Journal of Mathematical Extension Vol. 15, No. 2, (2021) (7)1-10 URL: https://doi.org/10.30495/JME.2021.1360 ISSN: 1735-8299 Original Research Paper

Generalized T-extensions in Locally Compact Abelian Groups

A. A. Alijani

Technical and Vocational University

Abstract. Let \pounds be the category of all locally compact abelian (LCA) groups. Let $G \in \pounds$ and $H \subseteq G$. The maximal torsion subgroup of G is denoted by tG and the closure of H by \overline{H} . A proper short exact sequence $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \pounds is said to be a generalized t-extension if $0 \to \overline{tA} \xrightarrow{\phi} \overline{tB} \xrightarrow{\psi} \overline{tC} \to 0$ is a proper short exact sequence. We show that the set of all generalized t-extensions of a torsion group $A \in \pounds$ by a compact group $C \in \pounds$ is a subgroup of Ext(C, A). We establish conditions under which the generalized t-extensions split.

AMS Subject Classification: 20K35; 22B05 **Keywords and Phrases:** Generalized t-extensions, t-extensions, locally compact abelian groups

1 Introduction

Throughout, all groups are Hausdorff topological abelian groups and will be written additively. Let \pounds denote the category of locally compact abelian (LCA) groups with continuous homomorphisms as morphisms and \Re , the category of discrete abelian groups. A morphism is called proper if it is open onto its image, and a short exact sequence

Received: August 2019; Accepted: March 2020

 $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \pounds is said to be proper exact if ϕ and ψ are proper morphisms. In this case the sequence is called an extension of A by C (in \pounds). Following [5], we let Ext(C, A) denote the group of extensions of A by C. In [1], we introduced the concept of a t-extension in \Re . An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \Re is called a t-extension if $0 \to tA \xrightarrow{\phi|_{tA}} tB \xrightarrow{\psi|_{tB}} tC \to 0$ is an extension [1]. Let $A, C \in \Re$ and, $Ext_t(C, A)$ be the group of t-extensions of A by C [1]. In this paper, we generalize the concept of t-extension.

An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \pounds will be called a generalized t-extension if $0 \to \overline{tA} \xrightarrow{\phi|_{\overline{tA}}} \overline{tB} \xrightarrow{\psi|_{\overline{tB}}} \overline{tC} \to 0$ is an extension. Let $Ext_{\overline{t}}(C, A)$ denote the set of all generalized t-extensions of A by C. Clearly, $Ext_{\overline{t}}(C, A) = Ext_t(C, A)$ for groups $A, C \in \Re$. In Section 2, we show that if A is a torsion group and C a compact group, then $Ext_{\overline{t}}(C, A)$ is a subgroup of Ext(C, A) (see Theorem (2.15)). In Section 3, we establish some results on splitting of generalized t-extensions (see Lemma (3.2),(3.3),(3.4),(3.5),(3.6),(3.7)).

The additive topological group of real numbers is denoted by \mathbb{R} , \mathbb{Q} is the group of rationals with the discrete topology, \mathbb{Z} is the group of integers and, $\mathbb{Z}(n)$ is the cyclic group of order n. For any group G and H, 1_G is the identity map $G \to G$ and Hom(G, H) is the group of all continuous homomorphisms from G to H, endowed with the compactopen topology. The dual group of G is $\hat{G} = Hom(G, \mathbb{R}/\mathbb{Z})$. For more on locally compact abelian groups, see [7].

2 Generalized T-extensions

Let $A, C \in \pounds$. In this section, we define the concept of a generalized t-extension of A by C. We show that the set of all generalized t-extensions of a torsion group A by a compact group C form a subgroup of Ext(C, A).

Definition 2.1. An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \pounds is called a generalized t-extension if $0 \to \overline{tA} \to \overline{tB} \to \overline{tC} \to 0$ is an extension.

Remark 2.2. Every extension of a torsion-free (or a torsion) group by a torsion free (or a torsion) group is a generalized t-extension.

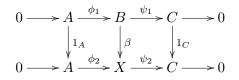
Lemma 2.3. Let A be a compact torsion group and C a compact group. Then, every extension of A by C is a generalized t-extension.

