Journal of Mathematical Extension
Vol. 16, No. 1, (2022) (2)1-11
URL: https://doi.org/10.30495/JME.2022.1371
ISSN: 1735-8299
Original Research Paper

α-Prime Ideals

I. Akray *
Soran University
H. M. Mohammed-Salih
Soran University

Abstract

Let R be a commutative ring with identity. We give a new generalization to prime ideals called α-prime ideal. A proper ideal P of R is called an α-prime ideal if for all a, b in R with $a b \in P$, then $a \in P$ or $\alpha(b) \in P$ where $\alpha \in \operatorname{End}(R)$. We study some properties of α-prime ideals analogous to prime ideals. We give some characterizations for such generalization and we prove that the intersection of all α-primes in a ring R is the set of all α-nilpotent elements in R. Finally, we give new versions of some famous theorems about prime ideals including α-integral domains and α-fields.

AMS Subject Classification: 13A15; 13C99; 13G05
Keywords and Phrases: α-Prime ideal; α-primary ideal; α-nilradical; α-integral domain; α-field

1 Introduction

Throughout this article R will be a commutative ring with nonzero identity and $\alpha: R \longrightarrow R$ a fixed endomorphism on R. The notion of a prime ideal plays a key role in the theory of commutative algebra, and it has

[^0]been widely studied. Recall from [4] that a prime ideal P of R is a proper ideal P with the property that for $a, b \in R, a b \in P$ implies $a \in P$ or $b \in P$. Recently many generalizations of prime ideals were introduced and studied (see for example [1], [3] and [5]). The radical of an ideal I of a ring R is defined to be $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for somen $\left.\in \mathbb{N}\right\}$. A proper ideal P is called primary if $a b \in P$ implies $a \in P$ or $b \in \sqrt{P}$ [6]. An integral domain is refereed to us a commutative ring with identity which has no non-zero divisors. For any other concepts see [7]. In this paper, we introduce the notion of α-prime ideal, and establish some characterizations of it. We prove and generalize some results of α-prime ideals that are analogous to prime ideals.

2 Main results

Let R be a ring and let $\alpha \in \operatorname{End}(R)$ be a fixed endomorphism. A proper ideal P of a ring R is called an α-prime ideal of R if for all $r, s \in R$, $r s \in P$ implies that $r \in P$ or $\alpha(s) \in P$. The definition is equivalent to say $r s \in P$ implies that either $\alpha(r) \in P$ or $s \in P$. In view of the definition of an α-prime ideal, we see that in the case when α is the identity map, α-prime ideal will be a prime ideal. So α-prime ideals are considered as a generalization of prime ideals. For an α-prime P, if $r \in P$, then $\alpha(r) \in P$ since $r=1 \cdot r \in P$ implies $1 \in P$ or $\alpha(r) \in P$. Hence we can assume $\alpha(P) \subseteq P$. Also in the case when $\alpha(I)=I$, for all ideals I of R, then the prime ideals and α-prime ideals will be again the same. Note that every prime ideal is an α-prime ideal, where α is the identity map. However, the converse is not true in general as shown in the following example.

Example 2.1. Consider the ideal $P=<2 x>$ in the ring $R=\mathbb{Z}_{4}[x]$ with endomorphism α on R defined by $\alpha(f(x))=f(0)$. Then P is α-prime but not prime, since $2 \cdot x \in P$ and $2, x \notin P$ whereas $\alpha(x)=0 \in P$.

Lemma 2.2. Let P be an α-prime. Then so is \sqrt{P}.
Proof. Let $x y \in \sqrt{P}$, for $x, y \in R$. Then $(x y)^{n}=x^{n} y^{n} \in P$ and P being α-prime implies $x^{n} \in P$ or $\alpha\left(y^{n}\right)=(\alpha(y))^{n} \in P$ which means that $x \in \sqrt{P}$ or $\alpha(y) \in \sqrt{P}$. Hence \sqrt{P} is α-prime.

For a ring R and an α-prime ideal P of R, we define a subset S_{P} of R as $S_{P}=\{r \in R: \alpha(r) \in P\}$. Clearly, S_{P} is an ideal of R containing P. The following is a direct consequence and can be proved easily and so the proof is omited.

