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1 Introduction

Throughout this paper, R will be a non-zero commutative ring with
identity and all modules are unital. Let K and L be two submodules of
an R-module M and I an ideal of R. We denote the ideal {a € R | aL C
K} by (K :r L) and the submodule {m € M | Im C K} by (K :a I).
In particular, we use ann(M) instead of (0:p M) and (K :js s) instead
of (K :pr Rs), where Rs is the principal ideal generated by an element
s € R. Also, the Jacobson radical of R is denoted by J(R) and we use
U(R) for the set of all unit elements of R. By Maxz(R) we mean the set
of all maximal ideals of R.

Recall that a proper submodule ) of an R-module M is primary if,
foralla € Rand m € M, am € @ implies that m € Q or a" € (Q :r M),
for some positive integer n, see, for example, [3], [1], [8], [10] and [11].
An R-module M is called a multiplication module if N = (N :r M)M,
for every submodule N of M ([5] and [12]). A nonempty subset S of R
is called a multiplicatively closed subset (briefly, m.c.s.) of Rif 0 ¢ S,
1€ S and ss’ €8, for all s,s" €S ([13]). Let S be a m.c.s. of R and
P a submodule of M with (P :g M)NS = (. Then P is called an
S-prime submodule of M if there exists s € S such that am € P implies
that sm € P or sa € (P :g M), for each a € R and m € M. Note
that by taking s = 1, every prime submodule is an S-prime submodule.
In [9], the concept of S-prime submodules was defined. We generalize
this concept to primary submodules over S. A submodule Q) of M with
(Q :r M)N S = () is called primary over S if there exists s € S such
that, for all @ € R and m € M, am € @Q implies that sm € @Q or
sa € (Q :r M), for some positive integer n. Since 1 € S, all primary
submodules @ with (Q :g M) NS = () are primary over S . With an
additional assumption, we show that the converse is true. Being @) a
primary submodule over S is related to being (Q :g M) is so as an ideal.
Also, If M is a finitely generated R-module, then we find an equivalent
condition for a proper submodule @) to be primary over S in M.

2 Main Results

Definition 2.1. Let S be a m.c.s. of the ring R and @ a submodule of



PRIMARY SUBMODULES OVER A ...

M as an R-module with (Q :r M)NS =0. Then Q is called a primary
submodule over S if there exists s € S such that, for all a € R and
m € M, am € Q implies that sm € Q or sa™ € (Q :r M), for some
positive integer n.

Clearly every S-prime submodule is primary over S. For instance,
in a vector space V over a field F, every proper submodule W of V is
S-prime and so primary over S, where S is an arbitrary m.c.s. of F.

Example 2.2. Let p be a fixed prime number. Each proper submodule
of the Z-module Zp~ is of the form G} = (# + Z), for some integer

k>0 and (G iz Zy=) = 0. Take the m.c.s. S = {1,q,4> ...}, for some
prime number ¢ # p. Note that p(ﬁ + 7Z) € Gy, but, for each s € S,
s(zﬁ +7Z) ¢ Gy and sp™ ¢ (G}, :z Zp=) = 0, for all positive integer n.
Hence Gy, is not primary over S, for all non-negative integers k and so
Zipo does not have any primary submodule over S.

Proposition 2.3. Suppose S is a m.c.s. of the ring R and M is an
R-module. If S CU(R) and Q is primary over S then Q is primary.

Proof. Since @ is primary over S, so there exists s € S satisfying
the definition. Let a € R, m € M and am € Q. By assumption, as
s€SCU(R), me Qora™ e (Q:g M), for some positive integer n.
Therefore @) is primary. [l

Proposition 2.4. Let S1 and Sy be multiplicatively closed subsets of the
ring R such that S1 C So, M an R-module and Q) a primary submodule
over S1 of M with (Q :g M)NS; = 0. Then Q is primary over Ss in
case (Q :p M) NSy = 0.

Proof. Since @) is primary over S so there exists s; € S satisfying the
definition. Let a € R, m € M and am € ). By hypothesis, sym € Q
or sia” € (Q :r M), for some positive integer n. But S; C S;. Thus
s1 € So and we get the result. O

Recall that, for the m.c.s S of the ring R, the saturation S* of S is
defined as

S*={zcR| % c U(S'R)}.

