Journal of Mathematical Extension Vol. 16, No. 1, (2022) (2)1-11 URL: https://doi.org/10.30495/JME.2022.1371 ISSN: 1735-8299 Original Research Paper

α -Prime Ideals

I. Akray * Soran University

H. M. Mohammed-Salih Soran University

Abstract. Let R be a commutative ring with identity. We give a new generalization to prime ideals called α -prime ideal. A proper ideal P of R is called an α -prime ideal if for all a, b in R with $ab \in P$, then $a \in P$ or $\alpha(b) \in P$ where $\alpha \in End(R)$. We study some properties of α -prime ideals analogous to prime ideals. We give some characterizations for such generalization and we prove that the intersection of all α -primes in a ring R is the set of all α -nilpotent elements in R. Finally, we give new versions of some famous theorems about prime ideals including α -integral domains and α -fields.

AMS Subject Classification: 13A15; 13C99; 13G05 **Keywords and Phrases:** α -Prime ideal; α -primary ideal; α -nilradical; α -integral domain; α -field

1 Introduction

Throughout this article R will be a commutative ring with nonzero identity and $\alpha : R \longrightarrow R$ a fixed endomorphism on R. The notion of a prime ideal plays a key role in the theory of commutative algebra, and it has

Received: August 2019; Accepted: April 2020

^{*}Corresponding Author

been widely studied. Recall from [4] that a prime ideal P of R is a proper ideal P with the property that for $a, b \in R$, $ab \in P$ implies $a \in P$ or $b \in P$. Recently many generalizations of prime ideals were introduced and studied (see for example [1], [3] and [5]). The radical of an ideal I of a ring R is defined to be $\sqrt{I} = \{r \in R : r^n \in I \text{ for some} n \in \mathbb{N}\}$. A proper ideal P is called primary if $ab \in P$ implies $a \in P$ or $b \in \sqrt{P}$ [6]. An integral domain is refereed to us a commutative ring with identity which has no non-zero divisors. For any other concepts see [7]. In this paper, we introduce the notion of α -prime ideal, and establish some characterizations of it. We prove and generalize some results of α -prime ideals that are analogous to prime ideals.

2 Main results

Let R be a ring and let $\alpha \in End(R)$ be a fixed endomorphism. A proper ideal P of a ring R is called an α -prime ideal of R if for all $r, s \in R$, $rs \in P$ implies that $r \in P$ or $\alpha(s) \in P$. The definition is equivalent to say $rs \in P$ implies that either $\alpha(r) \in P$ or $s \in P$. In view of the definition of an α -prime ideal, we see that in the case when α is the identity map, α -prime ideal will be a prime ideal. So α -prime ideals are considered as a generalization of prime ideals. For an α -prime P, if $r \in P$, then $\alpha(r) \in P$ since $r = 1 \cdot r \in P$ implies $1 \in P$ or $\alpha(r) \in P$. Hence we can assume $\alpha(P) \subseteq P$. Also in the case when $\alpha(I) = I$, for all ideals I of R, then the prime ideal is an α -prime ideal, where α is the identity map. However, the converse is not true in general as shown in the following example.

Example 2.1. Consider the ideal $P = \langle 2x \rangle$ in the ring $R = \mathbb{Z}_4[x]$ with endomorphism α on R defined by $\alpha(f(x)) = f(0)$. Then P is α -prime but not prime, since $2 \cdot x \in P$ and $2, x \notin P$ whereas $\alpha(x) = 0 \in P$.

Lemma 2.2. Let P be an α -prime. Then so is \sqrt{P} .

Proof. Let $xy \in \sqrt{P}$, for $x, y \in R$. Then $(xy)^n = x^n y^n \in P$ and P being α -prime implies $x^n \in P$ or $\alpha(y^n) = (\alpha(y))^n \in P$ which means that $x \in \sqrt{P}$ or $\alpha(y) \in \sqrt{P}$. Hence \sqrt{P} is α -prime. \Box

For a ring R and an α -prime ideal P of R, we define a subset S_P of R as $S_P = \{r \in R : \alpha(r) \in P\}$. Clearly, S_P is an ideal of R containing P. The following is a direct consequence and can be proved easily and so the proof is omited.

Lemma 2.3. Assume P is an α -prime ideal of a ring R. Then S_P is an α -prime ideal of R.