Lemma 2.3. Assume P is an α-prime ideal of a ring R. Then S_{P} is an α-prime ideal of R.

Lemma 2.4. Suppose P is α-prime and maximal with respect to the property that $r \in P$ implies $\alpha(r) \in P$. Then P is prime.

Proof. By contrast, suppose P is not prime and so there exist $a, b \in R$ with $a b \in P$ such that $a \notin P$ and $b \notin P$. Consider the ideal $(P, a)=$ $\{m+r a: m \in P, r \in R\}$ and take $x \in(P, a)$. Then $x=m+r a$ and $x b=m b+r a b \in P$. Hence $\alpha(x) \in P \subseteq(P, a)$. So by hypothesis, $(P, a)=P$ and hence $a \in P$, which is a contradiction. Therefore P is prime.

Now we give a charactrization of an α-prime ideal.
Theorem 2.5. Let R be a ring and P a proper ideal of R. Then P is α-prime if and only if for any two ideals I, J of R such that $I J \subseteq P$, $I \subseteq P$ or $\alpha(J) \subseteq P$.

Proof. Let P be an α-prime ideal and $I J \subseteq P$ with $I \nsubseteq P$. Then there exists a in I such that $a \notin P$. For every $b \in J, a b \in I J \subseteq P$, but $a \notin P$ so $\alpha(b) \in P$, that is, $\alpha(J) \subseteq P$. Conversely, let $a b \in P$, which implies that $\langle a\rangle\langle b\rangle \subseteq P$. Hence we have $\langle a\rangle \subseteq P$ or $\alpha(\langle b\rangle) \subseteq P$. Therefore $a \in P$ or $\alpha(b) \in P$ and P is α-prime.

Let J be a subset of a ring R. We show that the α-primeness of an ideal P implies the α-primeness of the ideal $(P: J)$.

Proposition 2.6. If P is an α-prime ideal of a ring R and I a subset of R, then so is $(P: I)$.

Proof. Suppose $a b \in(P: I)$ for $a, b \in R$. Then $b \in(P: a I)=(P$: $a) \cup(P: I)$. Thus $b a \in P$ or $b \in(P: I)$, that is, $b \in P$ or $\alpha(a) \in P$ or $b \in(P: I)$. Therefore $\alpha(a) \in(P: I)$ or $b \in(P: I)$ and $(P: I)$ is α-prime ideal.

Remark 2.7. We note that for an α-prime ideal P of a ring R and $r \in R$, if $r^{n} \in P$, then $\alpha(r) \in P$. Thus if we put $r=\alpha(x)$, then $(\alpha(x))^{n} \in P$ implies that $\alpha \circ \alpha(x) \in P$.

Let R be a ring. An element $a \in R$ is called α-nilpotent if $\alpha\left(a^{n}\right)=0$ for some positive integer n. We call the set of α-nilpotent elements in a ring R the α-nilradical of R and denote by \mathcal{N}_{α}. We know that if x is a nilpotent element in a ring R, then $1-x$ is a unit in R. This result can be extended as follows: For an α-nilpotent element r in $R, 1-\alpha(r)$ is a unit in R. In the sight of the definition of α-nilpotent elements we can define the α-radical of an ideal I to be $\sqrt[\alpha]{I}=\left\{a \in R: \alpha\left(a^{n}\right) \in\right.$ I for some positive integer $n\}$. Thus $\mathcal{N}_{\alpha}=\sqrt[\alpha]{0}$ and clearly $I \subseteq \sqrt[\alpha]{I}$. Now, we are in a position to characterize the set \mathcal{N}_{α} as an ideal. First, we have to prove the ideality of \mathcal{N}_{α}.

Proposition 2.8. The set of all α-nilpotent elements \mathcal{N}_{α} is an ideal of R.

