ∈ Q or an ∈ (Q :R M), for some positive integer n.
Therefore Q is primary. �

Proposition 2.4. Let S1 and S2 be multiplicatively closed subsets of the
ring R such that S1 ⊆ S2, M an R-module and Q a primary submodule
over S1 of M with (Q :R M) ∩ S1 = ∅. Then Q is primary over S2 in
case (Q :R M) ∩ S2 = ∅.

Proof. Since Q is primary over S1 so there exists s1 ∈ S1 satisfying the
definition. Let a ∈ R, m ∈ M and am ∈ Q. By hypothesis, s1m ∈ Q
or s1a

n ∈ (Q :R M), for some positive integer n. But S1 ⊆ S2. Thus
s1 ∈ S2 and we get the result. �

Recall that, for the m.c.s S of the ring R, the saturation S∗ of S is
defined as

S∗ = {x ∈ R | x
1
∈ U(S−1R)}.

Clearly, S∗ is a m.c.s. of R containing S ([6]).
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Proposition 2.5. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M . Then Q is primary over S if and only if Q is
primary over S∗.

Proof. Suppose that Q is primary over S. We show that (Q :R M) ∩
S∗ = ∅. For this, let x ∈ (Q :R M) ∩ S∗. So x

1 ∈ U(S−1R) and there
exist a ∈ R, s ∈ S such that xa

s = 1 which implies that uxa = us, for
some u ∈ S. Put us = s′ ∈ S. Then s′ = us = uxa ∈ (Q :R M) ∩ S, a
contradiction. So (Q :R M) ∩ S∗ = ∅. Since Q is primary over S and
S ⊆ S∗, by the above proposition, Q is primary over S∗.

Conversely, suppose that Q is primary over S∗. So there exists s∗ ∈
S∗ satisfying the definition. Let a ∈ R, m ∈ M and am ∈ Q. By
hypothesis, s∗m ∈ Q or s∗an ∈ (Q :R M), for some positive integer n.
Also, s∗ ∈ S∗. Thus there exist s ∈ S and b ∈ R such that s∗b

s = 1
and so us = us∗b, for some u ∈ S. By taking us = s′ ∈ S, s′m =
usm = us∗bm ∈ Q or s′an = usan = us∗ban ∈ (Q :R M). Therefore Q
is primary over S. �

Proposition 2.6. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M . If Q is a primary submodule over S then S−1Q
is a primary submodule of S−1M as an S−1R-module.

Proof. Assume that Q is a primary submodule over S. Let r
s
m
t ∈ S

−1Q,
where r

s ∈ S
−1R and m

t ∈ S
−1M . There exist q ∈ Q and v ∈ S such that

rm
st = q

v and so uvrm = ustq ∈ Q, for some u ∈ S. Since Q is primary
over S, there exists s′ ∈ S so that s′m ∈ Q or s′(uvr)n ∈ (Q :R M),

for some positive integer n. Thus m
t = s′m

s′t ∈ S
−1Q or rn

sn = s′(uvr)n

s′(uvs)n ∈
S−1(Q :R M) ⊆ (S−1Q :S−1R S−1M). Therefore S−1Q is a primary
submodule of S−1M as an S−1R-module. �

The converse of the above proposition is not true in general.

Example 2.7. Consider the Z-module Q × Q, where Q is the field of
rational numbers. Take N = Z × 0 and S = Z − {0}. Then S is
a m.c.s. of Z and S−1Z = Q is a field. So S−1(Q × Q) is a vector
space over S−1Z = Q and the proper submodule S−1N is a primary
submodule of S−1(Q × Q). Obviously, (N :Z Q × Q) = 0. Let s be an
arbitrary element of S and choose a prime number p with (p, s) = 1.
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Note that p(1p , 0) = (1, 0) ∈ N , s(1p , 0) = ( sp , 0) /∈ N = Z × 0 and
spn /∈ (N :Z Q×Q), for each positive integer n, which shows that N is
not primary over S.

Now, we characterize primary submodules over S of modules over
the ring R in case R is Noetherian.

Lemma 2.8. Let R be a Noetherian ring, M an R-module and Q a
submodule of M . Suppose that S is a m.c.s. of R such that (Q :R
M) ∩ S = ∅. Then the following are equivalent.