Clearly, S* is a m.c.s. of R containing S ([0]).
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Proposition 2.5. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M. Then @ is primary over S if and only if Q s
primary over S*.

Proof. Suppose that @ is primary over S. We show that (Q :g M) N
S* = (. For this, let z € (Q :r M)NS*. So % € U(S™'R) and there
exist a € R, s € S such that * = 1 which implies that ura = us, for
some u € S. Put us = s € S. Then s’ =us =uza € (Q :g M)NS, a
contradiction. So (Q :g M) N S* = (. Since Q is primary over S and
S C S*, by the above proposition, @) is primary over S*.

Conversely, suppose that ) is primary over S*. So there exists s* €
S* satisfying the definition. Let a € R, m € M and am € Q. By
hypothesis, s*m € Q or s*a”™ € (Q :gr M), for some positive integer n.
Also, s* € §*. Thus there exist s € S and b € R such that % =1
and so us = us*b, for some v € S. By taking us = s’ € S, s'm =
usm = us*dbm € Q or s'a” = usa™ = us*ba™ € (Q :r M). Therefore Q
is primary over S. O

Proposition 2.6. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M. If Q is a primary submodule over S then S™'Q
is a primary submodule of ST'M as an S™'R-module.

Proof. Assume that @ is a primary submodule over S. Let 275 € S -1,
where % € S~1R and e S~1M. There exist ¢ € Q and v € S such that

0% = 1 and so uvrm = ustq € Q, for some u € S. Since @ is primary

over S, there exists s’ € S so that s'm € Q or §'(uvr)* € (Q :g M),
for some positive integer n. Thus 3 = 3;,’? € S7'Q or Z—Z = i,gzzgz €

S7HQ :g M) C (S71Q :g-1g STIM). Therefore S71Q is a primary
submodule of S7'M as an S~!R-module. O

The converse of the above proposition is not true in general.

Example 2.7. Consider the Z-module Q x QQ, where Q is the field of
rational numbers. Take N = Z x 0 and S = Z — {0}. Then S is
a m.c.s. of Z and S71Z = Q is a field. So S7HQ x Q) is a vector
space over ST'Z = Q and the proper submodule S™'N is a primary
submodule of S71(Q x Q). Obviously, (N :z Q x Q) = 0. Let s be an
arbitrary element of S and choose a prime number p with (p,s) = 1.
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Note that p(1,0) = (1,0) € N, s(3,0) = (£,0) ¢ N = Z x 0 and
sp™ ¢ (N :z Q x Q), for each positive integer n, which shows that N is
not primary over S.

Now, we characterize primary submodules over S of modules over
the ring R in case R is Noetherian.

Lemma 2.8. Let R be a Noetherian ring, M an R-module and Q) a
submodule of M. Suppose that S is a m.c.s. of R such that (Q :r
M)NS =0. Then the following are equivalent.

(i) Q is primary over S;

(11) There exists s € S such that, for each ideal J of R and submodule
N of M, JN C Q implies that sN C Q or sJ™ C (Q :r M), for some
positive integer n.

Proof. (i) = (ii) Assume that @) is a primary submodule over S. Thus
there exists s € S satisfying the definition. Let J be an ideal of R, N
a submodule of M and JN C Q. If sN C @Q we are done. Otherwise,
there exists x € N such that sx ¢ . But R is a Noetherian ring and
J is an ideal of R. Therefore J = (a1,aq,...,a;). We have a;z € Q,
for each ¢ = 1,...,k. Since @ is primary over S and sx ¢ @ so, for
each i = 1,...,k, safi € (Q :r M), for some positive integer k;. Put
n = Zle(k‘i — 1)+ 1. In this case, sJ" C (Q :r M).

(ii) = (i) Let @ € R, m € M and am € Q. Put J = Ra and
N = Rm. Then JN = Ram C ). By assumption, sN = Rsm C @
or sJ™ = Rsa™ C (Q :r M), for some positive integer n and so either
sm € Q or sa" € (Q :r M). Therefore @) is a primary submodule over
S. O

Corollary 2.9. Suppose that S is a m.c.s. of a Noetherian ring R and
Q an ideal of R such that (Q :g M)NS = (. Then the following are
equivalent.