Proof. Let $x, y \in \mathcal{N}_{\alpha}$. Then $\alpha\left(x^{n}\right)=\alpha\left(y^{m}\right)=0$ for some positive integers n, m and by the binomial theorem $(\alpha(x)+\alpha(y))^{n+m-1}$ is a sum where all its monomials contain the product $(\alpha(x))^{r}(\alpha(y))^{s}$ with $r+s=m+n-1$. So the case when $r<n$ and $s<m$ is excluded. Hence each of these monomials is zero. So $(\alpha(x+y))^{n+m-1}=(\alpha(x)+$ $\alpha(y))^{n+m-1}=0$ and $x+y \in \mathcal{N}_{\alpha}$. Also, for every $r \in R$, we have $\alpha\left((r x)^{n}\right)=\alpha\left(r^{n}\right) \cdot \alpha\left(x^{n}\right)=0$. Therefore \mathcal{N}_{α} is an ideal of R.

Now, we give one of our main results that characterizes the ideal \mathcal{N}_{α} and it is a generalization of Proposition 1.8 of the Atiyah's book [4]. For this reason we need the following two lemmas.

Lemma 2.9. For $\alpha \in \operatorname{End}(R)$, the kernel of α is in the intersection of all α-prime ideals.

Proof. Suppose $x \in \operatorname{Ker} \alpha$. Then $\alpha(x)=0$ belongs to every α-prime ideal P of R. So, x belongs to the inverse image of every α-prime ideal which is again an α-prime ideal by Proposotion 2.21. Therefore $\operatorname{Ker} \alpha \subseteq \bigcap_{P \text { is } \alpha-\text { prime in }{ }_{R} P .}$.
Lemma 2.10. Assume that R is an integral domain and $\alpha \in \operatorname{End}(R)$. Then the kernel of α is a prime ideal in R.

Proof. Suppose $x y \in \operatorname{Ker} \alpha$ for $x, y \in R$. Then $\alpha(x y)=\alpha(x) \alpha(y)=0$ and R being an integral domain implies $\alpha(x)=0$ or $\alpha(y)=0$, that is, $x \in K e r \alpha$ or $y \in K e r \alpha$. Therefore Ker α is a prime ideal in R.

Theorem 2.11. The α-nilradical \mathcal{N}_{α} of an integral domain R is the intersection of all the α-prime ideals of R.

Proof. Suppose x is α-nilpotent. Then $\alpha\left(x^{n}\right)=0$ and $x^{n} \in \operatorname{Ker} \alpha$. Lemma 2.10 implies that $x \in \operatorname{Ker} \alpha$ and Lemma 2.9 gives us
$x \in \bigcap_{P \text { is } \alpha-\text { prime in } R} P$. Thus $\mathcal{N}_{\alpha} \subseteq \bigcap_{P \text { is } \alpha-\text { prime in } R} P$. For the reverse inclusion, let x be non α-nilpotent and define a set $S=\{I: I$ an ideal of R and $\alpha\left(x^{n}\right) \notin I$ for all $\left.n>0\right\}$. Clearly 0 belong to S and so S is nonempty. Order S by inclusion and let $\left\{I_{i}\right\}_{i \in I}$ be a chain of ideals of in S. Then $I_{i} \subseteq I_{j}$ or $I_{j} \subseteq I_{i}$ for each pair of indices i and j. Set $I=\bigcup_{i} I_{i}$, so that it is an ideal in S and becomes an upper bound of the chain. Therefore by Zorn's lemma, S has a maximal element, say J. Now to prove that J is α-prime, let $\alpha(a), \alpha(b) \notin J$. Then $J \subset J+R \alpha(a), J \subset J+R \alpha(b)$ and so they are not elements of S. Thus there exist positive integers m, n such $\alpha\left(x^{m}\right) \in J+R \alpha(a)$, $\alpha\left(x^{n}\right) \in J+R \alpha(b)$. So $\alpha\left(x^{n+m}\right) \in J+R \alpha(a b)$. It follows $J+R \alpha(a b) \notin S$ and $\alpha(a b)=\alpha(a) \alpha(b) \notin J$. Therefore by Remark 2.7, $a b \notin J$ and J is an α-prime ideal in which $\alpha\left(x^{n}\right) \notin J$, that is $x \notin J$ and so $x \notin \mathcal{N}_{\alpha}$.