(i) Q is primary over S;

(ii) There exists s ∈ S such that, for each ideal J of R and submodule
N of M , JN ⊆ Q implies that sN ⊆ Q or sJn ⊆ (Q :R M), for some
positive integer n.

Proof. (i) =⇒ (ii) Assume that Q is a primary submodule over S. Thus
there exists s ∈ S satisfying the definition. Let J be an ideal of R, N
a submodule of M and JN ⊆ Q. If sN ⊆ Q we are done. Otherwise,
there exists x ∈ N such that sx /∈ Q. But R is a Noetherian ring and
J is an ideal of R. Therefore J = (a1, a2, ..., ak). We have aix ∈ Q,
for each i = 1, ..., k. Since Q is primary over S and sx /∈ Q so, for
each i = 1, ..., k, sakii ∈ (Q :R M), for some positive integer ki. Put

n =
∑k

i=1(ki − 1) + 1. In this case, sJn ⊆ (Q :R M).

(ii) =⇒ (i) Let a ∈ R, m ∈ M and am ∈ Q. Put J = Ra and
N = Rm. Then JN = Ram ⊆ Q. By assumption, sN = Rsm ⊆ Q
or sJn = Rsan ⊆ (Q :R M), for some positive integer n and so either
sm ∈ Q or san ∈ (Q :R M). Therefore Q is a primary submodule over
S. �

Corollary 2.9. Suppose that S is a m.c.s. of a Noetherian ring R and
Q an ideal of R such that (Q :R M) ∩ S = ∅. Then the following are
equivalent.

(i) Q is primary over S in R;

(ii) There exists s ∈ S such that, for every ideals I and J of R, if
JI ⊆ Q then sI ⊆ Q or sJn ⊆ Q, for some positive integer n.

Proposition 2.10. Let S be a m.c.s. of the ring R and f : M −→ M ′

an R-homomorphism. Then
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(i) If Q′ is primary over S in M ′ provided that (f−1(Q′) :R M)∩S =
∅, then f−1(Q′) is so in M .

(ii) If f is an epimorphism and Q is primary over S in M such that
Kerf ⊆ Q, then f(Q) is so in M ′.

Proof. (i) Since Q′ is primary over S in M ′, there exists s ∈ S satisfying
the definition. Let am ∈ f−1(Q′), for some a ∈ R and m ∈ M . Then
f(am) = af(m) ∈ Q′. By assumption, sf(m) = f(sm) ∈ Q′ or san ∈
(Q′ :R M ′), for some positive integer n. Now we show that (Q′ :R
M ′) ⊆ (f−1(Q′) :R M). Take x ∈ (Q′ :R M ′), we have xM ′ ⊆ Q′.
Since f(M) ⊆ M ′, f(xM) = xf(M) ⊆ xM ′ ⊆ Q′ so xM ⊆ xM +
Kerf = f−1(f(xM)) ⊆ f−1(Q′) and thus x ∈ (f−1(Q′) :R M). As
(Q′ :R M ′) ⊆ (f−1(Q′) :R M), we can conclude either sm ∈ f−1(Q′) or
san ∈ (f−1(Q′) :R M). Hence f−1(Q′) is primary over S in M .

(ii) First we claim that (f(Q) :R M ′)∩S = ∅. Otherwise, there exists
an element s ∈ (f(Q) :R M ′)∩S and so f(sM) = sf(M) ⊆ sM ′ ⊆ f(Q).
By taking their inverse images under f , we have sM ⊆ sM + Kerf ⊆
Q + Kerf = Q, which means sM ⊆ Q. Thus s ∈ (Q :R M) ∩ S, a
contradiction. By assumption, Q is primary over S in M . Then there
exists an element s ∈ S satisfying the definition. Now take a ∈ R,
m′ ∈ M ′ such that am′ ∈ f(Q). As f is an epimorphism, there exists
m ∈ M such that m′ = f(m). Hence am′ = af(m) = f(am) ∈ f(Q).
Since Kerf ⊆ Q, am ∈ Q. But Q is primary over S in M . Hence
we have sm ∈ Q or san ∈ (Q :R M), for some positive integer n. But
(Q :R M) ⊆ (f(Q) :R M ′). Therefore f(sm) = sf(m) = sm′ ∈ f(Q) or
san ∈ (f(Q) :R M ′). Consequently, f(Q) is primary over S in M ′. �

Being f an epimorphism in part (ii) is essential. Let us give an
example.