Proof. Let $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be an extension of A by C. First, we show that $\psi(tB) = tC$. Let $c \in tC$. Then, there exists a positive integer n such that nc = 0. Since $\psi : B \to C$ is surjective, so $\psi(b) = c$ for some $b \in B$. Hence, $nb \in ker\psi = im\phi$. So, $\phi(a) = nb$ for some $a \in A$. Since A is a torsion group, so ma = 0 for some positive integer m. Hence, (mn)b = 0 and $b \in tB$. Since $\phi(A)$ is a compact subgroup of B and $B/\phi(A) \cong C$, so ψ is closed (See Theorem 5.18 of [7]). Hence, $\psi(\overline{tB}) = \overline{\psi(tB)} = \overline{tC}$. Since A is torsion, so $Ker\psi \mid_{\overline{tB}} \subseteq Im\phi$. Hence, $0 \to A \xrightarrow{\phi} \overline{tB} \xrightarrow{\psi} \overline{tC} \to 0$ is an exact sequence. By Theorem 5.29 of [7], $\phi : A \to \overline{tB}$ and $\psi : \overline{tB} \to \overline{tC}$ are proper morphisms. Hence, $0 \to A \xrightarrow{\phi} \overline{tB} \xrightarrow{\psi} \overline{tC} \to 0$ is an extension.

The dual of an extension $E: 0 \to A \to B \to C \to 0$ is defined by $\hat{E}: 0 \to \hat{C} \to \hat{B} \to \hat{A} \to 0$. The following example shows that the dual of a generalized t-extension need not be a generalized t-extension.

Example 2.4. Consider the extension $E: 0 \to \mathbb{Z}_2 \to \mathbb{R}/\mathbb{Z} \xrightarrow{\times 2} \mathbb{R}/\mathbb{Z} \to 0$. By Lemma 2.3, E is a generalized t-extension. But, $\hat{E}: 0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}_2 \to 0$ is not a generalized t-extension.

Recall that two extensions $0 \to A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \to 0$ and $0 \to A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \to 0$ are said to be equivalent if there is a topological isomorphism $\beta: B \to X$ such that the following diagram



is commutative.

Lemma 2.5. An extension equivalent to a generalized t-extension is a generalized t-extension.

Proof. Let

$$E_1: 0 \to A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \to 0$$

and

$$E_2: 0 \to A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \to 0$$

be two equivalent extensions such that E_1 is a generalized t-extension. Then, there is a topological isomorphism $\beta : B \to X$ such that $\beta \phi_1 = \phi_2$ and $\psi_2 \beta = \psi_1$. Since $\beta(\overline{tB}) = \overline{tX}$, so

$$\psi_2(\overline{tX}) = \psi_2\beta(\overline{tB}) = \psi_1(\overline{tB}).$$

On the other hand, E_1 is a generalized t-extension. Hence, $\psi_2(t\overline{X}) = \overline{tC}$ and $\psi_2 \mid_{t\overline{X}}: \overline{tX} \to \overline{tC}$ is surjective. Since $\phi_2 = \beta \phi_1$ and E_1 is a generalized t-extension, so

$$\psi_2\phi_2(\overline{tA}) = \psi_2(\beta\phi_1(\overline{tA})) = \psi_1\phi_1(\overline{tA}) = 0.$$

Hence, $Im\phi_2 \mid_{\overline{tA}} \subseteq Ker\psi_2 \mid_{\overline{tX}}$. Now, we show that $Ker\psi_2 \mid_{\overline{tX}} \subseteq Im\phi_2 \mid_{\overline{tA}}$. Let $x \in \overline{tX}$ and $\psi_2(x) = 0$. Then, there exists $b \in \overline{tB}$ such that $x = \beta(b)$. Since $\psi_1(b) = \psi_2\beta(b) = \psi_2(x) = 0$ and E_1 is a generalized t-extension, so $b = \phi_1(a)$ for some $a \in \overline{tA}$. Hence

$$\phi_2(a) = \beta \phi_1(a) = \beta(b) = x$$

and $0 \to \overline{tA} \xrightarrow{\phi_2} \overline{tX} \xrightarrow{\psi_2} \overline{tC} \to 0$ is an exact sequence. Since

$$\psi_2 \mid_{\overline{tX}} = \psi_1 \mid_{\overline{tB}} (\beta \mid_{\overline{tB}})^{-1}, \phi_2 \mid_{\overline{tA}} = \beta \mid_{\overline{tB}} (\phi_1 \mid_{\overline{tA}})$$