By taking the quotient ring R / I instead of R in Theorem 2.11 we conclude the following.

Corollary 2.12. For an integral domain R and an ideal I of R, the α-radical of I is equal to the intersection of all the α-prime ideals of R which contains I.

Here are some properties of the α-radical of an ideal, which are extended from those of the usual radical of an ideal.

Proposition 2.13. Suppose I and J are two ideals of a ring R. Then the following are true.

1. If $I \subseteq J$, then $\sqrt[\alpha]{I} \subseteq \sqrt[\alpha]{J}$
2. $\sqrt[\alpha]{I J}=\sqrt[\alpha]{I \cap J}=\sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}$.
3. If $\alpha(1)=1$, then $\sqrt[\alpha]{I}=R$ if and only if $I=R$.
4. $\sqrt[\alpha]{I+J} \subseteq \sqrt[\alpha]{\sqrt[\alpha]{I}+\sqrt[\alpha]{J}}$
5. If I is an α-prime ideal of R, then $\sqrt[\alpha]{I^{n}}=\sqrt[\alpha]{I}$, for all positive integer n.

Proof.

1. The proof is clear.
2. To prove the first equality we have $I J \subseteq I \cap J$, so $\sqrt[\alpha]{I J} \subseteq \sqrt[\alpha]{I \cap J}$. For the reverse inclusion, let $x \in \sqrt[\alpha]{I \cap J}$. Then $\alpha\left(x^{n}\right) \in I \cap J$ for some positive integer n and so $\alpha\left(x^{2 n}\right) \in I J$. Hence $x \in \sqrt[\alpha]{I J}$. Now to prove the last equality, we have from $I \cap J \subseteq I$ and $I \cap J \subseteq J$ that $\sqrt[\alpha]{I \cap J} \subseteq \sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}$. For other side, let $y \in \sqrt[\alpha]{I} \cap \sqrt[\alpha]{J}$. Then $\alpha\left(y^{r}\right) \in I$ and $\alpha\left(y^{s}\right) \in J$ for some positive integers r, s. Hence $\alpha\left(y^{k}\right) \in I \cap J$, for $k=\max \{r, s\}$. Thus $y \in \sqrt[\alpha]{I \cap J}$ and the equality holds.
3. Suppose $\sqrt[\alpha]{I}=R$. Then $1 \in \sqrt[\alpha]{I}$ implies that $\alpha\left(1^{n}\right)=\alpha(1)=1 \in I$ which means that $I=R$. The other implication is obvious.
4. The two inclusions $I \subseteq \sqrt[\alpha]{I}$ and $J \subseteq \sqrt[\alpha]{J}$ together imply that $\sqrt[\alpha]{I+J} \subseteq \sqrt[\alpha]{\sqrt[\alpha]{I}+\sqrt[\alpha]{J}}$.
5. The proof follows from part (2), namely that $\sqrt[\alpha]{I^{n}}=\sqrt[\alpha]{I . I \ldots I}=$ $\sqrt[\alpha]{I} \cap \sqrt[\alpha]{I} \cap \ldots \cap \sqrt[\alpha]{I}=\sqrt[\alpha]{I}$.

The equality of part (4) is not true in general as it is the case of usual radical. The only thing that we can say is $\alpha(\sqrt[\alpha]{\sqrt[\alpha]{I}+\sqrt[\alpha]{J}}) \subseteq \sqrt[\alpha]{I+J}$.

Proposition 2.14. Let $f: R \rightarrow S$ be a ring homomorphism and assume that $\alpha \in \operatorname{End}(R) \cap \operatorname{End}(S)$ commutes with f. Let P and \bar{P} be two ideals of R and S respectively. Then

1. $f(\sqrt[\alpha]{P}) \subseteq \sqrt[\alpha]{f(P)}$.
2. $\sqrt[\alpha]{f^{-1}(\bar{P})} \subseteq f^{-1}(\sqrt[\alpha]{\bar{P}})$
3. If f is an isomorphism, then $f(\sqrt[\alpha]{P})=\sqrt[\alpha]{f(P)}$.

Proof.