Example 2.11. Let R = Z, M = Z, S = {−1, 1} and f : Z −→ Z
with f(x) = 6x. Then f is a Z-homomorphism which is not onto. By
Proposition 2.3, primary and primary submodules over S in Z are the
same. We know that 0 and (p)n, where p is an arbitrary prime number
and n a positive integer, are all primary submodules in Z ([3]). Let
Q = 3Z. Then Q is primary and f(Q) = 18Z is not primary.

Corollary 2.12. Let S be a m.c.s. of the ring R and L a submodule of
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the R-module M . Then
(i) If Q′ is primary over S in M with (Q′ :R L)∩ S = ∅ then L∩Q′

is primary over S in L.
(ii) Suppose that Q is a submodule of M with L ⊆ Q. Then Q is

primary over S in M if and only if Q
L is so in M

L .

Proof. (i) Consider the injection i : L −→ M defined by i(m) = m,
for all m ∈ L. Then i−1(Q′) = L ∩ Q′. Now we claim that (i−1(Q′) :R
L) ∩ S = ∅. For it, let s ∈ (i−1(Q′) :R L) ∩ S. Then sL ⊆ i−1(Q′) =
L ∩ Q′ ⊆ Q′ and thus s ∈ (Q′ :R L) ∩ S, a contradiction. The result
follows by Proposition 2.10.

(ii) Let Q be primary over S in M and π : M −→ M
L be the canonical

epimorphism defined by π(m) = m + L, for all m ∈ M . Since L =
Kerπ ⊆ Q so Q

L is primary over S in M
L , by Proposition 2.10 part (ii).

Conversely, assume that Q
L is primary over S in M

L . There exists
s ∈ S satisfying the definition. Let am ∈ Q, for some a ∈ R and
m ∈ M . This implies that a(m + L) = am + L ∈ Q

L . By assumption,

s(m+L) = sm+L ∈ Q
L or san ∈ (QL :R

M
L ) = (Q :R M), for some positive

integer n. Therefore, sm ∈ Q or san ∈ (Q :R M). Consequently, Q is
primary over S in M . �

Proposition 2.13. Let S be a m.c.s. of the ring R and M an R-module.
The following statements hold.

(i) If Q is primary over S in M then (Q :R M) is so in R.
(ii) If R is Noetherian, M a multiplication module over R and (Q :R

M) is primary over S in R, then Q is so in M .

Proof. (i) Let Q be primary over S in M . There exists s ∈ S satisfying
the definition. Let xy ∈ (Q :R M), for some x, y ∈ R. Then xym ∈ Q,
for all m ∈ M . If sxn ∈ (Q :R M), for some positive integer n, we are
done. Otherwise, sym ∈ Q, for all m ∈M which means that sy ∈ (Q :R
M). Therefore (Q :R M) is primary over S in M .

(ii) Assume that M is a multiplication module over a Noetherian ring
R and (Q :R M) is primary over S in R. There exists s ∈ S satisfying
in Corollary 2.9 part (ii). Let J be an ideal of R and N a submodule
of M with JN ⊆ Q. Then J(N :R M) ⊆ (JN :R M) ⊆ (Q :R M).
As (Q :R M) is primary over S in R, s(N :R M) ⊆ (Q :R M) or
sJn ⊆ (Q :R M), for some positive integer n. Thus sN = s(N :R
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M)M ⊆ (Q :R M)M = Q or sJn ⊆ (Q :R M). By Lemma 2.8, Q is
primary over S in M . �

Let K and L be submodules of the multiplication R-module M .
Recall that the product of K and L is defined as KL = (K :R M)(L :R
M)M ([1]).

Corollary 2.14. Let M be a multiplication module over a Noetherian
ring R and Q a submodule of M with (Q :R M) ∩ S = ∅, where S is a
m.c.s. of R. The following are equivalent.

(i) Q is primary over S in M ;

(ii) There exists s ∈ S such that, for every two submodules K and L
of M with KL ⊆ Q, sL ⊆ Q or sKn ⊆ Q, for some positive integer n.