Lemma 2.4. Suppose P is α -prime and maximal with respect to the property that $r \in P$ implies $\alpha(r) \in P$. Then P is prime.

Proof. By contrast, suppose P is not prime and so there exist $a, b \in R$ with $ab \in P$ such that $a \notin P$ and $b \notin P$. Consider the ideal $(P, a) = \{m + ra : m \in P, r \in R\}$ and take $x \in (P, a)$. Then x = m + ra and $xb = mb + rab \in P$. Hence $\alpha(x) \in P \subseteq (P, a)$. So by hypothesis, (P, a) = P and hence $a \in P$, which is a contradiction. Therefore P is prime. \Box

Now we give a charactrization of an α -prime ideal.

Theorem 2.5. Let R be a ring and P a proper ideal of R. Then P is α -prime if and only if for any two ideals I, J of R such that $IJ \subseteq P$, $I \subseteq P$ or $\alpha(J) \subseteq P$.

Proof. Let P be an α -prime ideal and $IJ \subseteq P$ with $I \not\subseteq P$. Then there exists a in I such that $a \notin P$. For every $b \in J$, $ab \in IJ \subseteq P$, but $a \notin P$ so $\alpha(b) \in P$, that is, $\alpha(J) \subseteq P$. Conversely, let $ab \in P$, which implies that $\langle a \rangle \langle b \rangle \subseteq P$. Hence we have $\langle a \rangle \subseteq P$ or $\alpha(\langle b \rangle) \subseteq P$. Therefore $a \in P$ or $\alpha(b) \in P$ and P is α -prime. \Box

Let J be a subset of a ring R. We show that the α -primeness of an ideal P implies the α -primeness of the ideal (P:J).

Proposition 2.6. If P is an α -prime ideal of a ring R and I a subset of R, then so is (P:I).

Proof. Suppose $ab \in (P : I)$ for $a, b \in R$. Then $b \in (P : aI) = (P : a) \cup (P : I)$. Thus $ba \in P$ or $b \in (P : I)$, that is, $b \in P$ or $\alpha(a) \in P$ or $b \in (P : I)$. Therefore $\alpha(a) \in (P : I)$ or $b \in (P : I)$ and (P : I) is α -prime ideal. \Box

Remark 2.7. We note that for an α -prime ideal P of a ring R and $r \in R$, if $r^n \in P$, then $\alpha(r) \in P$. Thus if we put $r = \alpha(x)$, then $(\alpha(x))^n \in P$ implies that $\alpha \circ \alpha(x) \in P$.

Let R be a ring. An element $a \in R$ is called α -nilpotent if $\alpha(a^n) = 0$ for some positive integer n. We call the set of α -nilpotent elements in a ring R the α -nilradical of R and denote by \mathcal{N}_{α} . We know that if x is a nilpotent element in a ring R, then 1 - x is a unit in R. This result can be extended as follows: For an α -nilpotent element r in R, $1 - \alpha(r)$ is a unit in R. In the sight of the definition of α -nilpotent elements we can define the α -radical of an ideal I to be $\sqrt[\alpha]{I} = \{a \in R : \alpha(a^n) \in$ I for some positive integer $n\}$. Thus $\mathcal{N}_{\alpha} = \sqrt[\alpha]{0}$ and clearly $I \subseteq \sqrt[\alpha]{I}$. Now, we are in a position to characterize the set \mathcal{N}_{α} as an ideal. First, we have to prove the ideality of \mathcal{N}_{α} .

Proposition 2.8. The set of all α -nilpotent elements \mathcal{N}_{α} is an ideal of R.

Proof. Let $x, y \in \mathcal{N}_{\alpha}$. Then $\alpha(x^n) = \alpha(y^m) = 0$ for some positive integers n, m and by the binomial theorem $(\alpha(x) + \alpha(y))^{n+m-1}$ is a sum where all its monomials contain the product $(\alpha(x))^r (\alpha(y))^s$ with r + s = m + n - 1. So the case when r < n and s < m is excluded. Hence each of these monomials is zero. So $(\alpha(x+y))^{n+m-1} = (\alpha(x) + \alpha(y))^{n+m-1} = 0$ and $x + y \in \mathcal{N}_{\alpha}$. Also, for every $r \in R$, we have $\alpha((rx)^n) = \alpha(r^n) \cdot \alpha(x^n) = 0$. Therefore \mathcal{N}_{α} is an ideal of R. \Box

Now, we give one of our main results that characterizes the ideal \mathcal{N}_{α} and it is a generalization of Proposition 1.8 of the Atiyah's book [4]. For this reason we need the following two lemmas.