(i) Q is primary over S in R;

(ii) There exists s € S such that, for every ideals I and J of R, if
JI C Q then sI C Q or sJ™ C Q, for some positive integer n.

Proposition 2.10. Let S be a m.c.s. of the ring R and f: M — M’
an R-homomorphism. Then
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(i) If Q' is primary over S in M’ provided that (f~1(Q’) :r M)NS =
0, then f~1(Q") is so in M.

(i1) If f is an epimorphism and Q is primary over S in M such that
Kerf C Q, then f(Q) is so in M'.

Proof. (i) Since Q' is primary over S in M’, there exists s € S satisfying
the definition. Let am € f~1(Q'), for some a € R and m € M. Then
flam) = af(m) € Q. By assumption, sf(m) = f(sm) € Q' or sa" €
(Q' :r M'), for some positive integer n. Now we show that (Q' :r
M) C (f7YQ") :r M). Take z € (Q' :g M'), we have M’ C Q'
Since f(M) C M', f(aM) = zf(M) C oM’ C Q' so «M C zM +
Kerf = f~Y(f(xM)) C f~4Q') and thus z € (f~4Q’) :r M). As
(Q':r M") C (f71(Q") :r M), we can conclude either sm € f~1(Q’) or
sa™ € (f~YQ") :r M). Hence f~(Q’) is primary over S in M.

(ii) First we claim that (f(Q) :g M')NS = (. Otherwise, there exists
an element s € (f(Q) :r M')NS and so f(sM) = sf(M) C sM' C f(Q).
By taking their inverse images under f, we have sM C sM + Kerf C
Q + Kerf = @, which means sM C . Thus s € (Q :g M)N S, a
contradiction. By assumption, @ is primary over S in M. Then there
exists an element s € S satisfying the definition. Now take a € R,
m’ € M’ such that am’ € f(Q). As f is an epimorphism, there exists
m € M such that m’ = f(m). Hence am’ = af(m) = f(am) € f(Q).
Since Kerf C @, am € (. But @ is primary over S in M. Hence
we have sm € Q or sa™ € (Q :g M), for some positive integer n. But
(Q :r M) C (f(Q) :r M’). Therefore f(sm) = sf(m)=sm’ € f(Q) or
sa™ € (f(Q) :g M'). Consequently, f(Q) is primary over S in M'. [

Being f an epimorphism in part (ii) is essential. Let us give an
example.

Example 2.11. Let R=2, M =Z, S ={-1,1} and f : Z — Z
with f(xz) = 6z. Then f is a Z-homomorphism which is not onto. By
Proposition 2.3, primary and primary submodules over S in Z are the
same. We know that 0 and (p)™, where p is an arbitrary prime number
and n a positive integer, are all primary submodules in Z ([3]). Let
@ = 37Z. Then @ is primary and f(Q) = 18Z is not primary.

Corollary 2.12. Let S be a m.c.s. of the ring R and L a submodule of
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the R-module M. Then

(i) If Q' is primary over S in M with (Q' :r L)NS =0 then LN Q'
s primary over S in L.

(ii) Suppose that @ is a submodule of M with L C Q. Then Q s

primary over S in M if and only zf% s s0 in %
Proof. (i) Consider the injection i : L — M defined by i(m) = m,
for all m € L. Then i~}(Q’) = LN Q'. Now we claim that (i~}(Q’) :r
L)NS = 0. Forit, let s € (i7(Q") :g L)N S. Then sL C i Q') =
LNQ CQ and thus s € (Q' :g L) NS, a contradiction. The result
follows by Proposition 2.10.

(i) Let @ be primary over S'in M and 7 : M — % be the canonical
epimorphism defined by 7(m) = m + L, for all m € M. Since L =
Kerm CQ so % is primary over S in %, by Proposition 2.10 part (ii).

Conversely, assume that % is primary over S in % There exists
s € S satisfying the definition. Let am € @, for some a € R and
m € M. This implies that a(m + L) = am + L € % By assumption,
s(m+L) = sm+L € % or sa™ € (% ' 38 = (Q :r M), for some positive
integer n. Therefore, sm € @ or sa™ € (Q :g M). Consequently, Q is
primary over S in M. (]

Proposition 2.13. Let S be a m.c.s. of the ring R and M an R-module.
The following statements hold.