Proof. (i) =⇒ (ii) There exists s ∈ S satisfying in Lemma 2.8 part (ii).
Let K and L be submodules of M with KL ⊆ Q. Then (K :R M)(L :R
M)M ⊆ Q and so s(L :R M)M ⊆ Q or s(K :R M)n ⊆ (Q :R M), for
some positive integer n. Hence sL ⊆ Q or s(K :R M)n ⊆ (Q :R M).
If sL ⊆ Q we are done. Otherwise, s(K :R M)n ⊆ (Q :R M) and so
s(K :R M)nM ⊆ (Q :R M)M = Q. Therefore sKn ⊆ Q.

(ii) =⇒(i) Let am ∈ Q, for some a ∈ R and m ∈ M . Put L = Rm
and J = Ra. Then JL ⊆ Q and JLM ⊆ QM = Q. Take K = JM .
In this case, KL ⊆ Q. By hypothesis, sL ⊆ Q or sKn ⊆ Q, for some
positive integer n. Then we have sL ⊆ Q or s(K :R M)nM ⊆ Q. If
sL ⊆ Q, since L = Rm so sm ∈ Q and we are done. Now suppose that
s(K :R M)nM ⊆ Q. Since K = JM and J = Ra, san ∈ (Q :R M).
Therefore Q is primary over S. �

Theorem 2.15. Let S be a m.c.s. of the Noetherian ring R and M
a finitely generated multiplication R-module. For a submodule Q of M
with (Q :R M) ∩ S = ∅, the following are equivalent.

(i) Q is primary over S;

(ii) (Q :R M) is primary over S in R;

(iii) Q = IM , for some primary ideal I over S in R with ann(M) ⊆
I.

Proof. (i) =⇒ (ii) It is clear by Proposition 2.13.

(ii) =⇒ (iii) By taking I = (Q :R M), we get the result.
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(iii) =⇒ (i) Suppose that Q = IM , for some primary ideal I over S
in R with ann(M) ⊆ I. There exists s ∈ S satisfying in Corollary 2.9
part (ii). Assume that JN ⊆ Q, for some ideal J of R and submodule N
of M . Then J(N :R M)M ⊆ IM . By [12], J(N :R M) ⊆ I+annM = I.
By hypothesis, s(N :R M) ⊆ I ⊆ (Q :R M) or sJn ⊆ I ⊆ (Q :R M), for
some positive integer n. So sN ⊆ Q or sJn ⊆ (Q :R M). Hence Q is
primary over S in M . �

Lemma 2.16. Let Si be a m.c.s of the ring Ri, for i = 1, 2. Put
S = S1 × S2 as a m.c.s. of the ring R = R1 × R2. For each ideal
Q = Q1 ×Q2 of R, the following are equivalent.

(i) Q is primary over S in R;
(ii) Q1 is primary over S1 in R1 and Q2 ∩ S2 6= ∅ or Q2 is primary

over S2 in R2 and Q1 ∩ S1 6= ∅.

Proof. (i) =⇒ (ii) Suppose that Q is primary over S in R. There exists
s = (s1, s2) ∈ S satisfying the definition. Since (1, 0)(0, 1) = (0, 0) ∈ Q,
so s(0, 1) = (0, s2) ∈ Q or s(1, 0)n = (s1, 0) ∈ Q, for some positive
integer n. Thus s1 ∈ Q1 ∩ S1 or s2 ∈ Q2 ∩ S2. Therefore Q1 ∩ S1 6= ∅ or
Q2 ∩ S2 6= ∅. We may assume that Q1 ∩ S1 6= ∅ and show Q2 is primary
over S2 in M2. Since Q ∩ S = ∅ so Q2 ∩ S2 = ∅. Let xy ∈ Q2, for
some x, y ∈ R2. Since (0, x)(0, y) ∈ Q and Q is primary over S in R,
either s(0, y) = (0, s2y) ∈ Q or s(0, x)n = (0, s2x

n) ∈ Q. This means
that s2y ∈ Q2 or s2x

n ∈ Q2. Therefore Q2 is primary over S2 in R2. In
other case, one can easily show that Q1 is primary over S1 in R1.