1. Let $x \in f(\sqrt[\alpha]{P})$. Then $x=f(a)$ for some $a \in \sqrt[\alpha]{P}$. Since $a \in \sqrt[\alpha]{P}$, there exists a positive integer n such that $\alpha\left(a^{n}\right) \in P$. Now $\alpha\left(x^{n}\right)=$ $\alpha\left(\left(f(a)^{n}\right)=\alpha\left(f\left(a^{n}\right)\right)=f\left(\alpha\left(a^{n}\right)\right) \in f(P)\right.$. So $x \in \sqrt[\alpha]{f(P)}$.
2. Let $a \in \sqrt[\alpha]{f^{-1}(\bar{P})}$. Then there exists a positive integer n such that $\alpha\left(a^{n}\right) \in f^{-1}(\bar{P})$. So $f\left(\alpha\left(a^{n}\right)\right) \in \bar{P}$. Since f and α commute, $\alpha\left(f(a)^{n}\right) \in \bar{P}$. Hence $a \in f^{-1}(\sqrt[\alpha]{\bar{P}})$. Thus $\sqrt[\alpha]{f^{-1}(\bar{P})} \subseteq f^{-1}(\sqrt[\alpha]{\bar{P}})$.
3. The proof is obtained from part (1) and f being an isomorphism.

We know that a proper ideal P of a ring R is prime if and only if R / P has no zero divisors and that P is α-prime if and only if every zero divisor of R / P is in Kera. Also, from Lemma 2.9 we have the isomorphism $R / P \cong \frac{R / \text { Ker } \alpha}{P / \text { Ker } \alpha}$. Hence P is α-prime if and only if $\frac{R / \operatorname{Ker} \alpha}{P / \text { Ker } \alpha}$ has no zero divisors if and only if $P /$ Ker α is a prime ideal. Therefore we deduce the main connection between prime ideals and α-prime ideals.

Theorem 2.15. Let P be a proper ideal of R. Then P is an α-prime ideal in R if and only if $\frac{P}{\text { Ker } \alpha}$ is prime in $\frac{R}{\text { Ker } \alpha}$.

A ring R is called an α-integral domain if for all $a, b \in R$ with $a b=0$, $a=0$ or $\alpha(b)=0$ for some endomorphism α on R. It is clear that every integral domain is an α-integral domain, but the converse is not true as shown in the following example.
Example 2.16. Consider the ring $R=\frac{\mathbb{Z}[x]}{\left\langle x^{2}-x\right\rangle}$ and endomorphism α on R defined by $\alpha(f(x))=x \cdot f(x)$. Then R is α-integral domain but not integral domain, since $x(x-1)=0$ and $x, 1-x \neq 0$ but $\alpha(1-x)=x(1-x)=0$

The next theorem characterizes α-prime ideals in the sense of quotient rings.

Proposition 2.17. Let R be a commutative ring. Then P is an α-prime ideal if and only if R / P is an α-integral domain.

Proof. Let R / P be an integral domain. Let $a, b \in R$ such that $a b \in P$. Then $a b+P=P$. Since R / P is an α-integral domain, $a+P=P$ or $\alpha(a+P)=P$. So $a \in P$ and $\alpha(a) \in P$. Thus P is an α-prime ideal . Conversely, Let P be α-prime ideal. Let $a, b \in R$ with $a b \in P$. Then $a \in P$ or $\alpha(a) \in P$. So $a+P=P$ or $\alpha(a)+P=P$. Hence $a+P=P$ or $\alpha(a+P)=P$. Therefore R / P is an α-integral domain.

An α-integral domain R is called an α-field if $\frac{R}{K e r \alpha}$ is a field. Clearly every field is an α-field and the converse is true in the case where $\operatorname{Ker} \alpha=$ 0 .