 $\psi_1 \mid_{\overline{LB}}$ and $\phi_1 \mid_{\overline{LA}}$ are open, so E_2 is a generalized t-extension. \Box

Lemma 2.6. Let $C \in \pounds$ be a compact group, $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be a generalized t-extension and assume

$$\begin{array}{c} 0 \longrightarrow A \xrightarrow{\mu} X \xrightarrow{\nu} Y \longrightarrow 0 \\ & \downarrow_{1_A} & \downarrow_{\theta} & \downarrow_{f} \\ 0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0 \end{array}$$

is the standard pullback diagram in \pounds (See [5]). If Y be a σ - compact group in \pounds , then

 $0 \to A \xrightarrow{\mu} X \xrightarrow{\nu} Y {\to} 0$

is a generalized t-extension.

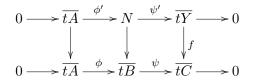
Proof. We have

$$X = \{(y, b) \in Y \bigoplus B : f(y) = \psi(b)\}.$$

and

$$\mu: a \mapsto (0, \phi(a)), \nu: (y, b) \mapsto y, \theta: (y, b) \mapsto b.$$

Since Y is a σ - compact group, so \overline{tY} is σ - compact. By Theorem 5.29 of [7], $f: \overline{tY} \to \overline{tC}$ is a proper morphism. Now, consider the following standard pullback diagram



where $N = \{(y,b) \in \overline{tY} \bigoplus \overline{tB} : f(y) = \psi(b)\}$. First, we show that $N = \overline{tX}$. Clearly $N \subseteq \overline{tX}$. Suppose that $(y,b) \in \overline{tX}$. We shall show that $y \in \overline{tY}$ and $b \in \overline{tB}$. Let W be a neighborhood of y in Y and V a neighborhood of b in B. Then, $(W \times V) \bigcap X$ is a neighborhood of (y,b) in X. So, $(W \times V) \bigcap tX \neq \emptyset$. Assume that $(y_1,b_1) \in (W \times V) \bigcap tX$. Then, $y_1 \in W \bigcap tY$ and $b_1 \in V \bigcap tB$. Clearly, $\phi' = \mu \mid_{\overline{tA}}$ and $\psi' = \nu \mid_{\overline{tX}}$. Hence, $0 \to \overline{tA} \xrightarrow{\mu} \overline{tX} \xrightarrow{\nu} \overline{tY} \to 0$ is an extension. \Box

Lemma 2.7. Let $G \in \pounds$ and H be a closed, torsion subgroup of G. Then $\overline{t(G/H)} = \overline{tG}/H$.

Proof. Let $\pi : G \to G/H$ be the natural mapping. Then, $\pi(\overline{tG}) \subseteq \overline{\pi(tG)} \subseteq \overline{t(G/H)}$. But, $\pi(\overline{tG}) = (\overline{tG} + H)/H$ and $H \subseteq \overline{tG}$. Hence, $\overline{tG}/H \subseteq \overline{t(G/H)}$. Now, suppose that $x + H \in \overline{t(G/H)}$. We show that $x \in \overline{tG}$. Let V be a neighborhood of G containing x. Then, $y + H \in (V + H)/H \cap t(G/H) \neq \phi$ for some $y \in G$. From $y + H \in (V + H)/H$, deduce that y + H = z + H for some $z \in V$. Since H is torsion, so ny = nz for some positive integer n. On the other hand, $y + H \in t(G/H)$. So, $ky \in H$ for some positive integer k. Hence, mky = 0 for some positive integer m. Therefore, mknz = 0. This shows that $z \in V \cap tG$. Hence, $x \in \overline{tG}$. \Box

Corollary 2.8. Every extension of a torsion group by a torsion-free group is a generalized t-extension.

Proof. It is clear by Lemma 2.7. \Box

Definition 2.9. A group $G \in \mathcal{L}$ is called torsion-dense if tG is dense in G.