(ii) =⇒ (i) Assume that Q1 ∩ S1 6= ∅ and Q2 is primary over S2
in R2. We show that Q is primary over S. Since Q1 ∩ S1 6= ∅, there
exists s1 ∈ Q1 ∩ S1. Moreover, we have s2 ∈ S2 satisfying the definition
of being primary over S2. Let (a, b)(c, d) = (ac, bd) ∈ Q, for some
a, c ∈ R1 and b, d ∈ R2. This implies that bd ∈ Q2 and thus s2d ∈ Q2

or s2b
n ∈ Q2, for some positive integer n. Put s = (s1, s2) ∈ S. Then

s(c, d) = (s1c, s2d) ∈ Q or s(a, b)n = (s1a
n, s2b

n) ∈ Q. Therefore Q is
primary over S in R. In the other case, one can similarly prove that Q
is primary over S in R. �

Theorem 2.17. Let Si be a m.c.s of the ring Ri and Mi an Ri-module,
for i = 1, 2. Suppose that Q = Q1×Q2 is a submodule of M = M1×M2

as an R = R1 ×R2-module. The following are equivalent.
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(i) Q is primary over S in M ;
(ii) Q1 is primary over S1 in M1 and (Q2 :R2 M2) ∩ S2 6= ∅ or

(Q1 :R1 M1) ∩ S1 6= ∅ and Q2 is primary over S2 in M2.

Proof. (i) =⇒ (ii) Assume that Q is primary over S in M . We have
s = (s1, s2) ∈ S satisfying the definition. By Proposition 2.13, (Q :R
M) = (Q1 :R1 M1) × (Q2 :R2 M2) is primary over S in R, and so by
Lemma 2.16, either (Q1 :R1 M1) ∩ S1 6= ∅ or (Q2 :R2 M2) ∩ S2 6= ∅. We
may assume that (Q1 :R1 M1) ∩ S1 6= ∅. Let am ∈ Q2, for some a ∈ R2,
m ∈ M2. Then (1, a)(0,m) = (0, am) ∈ Q. Since Q is primary over S
so s(0,m) = (0, s2m) ∈ Q or s(1, a)n = (s1, s2a

n) ∈ (Q :R M), for some
positive integer n. This implies that s2m ∈ Q2 or s2a

n ∈ (Q2 :R2 M2).
Therefore Q2 is primary over S2. In the other case, one can similarly
show that Q1 is primary over S1 in M1.

(ii) =⇒ (i) Assume that (Q1 :R1 M1)∩S1 6= ∅ and Q2 is primary over
S2 in M2. Thus there exists s1 ∈ (Q1 :R1 M1) ∩ S1 and we have s2 ∈ S2
satisfying the definition of primary over S2. Now, let (a1, a2)(m1,m2) =
(a1m1, a2m2) ∈ Q, for some ai ∈ Ri and mi ∈Mi, i = 1, 2. Then a2m2 ∈
Q2. Since Q2 is primary over S2, so s2m2 ∈ Q2 or s2a

n
2 ∈ (Q2 :R2 M2),

for some positive integer n. Put s = (s1, s2) ∈ S. Then s(m1,m2) =
(s1m1, s2m2) ∈ Q = Q1 × Q2 or s(a1, a2)

n = (s1a
n
1 , s2a

n
2 ) ∈ (Q :R M).

Therefore Q is primary over S. Similarly, one can show that if Q1 is
primary over S1 in M1 and (Q2 :R2 M2) ∩ S2 6= ∅, then Q is primary
over S in M . �

Theorem 2.18. Let Si be a m.c.s of the ring Ri and Mi an Ri-module,
for i = 1, 2, ..., n. Take M = M1×M2×· · ·×Mn as an R = R1×R2×· ·
·×Rn-module and S = S1×S2×· · ·×Sn as a m.c.s. of R. Assume that
Q = Q1×Q2× · · ·×Qn is a submodule of M . The following statements
are equivalent.

(i) Q is primary over S in M ;
(ii) Qi is primary over Si in Mi, for some i ∈ {1, 2, ..., n} and (Qj :Rj

Mj) ∩ Sj 6= ∅, for all j ∈ {1, 2, ..., n} − {i}.