(i) If Q is primary over S in M then (Q :g M) is so in R.

(i) If R is Noetherian, M a multiplication module over R and (Q :r
M) is primary over S in R, then Q is so in M.

Proof. (i) Let @ be primary over S in M. There exists s € S satisfying
the definition. Let zy € (Q :g M), for some z,y € R. Then zym € Q,
for all m € M. If sz™ € (Q :r M), for some positive integer n, we are
done. Otherwise, sym € @, for all m € M which means that sy € (Q :g
M). Therefore (Q :r M) is primary over S in M.

(ii) Assume that M is a multiplication module over a Noetherian ring
R and (Q :g M) is primary over S in R. There exists s € S satisfying
in Corollary 2.9 part (ii). Let J be an ideal of R and N a submodule
of M with JN C Q. Then J(N :g M) C (JN :g M) C (Q :r M).
As (Q :g M) is primary over S in R, s(N :g M) C (Q :g M) or
sJ" C (Q :r M), for some positive integer n. Thus sN = s(N :p
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MM C (Q :g M)M = Q or sJ”" C (Q :r M). By Lemma 2.8, Q is
primary over S in M. U

Let K and L be submodules of the multiplication R-module M.
Recall that the product of K and L is defined as KL = (K :g M)(L :g
M)M ([1]).

Corollary 2.14. Let M be a multiplication module over a Noetherian
ring R and Q a submodule of M with (Q :gp M) NS =0, where S is a
m.c.s. of R. The following are equivalent.

(i) Q is primary over S in M;

(ii) There exists s € S such that, for every two submodules K and L
of M with KL C Q, sL CQ or sK™ C Q, for some positive integer n.

Proof. (i) = (ii) There exists s € S satisfying in Lemma 2.8 part (ii).
Let K and L be submodules of M with KL C Q. Then (K :g M)(L :g
MYM C @ and so s(L :g M)M C Q or s(K :g M)" C (Q :r M), for
some positive integer n. Hence sL C Q or s(K :g M)" C (Q :r M).
If sSL C @ we are done. Otherwise, s(K :g M)"™ C (Q :r M) and so
s(K :g M)"M C (Q :r M)M = Q. Therefore sK™ C Q.

(ii) =(i) Let am € Q, for some a € R and m € M. Put L = Rm
and J = Ra. Then JL C Q and JLM C QM = Q. Take K = JM.
In this case, KL C ). By hypothesis, sL. C @ or sK" C @, for some
positive integer n. Then we have sL C @ or s(K :g M)"M C Q. If
sL C @, since L = Rm so sm € ) and we are done. Now suppose that
s(K :g M)"M C Q. Since K = JM and J = Ra, sa™ € (Q :r M).
Therefore () is primary over S. O

Theorem 2.15. Let S be a m.c.s. of the Noetherian ring R and M
a finitely generated multiplication R-module. For a submodule QQ of M
with (Q :r M)NS =0, the following are equivalent.

(i) Q is primary over S;

(i1) (Q :r M) is primary over S in R;

(iii) Q = IM, for some primary ideal I over S in R with ann(M) C
I.

Proof. (i) = (ii) It is clear by Proposition 2.13.
(ii) = (iii) By taking I = (Q :r M), we get the result.
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(ili) = (i) Suppose that @ = IM, for some primary ideal I over S
in R with ann(M) C I. There exists s € S satisfying in Corollary 2.9
part (ii). Assume that JN C @, for some ideal J of R and submodule N
of M. Then J(N :g M)M C IM. By [12], J(N :g M) C I+annM = 1.
By hypothesis, s(N :g M) C I C(Q:g M) or sJ"CIC(Q:r M), for
some positive integer n. So sN C @Q or sJ" C (Q :r M). Hence Q is
primary over S in M. U

Lemma 2.16. Let S; be a m.c.s of the ring R;, for i = 1,2. Put
S = 51 X8 as a m.c.s. of the ring R = Ry X Ro. For each ideal
Q= Q1 x Q2 of R, the following are equivalent.

(i) Q is primary over S in R;

(ii) Q1 is primary over Sy in Ry and Q2N S # O or Qo is primary
over Sy in Ry and Q1N Sy # 0.