Lemma 2.9. For $\alpha \in End(R)$, the kernel of α is in the intersection of all α -prime ideals.

Proof. Suppose $x \in Ker\alpha$. Then $\alpha(x) = 0$ belongs to every α -prime ideal P of R. So, x belongs to the inverse image of every α -prime ideal which is again an α -prime ideal by Proposotion 2.21. Therefore $Ker\alpha \subseteq \bigcap_{P \text{ is } \alpha - \text{ prime in } R} P$. \Box

Lemma 2.10. Assume that R is an integral domain and $\alpha \in End(R)$. Then the kernel of α is a prime ideal in R.

Proof. Suppose $xy \in Ker\alpha$ for $x, y \in R$. Then $\alpha(xy) = \alpha(x)\alpha(y) = 0$ and R being an integral domain implies $\alpha(x) = 0$ or $\alpha(y) = 0$, that is, $x \in Ker\alpha$ or $y \in Ker\alpha$. Therefore $Ker\alpha$ is a prime ideal in R. \Box

Theorem 2.11. The α -nilradical \mathcal{N}_{α} of an integral domain R is the intersection of all the α -prime ideals of R.

Proof. Suppose x is α -nilpotent. Then $\alpha(x^n) = 0$ and $x^n \in Ker\alpha$. Lemma 2.10 implies that $x \in Ker\alpha$ and Lemma 2.9 gives us

 $x \in \bigcap_{P \text{ is } \alpha-\text{ prime in } R} P$. Thus $\mathcal{N}_{\alpha} \subseteq \bigcap_{P \text{ is } \alpha-\text{ prime in } R} P$. For the reverse inclusion, let x be non α -nilpotent and define a set $S = \{I : I \text{ an ideal of } R \text{ and } \alpha(x^n) \notin I \text{ for all } n > 0\}$. Clearly 0 belong to S and so S is nonempty. Order S by inclusion and let $\{I_i\}_{i\in I}$ be a chain of ideals of in S. Then $I_i \subseteq I_j$ or $I_j \subseteq I_i$ for each pair of indices i and j. Set $I = \bigcup_i I_i$, so that it is an ideal in S and becomes an upper bound of the chain. Therefore by Zorn's lemma, S has a maximal element, say J. Now to prove that J is α -prime, let $\alpha(a), \alpha(b) \notin J$. Then $J \subset J + R\alpha(a), J \subset J + R\alpha(b)$ and so they are not elements of S. Thus there exist positive integers m, n such $\alpha(x^m) \in J + R\alpha(ab) \notin S$ and $\alpha(ab) = \alpha(a)\alpha(b) \notin J$. Therefore by Remark 2.7, $ab \notin J$ and J is an α -prime ideal in which $\alpha(x^n) \notin J$, that is $x \notin J$ and so $x \notin \mathcal{N}_{\alpha}$. \Box

By taking the quotient ring R/I instead of R in Theorem 2.11 we conclude the following.

Corollary 2.12. For an integral domain R and an ideal I of R, the α -radical of I is equal to the intersection of all the α -prime ideals of R which contains I.

Here are some properties of the α -radical of an ideal, which are extended from those of the usual radical of an ideal.

Proposition 2.13. Suppose I and J are two ideals of a ring R. Then the following are true.

- 1. If $I \subseteq J$, then $\sqrt[\alpha]{I} \subseteq \sqrt[\alpha]{J}$
- 2. $\sqrt[\alpha]{IJ} = \sqrt[\alpha]{I \cap J} = \sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}.$
- 3. If $\alpha(1) = 1$, then $\sqrt[\alpha]{I} = R$ if and only if I = R.

- 4. $\sqrt[\alpha]{I+J} \subseteq \sqrt[\alpha]{\sqrt[\alpha]{I} + \sqrt[\alpha]{J}}$
- 5. If I is an α -prime ideal of R, then $\sqrt[\alpha]{I^n} = \sqrt[\alpha]{I}$, for all positive integer n.

Proof.