Lemma 2.10. Let H be a closed, torsion subgroup of $G \in \pounds$ such that G/H is torsion-dense. Then, G is torsion-dense.

Proof. By Lemma 2.7, $\overline{t(G/H)} = \overline{tG}/H$. Since G/H is torsion-dense, so $\overline{tG}/H = G/H$. Hence, $\overline{tG} = G$. \Box

Corollary 2.11. Every extension of a torsion group by a torsion-dense group is a generalized t-extension.

Proof. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be an extension in \pounds such that A and C are torsion and torsion-dense groups, respectively. Then, $\phi(A)$ is a closed, torsion subgroup of B and $B/\phi(A) \cong C$ is a torsion-dense group. So, by Lemma 2.10, B is a torsion-dense group. Hence, E is a generalized t-extension. \Box

Lemma 2.12. Let $A \in \pounds$ be a torsion group. Then, a pushout of a generalized t-extension of A by C in \pounds is a generalized t-extension.

Proof. Suppose that $E: 0 \to A \xrightarrow{\phi} B \to C \to 0$ is a generalized t-extension and $f: A \to G$ a proper morphism in \pounds . Then, $fE: 0 \to G \to X \to C \to 0$ is a pushout of E, where $X = (G \bigoplus B)/H$ and $H = \{(-f(a), \phi(a)); a \in A\}$ (See [5]). Since E is a generalized t-extension, so $E': 0 \to A \to \overline{tB} \to \overline{tC} \to 0$ is an extension. Hence, hE' is an extension where $h: A \to \overline{tG}$ defined by h(a) = f(a) for every $a \in A$. But, $hE': 0 \to \overline{tG} \to Y \to \overline{tC} \to 0$ where $Y = (\overline{tG} \bigoplus \overline{tB})/K$ and $K = \{(-h(a), \phi(a)); a \in A\}$. Clearly, K = H. Since H is a closed, torsion subgroup of $G \bigoplus B$, so by Lemma 2.7, $\overline{tX} = (\overline{tG} \bigoplus \overline{tB})/H = Y$. Hence, fE is a generalized t-extension. \Box

Corollary 2.13. Let $A \in \pounds$ be a torsion group and $E: 0 \to A \to B \to C \to 0$ a generalized t-extension in \pounds . Then, $-1_A E$ is a generalized t-extension.

Proof. $-1_A E$ is a pushout of E. So by Lemma 2.12, it is a generalized t-extension. \Box

Remark 2.14. Let *C* and *A* be two groups, and $0 \to A \xrightarrow{\phi_1} B_1 \xrightarrow{\psi_1} C \to 0$ and $0 \to A \xrightarrow{\phi_2} B_2 \xrightarrow{\psi_2} C \to 0$ be two generalized t-extensions of *A* by *C*. An easy calculation shows that $0 \to A \bigoplus A \xrightarrow{(\phi_1 \bigoplus \phi_2)} B_1 \bigoplus B_2 \xrightarrow{(\psi_1 \bigoplus \psi_2)} C \bigoplus C \to 0$ is a generalized t-extension where $(\phi_1 \bigoplus \phi_2)(a_1, a_2) = (\phi_1(a_1), \phi_2(a_2))$ and $(\psi_1 \bigoplus \psi_2)(b_1, b_2) = (\psi_1(b_1), \psi_2(b_2))$.

Theorem 2.15. Let $A \in \pounds$ be a torsion group and $C \in \pounds$ a compact group. Then, the class $Ext_{\overline{t}}(C, A)$ of all equivalence classes of generalized *t*-extensions of A by C is an subgroup of Ext(C, A) with respect to the operation defined by

$$[E_1] + [E_2] = [\nabla_A (E_1 \bigoplus E_2) \triangle_C]$$

where E_1 and E_2 are generalized t-extensions of A by C and ∇_A and \triangle_C are the diagonal and codiagonal homomorphisms.

Proof. Clearly, the trivial extension of A by C is a generalized textension. By Remark 2.14, Lemma 2.6 and Lemma 2.12, $[E_1] + [E_2] \in Ext_{\overline{t}}(C, A)$ for two generalized t-extensions E_1 and E_2 of A by C. So, $Ext_{\overline{t}}(C, A)$ is a subgroup of Ext(C, A). \Box

Remark 2.16. Let A and C be two discrete groups. Then, $Ext_{\overline{t}}(C, A) = Ext_t(C, A)$.