Proof. We prove it by induction on n. For n = 1, the result is true.
If n = 2 then (i) ⇐⇒ (ii) follows from Theorem 2.17. Assume that (i)
and (ii) are equivalent for every positive integer k < n. Now, we shall
prove that (i) ⇐⇒ (ii) when k = n. Put M ′ = M1 ×M2 × · · · ×Mn−1,
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R′ = R1 × R2 × · · · × Rn−1, Q
′ = Q1 × Q2 × · · · × Qn−1 and S′ =

S1×S2× · · · ×Sn−1. By Theorem 2.17, Q = Q′×Qn is primary over S
in M if and only if Q′ is primary over S′ in M ′ and (Qn :Rn Mn)∩Sn 6= ∅
or (Q′ :R′ M

′)∩S′ 6= ∅ and Qn is primary over Sn in Mn. The rest follows
from the induction hypothesis. �

Lemma 2.19. Let S be a m.c.s of the ring R and Q a primary submosule
over S of an R-module M . The following statements hold, for some
s ∈ S.

(i) (Q :M s′) ⊆ (Q :M s), for all s′ ∈ S.
(ii) ((Q :R M) :R s′) ⊆ ((Q :R M) :R s), for all s′ ∈ S.

Proof. (i) Since Q is primary over S in R so there exists s ∈ S satisfying
the definition. By taking s′ ∈ S and m′ ∈ (Q :M s′), s′m′ ∈ Q. Thus
sm′ ∈ Q or ss′n ∈ (Q :R M), for some positive integer n. Since (Q :R
M) ∩ S = ∅ so sm′ ∈ Q, which means that m′ ∈ (Q :M s).

(ii) We know that (Q :R M) is primary over S in R, so it is enough
to replace (Q :R M) instead of Q in part (i). �

Proposition 2.20. Let S be a m.c.s. of the ring R, M a finitely gen-
erated R-module and Q a submodule of M satisfying (Q :R M)∩ S = ∅.
The following are equivalent.

(i) Q is primary over S in R;
(ii) S−1Q is a primary submodule of S−1M and there exists s ∈ S

satisfying (Q :M s′) ⊆ (Q :M s), for all s′ ∈ S.

Proof. (i) =⇒ (ii) It is clear from Proposition 2.6 and Lemma 2.19.
(ii) =⇒ (i) Let a ∈ R, m ∈M and am ∈ Q. Then am

1 ∈ S
−1Q. Since

S−1Q is a primary submodule of S−1M and M is finitely generated so
m
1 ∈ S−1Q or an

1 ∈ (S−1Q :S−1R S−1M) = S−1(Q :R M), for some
positive integer n. Thus u′m ∈ Q or uan ∈ (Q :R M), for some u, u′ ∈ S.
By assumption, there exists s ∈ S so that (Q :M s′) ⊆ (Q :M s), for all
s′ ∈ S. If uan ∈ (Q :R M) then anM ⊆ (Q :M u) ⊆ (Q :M s) and thus
san ∈ (Q :R M). If u′m ∈ Q a similar argument shows that sm ∈ Q.
Therefore Q is primary over S in M . �

Theorem 2.21. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M such that (Q :R M) ∩ S = ∅. Then Q is primary
over S in M if and only if (Q :M s) is primary in M , for some s ∈ S.
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Proof. Suppose that (Q :M s) is primary in M , for some s ∈ S. Let
am ∈ Q, for some a ∈ R and m ∈ M . Since am ∈ Q ⊆ (Q :M s) and
(Q :M s) is primary, so m ∈ (Q :M s) or an ∈ ((Q :M s) :R M), for some
positive integer n. This implies that sm ∈ Q or san ∈ (Q :R M).

Conversely, suppose thatQ is primary over S inM . Then there exists
s ∈ S satisfying the definition. Now we prove that (Q :M s) is primary
in M . For it, let a ∈ R, m ∈ M and am ∈ (Q :M s). Then (sa)m ∈ Q.
Since Q is primary over S so sm ∈ Q or sn+1an ∈ (Q :R M), for some
positive integer n. If sm ∈ Q we are done. Otherwise sn+1an ∈ (Q :R
M) and so, by Lemma 2.19, an ∈ ((Q :R M) :R sn+1) ⊆ ((Q :R M) :R s).
Thus we can conclude that an ∈ ((Q :M s) :R M) and hence (Q :M s) is
primary. �

Theorem 2.22. Let M be a module over the ring R and Q a submodule
of M such that (Q :R M) ⊆ J(R), where J(R) is the Jacobson radical
of R. The following statements are equivalent.

(i) Q is primary in M ;
(ii) (Q :R M) is primary and Q is primary over R − m, for all

maximal ideals m of R.