Proof. (i) = (ii) Suppose that @ is primary over S in R. There exists
s = (s1,s2) € S satisfying the definition. Since (1,0)(0,1) = (0,0) € @,
so 5(0,1) = (0,s2) € @ or s(1,0)" = (s1,0) € Q, for some positive
integer n. Thus s1 € Q1 NSy or s3 € Q2N Sy. Therefore Q1 NSy # 0 or
Q2N Sy # (. We may assume that Q1 NS7 # () and show Q3 is primary
over So in Ms. Since QNS = 0 so Qo NSy = 0. Let zy € Qo, for
some z,y € Ry. Since (0,2)(0,y) € @ and @ is primary over S in R,
either s(0,y) = (0,s2y) € Q or s(0,z)" = (0,s22") € Q. This means
that soy € Q9 or sox™ € Q2. Therefore (2 is primary over S in Ro. In
other case, one can easily show that )1 is primary over Sy in Rj.

(i) = (i) Assume that Q1 N'S; # 0 and Q9 is primary over S
in Ry. We show that @ is primary over S. Since Q1 NSy # 0, there
exists s1 € Q1 N S1. Moreover, we have sy € So satisfying the definition
of being primary over Ss. Let (a,b)(c,d) = (ac,bd) € Q, for some
a,c € Ry and b,d € Ry. This implies that bd € Q2 and thus sod € Qo
or sab™ € 2, for some positive integer n. Put s = (s1,s2) € S. Then
s(c,d) = (s1¢,82d) € Q or s(a,b)™ = (s1a™,s2b™) € Q. Therefore Q is
primary over S in R. In the other case, one can similarly prove that @)
is primary over S in R. g

Theorem 2.17. Let S; be a m.c.s of the ring R; and M; an R;-module,
fori=1,2. Suppose that Q = Q1 X Q2 is a submodule of M = My x M>
as an R = Ry X Ro-module. The following are equivalent.
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(i) Q is primary over S in M;
(i) Q1 is primary over Sy in My and (Q2 :r, M2) N Ss # O or
(Q1 :r, M1) N S1 # 0 and Qo is primary over Sy in Ms.

Proof. (i) = (ii) Assume that @ is primary over S in M. We have
s = (s1,82) € S satisfying the definition. By Proposition 2.13, (Q :g
M) = (Q1 :r, Mi) x (Q2 :r, M>) is primary over S in R, and so by
Lemma 2.16, either (Q1 :r, M1) NSy # 0 or (Q2 :r, M2) N Sy # (. We
may assume that (Qq :gr, M1) NSy # 0. Let am € @2, for some a € Ra,
m € M. Then (1,a)(0,m) = (0,am) € Q. Since @ is primary over S
so s(0,m) = (0,s9m) € Q or s(1,a)"” = (s1,s2a") € (Q :r M), for some
positive integer n. This implies that som € Q2 or s2a™ € (Q2 g, Ma2).
Therefore Q5 is primary over Ss. In the other case, one can similarly
show that @)y is primary over S; in M;.

(ii) = (i) Assume that (Q1 :gr, M1)NS1 # 0 and Q2 is primary over
Sy in Ms. Thus there exists s1 € (Q1 :r, M1) N S1 and we have sy € Sy
satisfying the definition of primary over Ss. Now, let (a1, az)(mq, mo) =
(aymq,agms) € Q, for some a; € R; and m; € M;, i = 1,2. Then agms €
Q2. Since Q)2 is primary over Sa, so sama € Q2 or saay € (Q2 :r, M2),
for some positive integer n. Put s = (s1,s2) € S. Then s(mi,ma) =
(s1mq,sam2) € Q = Q1 X Q2 or s(ar,az)” = (s1a},s2a5) € (Q :r M).
Therefore @) is primary over S. Similarly, one can show that if @ is
primary over S in Mj and (Q2 :r, M2) NSy # 0, then @ is primary
over S in M. O

Theorem 2.18. Let S; be a m.c.s of the ring R; and M; an R;-module,
fori=1,2,...n. Take M = My x My x--- X My, as an R = Ry X Rg X -
- X Rp-module and S = S1 X Sy X -+ X Sy, as a m.c.s. of R. Assume that
Q=0Q1xXQax - -xQyp is a submodule of M. The following statements
are equivalent.