- 1. The proof is clear.
- 2. To prove the first equality we have $IJ \subseteq I \cap J$, so $\sqrt[\alpha]{IJ} \subseteq \sqrt[\alpha]{I \cap J}$. For the reverse inclusion, let $x \in \sqrt[\alpha]{I \cap J}$. Then $\alpha(x^n) \in I \cap J$ for some positive integer n and so $\alpha(x^{2n}) \in IJ$. Hence $x \in \sqrt[\alpha]{IJ}$. Now to prove the last equality, we have from $I \cap J \subseteq I$ and $I \cap J \subseteq J$ that $\sqrt[\alpha]{I \cap J} \subseteq \sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}$. For other side, let $y \in \sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}$. Then $\alpha(y^r) \in I$ and $\alpha(y^s) \in J$ for some positive integers r, s. Hence $\alpha(y^k) \in I \cap J$, for $k = max\{r, s\}$. Thus $y \in \sqrt[\alpha]{I \cap J}$ and the equality holds.
- 3. Suppose $\sqrt[\alpha]{I} = R$. Then $1 \in \sqrt[\alpha]{I}$ implies that $\alpha(1^n) = \alpha(1) = 1 \in I$ which means that I = R. The other implication is obvious.
- 4. The two inclusions $I \subseteq \sqrt[\alpha]{I}$ and $J \subseteq \sqrt[\alpha]{J}$ together imply that $\sqrt[\alpha]{I+J} \subseteq \sqrt[\alpha]{\sqrt[\alpha]{I}+\sqrt[\alpha]{J}}$.
- 5. The proof follows from part (2), namely that $\sqrt[\alpha]{I^n} = \sqrt[\alpha]{I.I...I} = \sqrt[\alpha]{I} \cap \sqrt[\alpha]{I} \cap \ldots \cap \sqrt[\alpha]{I} = \sqrt[\alpha]{I}$.

The equality of part (4) is not true in general as it is the case of usual radical. The only thing that we can say is $\alpha(\sqrt[\alpha]{\sqrt[\alpha]{I} + \sqrt[\alpha]{J}}) \subseteq \sqrt[\alpha]{I+J}$.

Proposition 2.14. Let $f : R \to S$ be a ring homomorphism and assume that $\alpha \in End(R) \cap End(S)$ commutes with f. Let P and \overline{P} be two ideals of R and S respectively. Then

- 1. $f(\sqrt[\alpha]{P}) \subseteq \sqrt[\alpha]{f(P)}$.
- 2. $\sqrt[\alpha]{f^{-1}(\bar{P})} \subseteq f^{-1}(\sqrt[\alpha]{\bar{P}})$
- 3. If f is an isomorphism, then $f(\sqrt[\alpha]{P}) = \sqrt[\alpha]{f(P)}$.

Proof.

- 1. Let $x \in f(\sqrt[\alpha]{P})$. Then x = f(a) for some $a \in \sqrt[\alpha]{P}$. Since $a \in \sqrt[\alpha]{P}$, there exists a positive integer n such that $\alpha(a^n) \in P$. Now $\alpha(x^n) = \alpha((f(a)^n) = \alpha(f(a^n)) = f(\alpha(a^n)) \in f(P)$. So $x \in \sqrt[\alpha]{f(P)}$.
- 2. Let $a \in \sqrt[\alpha]{f^{-1}(\bar{P})}$. Then there exists a positive integer n such that $\alpha(a^n) \in f^{-1}(\bar{P})$. So $f(\alpha(a^n)) \in \bar{P}$. Since f and α commute, $\alpha(f(a)^n) \in \bar{P}$. Hence $a \in f^{-1}(\sqrt[\alpha]{\bar{P}})$. Thus $\sqrt[\alpha]{f^{-1}(\bar{P})} \subseteq f^{-1}(\sqrt[\alpha]{\bar{P}})$.
- 3. The proof is obtained from part (1) and f being an isomorphism.

We know that a proper ideal P of a ring R is prime if and only if R/P has no zero divisors and that P is α -prime if and only if every zero divisor of R/P is in $Ker\alpha$. Also, from Lemma 2.9 we have the isomorphism $R/P \cong \frac{R/Ker\alpha}{P/Ker\alpha}$. Hence P is α -prime if and only if $\frac{R/Ker\alpha}{P/Ker\alpha}$ has no zero divisors if and only if $P/Ker\alpha$ is a prime ideal. Therefore we deduce the main connection between prime ideals and α -prime ideals.