Proof. (i) =⇒ (ii) Suppose that Q is primary. Since (Q :R M) ⊆ J(R),
so (Q :R M) ⊆m, for all maximal ideals m. Hence (Q :R M)∩(R−m) =
∅, for all maximal ideals m. The rest follows clearly.

(ii) =⇒(i) Suppose (Q :R M) is primary and Q is primary over
R − m, for all maximal ideals m. Let a ∈ R, m ∈ M and am ∈ Q
with an /∈ (Q :R M), for each positive integer n. Let m be a maximal
ideal. Since Q is primary over R −m so there exists sm ∈ R −m such
that smm ∈ Q or sma

k ∈ (Q :R M), for some positive integer k. But
(Q :R M) is primary, sm /∈ (Q :R M) and an /∈ (Q :R M), for each
positive integer n. Thus smm ∈ Q. Now define the set Ω = {sm | ∃m ∈
Max(R) 3: sm /∈ m, smm ∈ Q}. Now we show that (Ω), the ideal
generated by Ω, is equal to R. For it, let m′ be a maximal ideal such
that Ω ⊆ m′. The definition of Ω requires that there exists s m′ ∈ Ω
and sm′ /∈ m′. Since Ω ⊆ m′ so sm′ ∈ Ω ⊆ m′, a contradiction. Thus
(Ω) = R which implies that 1 = r1sm1 + r2sm2 + · · ·+ rnsmn , for some
ri ∈ R and smi /∈ mi with smim ∈ Q and mi ∈ Max(R), for each
i = 1, 2, ..., n. Thus m = r1sm1m+ r2sm2m+ · · ·+ rnsmnm ∈ Q and so
Q is primary. �
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Corollary 2.23. Suppose that M is a module over a ring R with unique
maximal ideal m. The following are equivalent.

(i) Q is primary in M .

(ii) (Q :R M) is primary in R and Q is primary over R−m in M .

Proof. It is clear by Theorem 2.22. �

Suppose that M is a module over the ring R. Nagata introduced the
idealization R(+)M of M . Here R(+)M = R ⊕M is a commutative
ring whose addition is componentwise and multiplication is defined as
(a,m)(b,m

′
) = (ab, am

′
+ bm), for each a, b ∈ R and m,m′ ∈ M ([7]).

The name comes from the fact that if N is a submodule of M , then
0(+)N is an ideal of R(+)M . If S is a m.c.s. of the ring R and N a
submodule of an R-module M , then S(+)N = {(s, n) | s ∈ S, n ∈ N} is
a m.c.s. of R(+)M ([2]).

Proposition 2.24. Let S be a m.c.s. of the ring R and Q an ideal of
R such that Q ∩ S = ∅. The following are equivalent.

(i) Q is a primary ideal over S in R;

(ii) Q(+)M is a primary ideal over S(+)0 in R(+)M ;

(iii) Q(+)M is a primary ideal over S(+)M in R(+)M .

Proof. (i) =⇒ (ii) Suppose Q is primary over S in R. There exists s ∈ S
satisfying the definition. Let (x,m)(y,m′) = (xy, xm′ + ym) ∈ Q(+)M ,
for some x, y ∈ R and m,m′ ∈ M . Then we have xy ∈ Q. Since Q is
primary over S in R so sy ∈ Q or sxn ∈ Q, for some positive integer
n. By putting s′ = (s, 0) ∈ S(+)0, we have s′(y,m′) = (s, 0)(y,m′) ∈
Q(+)M or s′(x,m)n = (s, 0)(xn, nxn−1m) = (sxn, nsxn−1m) ∈ Q(+)M .
Therefore Q(+)M is primary over S(+)0 in R(+)M .

(ii) =⇒ (iii) It is clear by Proposition 2.4.

(iii) =⇒ (i) Suppose that Q(+)M is primary over S(+)M in R(+)M .
There exists s = (s1,m1) ∈ S(+)M satisfying the definition. Let
xy ∈ Q, for some x, y ∈ R. Then (x, 0)(y, 0) = (xy, 0) ∈ Q(+)M . By
hypothesis, s(y, 0) = (s1,m1)(y, 0) = (s1y, ym1) ∈ Q(+)M or s(x, 0)n =
(s1,m1)(x

n, 0) = (s1x
n, xnm1) ∈ Q(+)M , for some positive integer n.

Hence, s1y ∈ Q or s1x
n ∈ Q and so Q is primary over S. �
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