(i) Q is primary over S in M;

(i1) Qi is primary over S; in M;, for somei € {1,2,...,n} and (Q; ‘R,
M;)NS; #0, forall j € {1,2,...,n} — {i}.

Proof. We prove it by induction on n. For n = 1, the result is true.
If n = 2 then (i) <= (ii) follows from Theorem 2.17. Assume that (i)
and (ii) are equivalent for every positive integer k < n. Now, we shall
prove that (i) <= (ii) when k =n. Put M’ = My x My x - -+ X My_1,
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R = Ry XxRyx- xRy, =QixQaxX - XQuyand § =
S1 x So x -+ x S,_1. By Theorem 2.17, Q = Q' x Q,, is primary over S
in M if and only if Q' is primary over S’ in M" and (Q,, :r, My,)NS,, #
or (Q :g M")NS’" # () and @, is primary over S,, in M,,. The rest follows
from the induction hypothesis. |

Lemma 2.19. Let S be a m.c.s of the ring R and Q) a primary submosule
over S of an R-module M. The following statements hold, for some
seSs.

(1) (Q :ar 8') C(Q a1 s), forall s’ €S.

(ZZ) ((Q ‘R M) ‘R 8/) - ((Q ‘R M) ‘R S), for all s'es.

Proof. (i) Since @ is primary over S in R so there exists s € S satisfying
the definition. By taking s’ € S and m’ € (Q :ps §'), s'm’ € Q. Thus
sm' € Q or ss™ € (Q :g M), for some positive integer n. Since (Q :g
M)NS =0so sm' € Q, which means that m’ € (Q :a s).

(ii) We know that (Q :g M) is primary over S in R, so it is enough
to replace (@ :r M) instead of @ in part (i). O

Proposition 2.20. Let S be a m.c.s. of the ring R, M a finitely gen-
erated R-module and Q a submodule of M satisfying (Q :r M) NS = 0.
The following are equivalent.

(i) Q is primary over S in R;

(ii) S71Q is a primary submodule of ST'M and there exists s € S
satisfying (Q :pr 8') C(Q iy 8), forall s’ € S.

Proof. (i) = (ii) It is clear from Proposition 2.6 and Lemma 2.19.

(ii) => (i) Let a € R, m € M and am € Q. Then “* € S~'Q. Since
S~1Q is a primary submodule of S™'M and M is finitely generated so
moe S7lQ or & € (S71Q 1g-1g STIM) = S7HQ g M), for some
positive integer n. Thus u'm € @ or ua™ € (Q :gp M), for some u,u’ € S.
By assumption, there exists s € S so that (Q 1 ') C (Q :ar ), for all
s'eS. Ifua™ € (Q:g M) then a"M C (Q :ar u) C (Q :ar s) and thus
sa” € (Q :g M). If u/m € @Q a similar argument shows that sm € Q.
Therefore @) is primary over S in M. ([l

Theorem 2.21. Let S be a m.c.s. of the ring R, M an R-module and
Q a submodule of M such that (Q :g M)NS = 0. Then Q is primary
over S in M if and only if (Q :ar s) is primary in M, for some s € S.

11
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Proof. Suppose that (Q :ps s) is primary in M, for some s € S. Let
am € @, for some a € R and m € M. Since am € Q C (Q :pr s) and
(Q :ar 8) is primary, so m € (Q :pr s) or a™ € ((Q :ar s) :r M), for some
positive integer n. This implies that sm € Q or sa™ € (Q :r M).

Conversely, suppose that () is primary over S'in M. Then there exists
s € S satisfying the definition. Now we prove that (@ :ps s) is primary
in M. For it, let a € R, m € M and am € (Q :ps s). Then (sa)m € Q.
Since @ is primary over S so sm € Q or s""la" € (Q :gp M), for some
positive integer n. If sm € @ we are done. Otherwise s"T'a" € (Q :g
M) and so, by Lemma 2.19, a™ € ((Q :r M) :g s"™1) C ((Q :r M) :g s).
Thus we can conclude that a™ € ((Q :ar s) :r M) and hence (Q :ps s) is
primary. (]

Theorem 2.22. Let M be a module over the ring R and @ a submodule
of M such that (Q :r M) C J(R), where J(R) is the Jacobson radical
of R. The following statements are equivalent.