Theorem 2.15. Let P be a proper ideal of R. Then P is an α -prime ideal in R if and only if $\frac{P}{Ker\alpha}$ is prime in $\frac{R}{Ker\alpha}$.

A ring R is called an α -integral domain if for all $a, b \in R$ with ab = 0, a = 0 or $\alpha(b) = 0$ for some endomorphism α on R. It is clear that every integral domain is an α -integral domain, but the converse is not true as shown in the following example.

Example 2.16. Consider the ring $R = \frac{\mathbb{Z}[x]}{\langle x^2 - x \rangle}$ and endomorphism α on R defined by $\alpha(f(x)) = x \cdot f(x)$. Then R is α -integral domain but not integral domain, since x(x-1) = 0 and $x, 1 - x \neq 0$ but $\alpha(1-x) = x(1-x) = 0$

The next theorem characterizes α -prime ideals in the sense of quotient rings.

Proposition 2.17. Let R be a commutative ring. Then P is an α -prime ideal if and only if R/P is an α -integral domain.

Proof. Let R/P be an integral domain. Let $a, b \in R$ such that $ab \in P$. Then ab + P = P. Since R/P is an α -integral domain, a + P = P or $\alpha(a + P) = P$. So $a \in P$ and $\alpha(a) \in P$. Thus P is an α -prime ideal. Conversely, Let P be α -prime ideal. Let $a, b \in R$ with $ab \in P$. Then $a \in P$ or $\alpha(a) \in P$. So a + P = P or $\alpha(a) + P = P$. Hence a + P = Por $\alpha(a + P) = P$. Therefore R/P is an α -integral domain.

An α -integral domain R is called an α -field if $\frac{R}{Ker\alpha}$ is a field. Clearly every field is an α -field and the converse is true in the case where $Ker\alpha = 0$.

It is well-known that if K is a field, then K[x] is a principal ideal domain but not a field. Define a ring homomorphism $\alpha : K[x] \to K[x]$ by $\alpha(f(x)) = f(0)$. Then $Ker\alpha = \langle x \rangle$ and $\frac{K[x]}{Ker\alpha} = \frac{K[x]}{\langle x \rangle} \cong$ K is a field. Similarly, for $K[x_1, \ldots, x_n]$, we can define an endomorphism α on $K[x_1, \ldots, x_n]$ by $\alpha(f(x_{-1}, \ldots, x_n)) = f(0, 0, \ldots, 0)$. So, $\frac{K[x_1, \ldots, x_n]}{Ker\alpha} = \frac{K[x_1, \ldots, x_n]}{\langle x_1, \ldots, x_n \rangle} \cong K$ is a field. Thus we conclude the following theorem.

Theorem 2.18. For any field K, the polynomial ring $K[x_1, \ldots, x_n]$ in *n* indeterminates is α -field but not field.

We know that every finite integral domain is a field. Here we generalize this result to α -integral domains.

Proposition 2.19. Every finite α -integral domain is an α -field

Proof. Suppose R is a finite α -integral domain, say $R = \{x_1, x_2, ..., x_n\}$ Then for any x in R with $\alpha(x) \neq 0$, the elements $xx_i, i = 1, 2, ..., n$ are all distinct else for if $xx_i = xx_j$, then $x(x_i - x_j) = 0$ and as R is α -integral domain, $x_i - x_j = 0$ or $\alpha(x) = 0$. Hence, $\alpha(x) \neq 0$ implies $x_i = x_j$ and as R has identity, there exists $s \in \{1, 2, ...n\}$ such that $xx_s = 1$. Therefore x has an inverse x_s and R is an α -field. \Box

A proper ideal I of a ring R is called an α -primary ideal if for all $a, b \in R$ such that $ab \in I$, $a \in I$ or $\alpha(b^n) \in I$ for some positive integer n. Clearly every α -prime ideal is α -primary. Now we have the following lemma.

Lemma 2.20. If P is an α -primary ideal of R, then $\sqrt[\alpha]{P}$ is an α -prime ideal.