3 Splitting of Generalized T-extensions

In this section, we establish some conditions on A and C such that $Ext_{\overline{t}}(C, A) = 0.$

Definition 3.1. A group $G \in \pounds$ is called an \pounds -cotorsion group if Ex(X,G) = 0 for every torsion-free group $X \in \pounds$ (See [4]).

Lemma 3.2. Let A be a discrete group. Then, $Ext_{\overline{t}}(X, A) = 0$ for every $X \in \pounds$ if and only if A = 0.

Proof. Let $Ext_{\overline{t}}(X, A) = 0$ for every $X \in \mathcal{L}$. So, $Ext_{\overline{t}}(\mathbb{R}/\mathbb{Z}, A) = 0$. Consider the exact sequence $0 \to tA \xrightarrow{i} A \to A/tA \to 0$. By Corollary 2.10 of [6], we have the following exact sequence

$$Hom(\mathbb{R}/\mathbb{Z}, tA) \to Ext(\mathbb{R}/\mathbb{Z}, tA) \xrightarrow{i_*} Ext(\mathbb{R}/\mathbb{Z}, A)$$

 \mathbb{R}/\mathbb{Z} is a connected group and A/tA a discrete group. So, $Hom(\mathbb{R}/\mathbb{Z}, A/tA) = 0$. Hence, i_* is injective. By Lemma 2.12, $i_*(Ext_{\overline{t}}(\mathbb{R}/\mathbb{Z}, tA) \subseteq Ext_{\overline{t}}(\mathbb{R}/\mathbb{Z}, A) = 0$. So, $Ext_{\overline{t}}(\mathbb{R}/\mathbb{Z}, tA) = 0$. By Corollary 2.11, $tA \cong Ext(\mathbb{R}/\mathbb{Z}, tA) = 0$. So, A is a torsion-free group. By Remark 2.2, Ext(X, A) = 0 for every torsion-free group $X \in \mathcal{L}$. Hence, A is an \mathcal{L} -cotorsion group. By Corollary 10 of [4], A = 0.

Lemma 3.3. Let $G \in \pounds$ be a torsion group. Then, $Ext_{\overline{t}}(X,G) = 0$ for every $X \in \pounds$ if and only if G = 0.

Proof. Let $Ext_{\overline{t}}(X,G) = 0$ for every $X \in \mathcal{L}$. Then, $Ext_{\overline{t}}(X,G) = 0$ for every torsion-free group $X \in \mathcal{L}$. By Corollary 2.8, $Ex(X,G) = Ext_{\overline{t}}(X,G) = 0$ for every torsion-free group $X \in \mathcal{L}$. So, G is an \mathcal{L} -cotorsion group. By Theorem 24.30 of [7], G contains a compact open subgroup K. Consider the exact sequence $0 \to K \to G \to G/K \to 0$. By Corollary 2.10 of [6], we have the following exact sequence

$$\rightarrow Ext(\mathbb{R}/\mathbb{Z}, K) \rightarrow Ext(\mathbb{R}/\mathbb{Z}, G) \rightarrow Ext(\mathbb{R}/\mathbb{Z}, G/K) \rightarrow 0$$

By Corollary 2.11, $Ext(\mathbb{R}/\mathbb{Z}, G) = Ext_{\overline{t}}(\mathbb{R}/\mathbb{Z}, G) = 0$. Hence, $G/K \cong Ext(\mathbb{R}/\mathbb{Z}, G/K) = 0$. So, G is a compact torsion group. By Corollary 9 of [4], G = 0. \Box

Lemma 3.4. Let A be a discrete group and $Ext_{\overline{t}}(A, X) = 0$ for every $X \in \pounds$. Then, A is a direct sum of cyclic groups.

Proof. Let A be a discrete group and $Ext_{\overline{t}}(A, X) = 0$ for every $X \in \mathcal{L}$. Then, $Ext_{\overline{t}}(A, X) = 0$ for every discrete group X. Hence, by Remark 2.16, $Ext_t(A, X) = 0$ for every group $X \in \mathfrak{R}$. By Theorem 3.13 of [1], A is a direct sum of cyclic groups. \Box

Lemma 3.5. Let G be a compact group. Then, $Ext_{\overline{t}}(G, X) = 0$ for every $X \in \pounds$ if and only if G = 0.