(i) Q is primary in M;

(i) (Q :r M) is primary and Q is primary over R — m, for all
mazximal ideals m of R.

Proof. (i) = (ii) Suppose that @ is primary. Since (Q :r M) C J(R),
so (@ :r M) C m, for all maximal ideals m. Hence (Q :r M)N(R—m) =
(), for all maximal ideals m. The rest follows clearly.

(i) = (i) Suppose (@ :r M) is primary and @ is primary over
R — m, for all maximal ideals m. Let a € R, m € M and am € @Q
with a™ ¢ (Q :r M), for each positive integer n. Let m be a maximal
ideal. Since @ is primary over R — m so there exists s, € R — m such
that smm € Q or sma® € (Q :g M), for some positive integer k. But
(Q :r M) is primary, sm ¢ (Q :r M) and a™ ¢ (Q :gp M), for each
positive integer n. Thus s;mm € Q. Now define the set Q = {sy, | Im €
Max(R) 2: sjm ¢ m,smm € Q}. Now we show that (), the ideal
generated by ), is equal to R. For it, let m’ be a maximal ideal such
that Q C m’. The definition of  requires that there exists s nv € Q
and sy ¢ m’. Since Q C m’ 80 sy € Q C m’, a contradiction. Thus
() = R which implies that 1 = r1$m, + r2Smy + * * * + 7 Sm,,, for some
ri € R and sm, ¢ m; with s;mm € @ and m; € Max(R), for each
t=1,2,...,n. Thus m = r18m,m + r28mym + - - - + rpSm,m € @ and so
@ is primary. O
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Corollary 2.23. Suppose that M is a module over a ring R with unique
mazximal ideal m. The following are equivalent.

(i) Q is primary in M.

(ii) (Q :r M) is primary in R and Q is primary over R —m in M.

Proof. It is clear by Theorem 2.22. O

Suppose that M is a module over the ring R. Nagata introduced the
idealization R(+)M of M. Here R(+)M = R & M is a commutative
ring whose addition is componentwise and multiplication is defined as
(a,m)(b,m’) = (ab,am’ + bm), for each a,b € R and m,m’ € M ([7]).
The name comes from the fact that if NV is a submodule of M, then
O(+)N is an ideal of R(+)M. If S is a m.c.s. of the ring R and N a
submodule of an R-module M, then S(+)N = {(s,n) | s € S,n € N} is
am.c.s. of R(+)M ([2]).

Proposition 2.24. Let S be a m.c.s. of the ring R and Q an ideal of
R such that QNS = 0. The following are equivalent.

(i) Q is a primary ideal over S in R;

(ii) Q(+)M is a primary ideal over S(+)0 in R(+)M;

(111) Q(+)M is a primary ideal over S(+)M in R(+)M.

Proof. (i) = (ii) Suppose @ is primary over S in R. There exists s € S
satisfying the definition. Let (z,m)(y,m') = (zy,xm’ +ym) € Q(+)M,
for some z,y € R and m,m’ € M. Then we have xy € Q. Since Q is
primary over S in R so sy € () or sz” € @, for some positive integer
n. By putting s’ = (s,0) € S(+)0, we have s'(y,m’) = (s,0)(y,m’) €
Q(+)M or §'(z,m)" = (s,0)(z", nz" " m) = (sz", nsz"tm) € Q(+)M.
Therefore Q(+)M is primary over S(+)0 in R(+)M.

(ii) = (iii) It is clear by Proposition 2.4.

(ili) = (i) Suppose that Q(+)M is primary over S(+)M in R(+)M.
There exists s = (s;,m1) € S(+)M satisfying the definition. Let
ry € Q, for some z,y € R. Then (z,0)(y,0) = (zy,0) € Q(+)M. By
hypothesis, s(y,0) = (s1,m1)(y,0) = (s1y,ym1) € Q(+)M or s(z,0)" =
(s1,m1)(z™,0) = (s12™,2"mq) € Q(+)M, for some positive integer n.
Hence, s1y € Q or s12™ € @ and so @ is primary over S. O
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