Proof. Assume $ab \in \sqrt[\alpha]{P}$. Then $\alpha((ab)^n) = \alpha(a^n b^n) = \alpha(a^n)\alpha(b^n) \in P$. As P is an α -primary ideal, $\alpha(a^n) \in P$ or $\alpha(\alpha(b^n)) = \alpha([\alpha(b)]^n) \in P$. Thus $a \in \sqrt[\alpha]{P}$ or $\alpha(b) \in \sqrt[\alpha]{P}$. Therefore $\sqrt[\alpha]{P}$ is an α -prime ideal. \Box

From Atiyah's book [4], we know that the inverse image of a prime ideal under a ring homomorphism is again prime ideal. Next, we prove that the inverse image of an endomorphism of α -prime ideal is α -prime in a generalized form.

Proposition 2.21. Let $f : R \to S$ be a ring homomorphism and assume that $\alpha \in End(R) \cap End(S)$ commutes with f. Then for any α -prime ideal Q of S, $f^{-1}(Q)$ is an α -prime ideal of R.

Proof. Let Q be an α -prime ideal of S. Then for any two elements a and b in R with $ab \in f^{-1}(Q)$, we have $f(a)f(b) \in Q$ and Q being an α -prime ideal implies that $f(a) \in Q$ or $\alpha(f(b)) = f(\alpha(b)) \in Q$, that is, $a \in f^{-1}(Q)$ or $\alpha(b) \in f^{-1}(Q)$ and this is what we want to prove. \Box

A subset S of a ring R is called an α -multiplicative system if $a\alpha(b) \in S$ for all $a, b \in S$. Thus from this definition we have the following lemma.

Lemma 2.22. Let R be a commutative ring with identity. Then P is an α -prime ideal if and only if R - P is an α -multiplicative system.

Proposition 2.23. Suppose S is a multiplicative subset of a ring R and $\overline{\alpha} : S^{-1}R \to S^{-1}R$ is the induced map of α . Then there is a one-to-one correspondence between α -prime ideals P of R with $S \cap P = \emptyset$ and α -prime ideals of $S^{-1}R$.

Proof. Suppose P is an α -prime ideal in R and $\left(\frac{a}{s}\right)\left(\frac{b}{t}\right) \in S^{-1}P$ for $\frac{a}{s}, \frac{b}{t} \in S^{-1}R$. Then the exists $u \in S$ such that $uab \in P$. So $ua \in P$ or $\alpha(b) \in P$. Thus, $\frac{ua}{us} = \frac{a}{s} \in S^{-1}P$ or $\frac{\alpha(b)}{t} \in S^{-1}P$, that is, $\frac{a}{s} \in S^{-1}P$ or $\overline{\alpha}\left(\frac{b}{t}\right) \in S^{-1}P$. Hence $S^{-1}P$ is $\overline{\alpha}$ -prime ideal in $S^{-1}R$. The other side is obtained from Proposition 2.21. \Box

From Proposition 2.21 and Proposition 2.23, we can conclude the following.

Proposition 2.24. Let $f : R \to S$ be a ring homomorphism and assume that $\alpha \in End(R) \cap End(S)$ commutes with f. Then an ideal I containing Ker α is an α -prime ideal if and only if f(I) is an α -prime ideal.

Corollary 2.25. Let I and J be two ideals of a ring R such that $I \subseteq J$. Then J/I is $\bar{\alpha}$ -prime ideal in R/I if and only if J is α -prime in R, where $\bar{\alpha}$ is the induced map on R/I from α .

References

- I. Akray, I-prime ideals, Journal of Algebra and related topics, 4(2) (2016), 41–47.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831–840.
- [4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing company, 1969.
- [5] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, *Comm. Algebra*, 33 (2005), 43–49.
- [6] R. Gilmer and J. Ohm, Primary ideals and valuation ideals, Trans. Amer. Math. Soc., 117 (1965), 237–250.
- [7] I. Kaplansky, Commutative Rings, Revised Edition, Chicago, University of Chicago press, 1974.

Ismael Akray

Department of Mathematics Associate Professor of Mathematics Faculty of Science, Soran University Erbil city, Kurdistan region, Iraq E-mail: ismael.akray@soran.edu.iq

Haval Mahmood Mohammed Salih Department of Mathematics

$\alpha\text{-}\mathrm{PRIME}$ IDEADS

Associate Professor of Mathematics Faculty of Science, Soran University Erbil city, Kurdistan region, Iraq E-mail: havalmahmood07@gmail.com