Proof. Let G be a compact group and $Ext_{\bar{t}}(G, X) = 0$ for every $X \in \pounds$. Then, $Ext_{\bar{t}}(G, \mathbb{Z}_n) = 0$ for every positive integer n. By Lemma 2.3, $Ext(G, \mathbb{Z}_n) = 0$. So, $Ext(\mathbb{Z}_n, \hat{G}) = 0$. Hence, \hat{G} is a divisible group. So, G is a torsion-free group. By Remark 2.2, $Ext(G, X) = Ext_{\bar{t}}(G, X) = 0$ for every torsion-free group $X \in \pounds$. Hence, $Ext(Y, \hat{G}) = 0$ for every divisible group $Y \in \pounds$. By Proposition 3.1 of [13], G = 0. **Lemma 3.6.** Let G be a torsion group. Then, $Ext_{\overline{t}}(G, X) = 0$ for every $X \in \pounds$ if and only if G = 0.

Proof. Let G be a torsion group and $Ext_{\overline{t}}(G, X) = 0$ for every $X \in \mathcal{L}$. By Remark 2.2, Ext(G, X) = 0 for every torsion group X. Hence, by Theorem 4 of [4], G = 0. \Box

Lemma 3.7. Let $G \in \mathcal{L}$ be a torsion-free group. Then, $Ext_{\overline{t}}(G, X) = 0$ for every $X \in \mathcal{L}$ if and only if $G \cong \mathbb{R}^n \bigoplus (\bigoplus_{\sigma} \mathbb{Z})$, where n is a positive integer and σ a cardinal number.

Proof. Let $G \in \mathscr{L}$ be a torsion-free group and $Ext_{\overline{t}}(G, X) = 0$ for every $X \in \mathscr{L}$. By Remark 2.2, Ext(G, X) = 0 for every torsion-free group X. Hence, by Theorem 2 of [4], $G \cong \mathbb{R}^n \bigoplus (\bigoplus_{\sigma} \mathbb{Z})$. Conversely is clear by Theorem 3.3 of [12]. \Box

References

- A. Alijani and H. Sahleh, On t-extensions of abelian groups, *Khayyam J. Math.*, 5 (2019), 60-68.
- [2] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, (1970).
- [3] R. O. Fulp, Homological study of purity in locally compact groups, Proc. London Math. Soc, 21 (1970), 501-512.
- [4] R. O. Fulp, Splitting locally compact abelian groups, Michigan Math. J, 19 (1972), 47-55.
- [5] R.O. Fulp and P. Griffith, Extensions of locally compact abelian groups I, Trans. Amer. Math. Soc, 154 (1971),341-356.
- [6] R. O. Fulp and P. Griffith, Extensions of locally compact abelian groups II, Trans. Amer. Math. Soc, 154 (1971), 357-363.
- [7] E. Hewitt and K. Ross, Abstract Harmonic Analysis, vol. 1, 2nd edn, Springer-Verlog, Berlin (1979).
- [8] M. A. Khan, Chain conditions on subgroups of LCA groups, *Pacific J. Math*, 86 (1980), 517-534.

A. A. ALIJANI

- [9] J. A. Khan, The finite torsion subgroup of an LCA group need not split, *Period. Math. Hungar*, 31 (1995), 43-44.
- [10] P. Loth, Splitting of the identity component in locally compact abelian groups, *Rend. Sem. Mat. Univ. Padova*, 88 (1992), 139-143.
- [11] P. Loth, Pure extensions of locally compact abelian groups, Rend. Sem. Mat. Univ. Padova, 116 (2006), 31-40.
- [12] M. Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc, 127 (1967), 361-404.
- [13] H. Sahleh and A. A. Alijani, Splitting of extensions in the category of locally compact abelian groups, *Int. J. Group Theory*, 3 (2014), 39-45.

Ali Akbar Alijani

Assistant Professor of Mathematics Mollasadra Technical and Vocational College Technical and Vocational University Ramsar, Iran E-mail: alijanialiakbar@gmail.com