It is well-known that if K is a field, then $K[x]$ is a principal ideal domain but not a field. Define a ring homomorphism $\alpha: K[x] \rightarrow K[x]$ by $\alpha(f(x))=f(0)$. Then Ker $\alpha=<x>$ and $\frac{K[x]}{\text { Ker } \alpha}=\frac{K[x]}{\langle x\rangle} \cong$ K is a field. Similarly, for $K\left[x_{1}, \ldots, x_{n}\right]$, we can define an endomorphism α on $K\left[x_{1}, \ldots, x_{n}\right]$ by $\alpha\left(f\left(x-1, \ldots, x_{n}\right)\right)=f(0,0, \ldots, 0)$. So, $\frac{K\left[x_{1}, \ldots, x_{n}\right]}{\text { Ker } \alpha}=\frac{K\left[x_{1}, \ldots, x_{n}\right]}{\left\langle x_{1}, \ldots, x_{n}\right\rangle} \cong K$ is a field. Thus we conclude the following theorem.

Theorem 2.18. For any field K, the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ in n indeterminates is α-field but not field.

We know that every finite integral domain is a field. Here we generalize this result to α-integral domains.

Proposition 2.19. Every finite α-integral domain is an α-field
Proof. Suppose R is a finite α-integral domain, say $R=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ Then for any x in R with $\alpha(x) \neq 0$, the elements $x x_{i}, i=1,2, \ldots, n$ are all distinct else for if $x x_{i}=x x_{j}$, then $x\left(x_{i}-x_{j}\right)=0$ and as R is α-integral domain, $x_{i}-x_{j}=0$ or $\alpha(x)=0$. Hence, $\alpha(x) \neq 0$ implies $x_{i}=x_{j}$ and as R has identity, there exists $s \in\{1,2, \ldots n\}$ such that $x x_{s}=1$. Therefore x has an inverse x_{s} and R is an α-field.

A proper ideal I of a ring R is called an α-primary ideal if for all $a, b \in R$ such that $a b \in I, a \in I$ or $\alpha\left(b^{n}\right) \in I$ for some positive integer n. Clearly every α-prime ideal is α-primary. Now we have the following lemma.

Lemma 2.20. If P is an α-primary ideal of R, then $\sqrt[\alpha]{P}$ is an α-prime ideal.

Proof. Assume $a b \in \sqrt[\alpha]{P}$. Then $\alpha\left((a b)^{n}\right)=\alpha\left(a^{n} b^{n}\right)=\alpha\left(a^{n}\right) \alpha\left(b^{n}\right) \in P$. As P is an α-primary ideal, $\alpha\left(a^{n}\right) \in P$ or $\alpha\left(\alpha\left(b^{n}\right)\right)=\alpha\left([\alpha(b)]^{n}\right) \in P$. Thus $a \in \sqrt[\alpha]{P}$ or $\alpha(b) \in \sqrt[\alpha]{P}$. Therefore $\sqrt[\alpha]{P}$ is an α-prime ideal.

From Atiyah's book [4], we know that the inverse image of a prime ideal under a ring homomorphism is again prime ideal. Next, we prove that the inverse image of an endomorphism of α-prime ideal is α-prime in a generalized form.

Proposition 2.21. Let $f: R \rightarrow S$ be a ring homomorphism and assume that $\alpha \in \operatorname{End}(R) \cap \operatorname{End}(S)$ commutes with f. Then for any α-prime ideal Q of $S, f^{-1}(Q)$ is an α-prime ideal of R.

Proof. Let Q be an α-prime ideal of S. Then for any two elements a and b in R with $a b \in f^{-1}(Q)$, we have $f(a) f(b) \in Q$ and Q being an α-prime ideal implies that $f(a) \in Q$ or $\alpha(f(b))=f(\alpha(b)) \in Q$, that is, $a \in f^{-1}(Q)$ or $\alpha(b) \in f^{-1}(Q)$ and this is what we want to prove.

A subset S of a ring R is called an α-multiplicative system if $a \alpha(b) \in$ S for all $a, b \in S$. Thus from this definition we have the following lemma.

Lemma 2.22. Let R be a commutative ring with identity. Then P is an α-prime ideal if and only if $R-P$ is an α-multiplicative system .

Proposition 2.23. Suppose S is a multiplicative subset of a ring R and $\bar{\alpha}: S^{-1} R \rightarrow S^{-1} R$ is the induced map of α. Then there is a one-toone correspondence between α-prime ideals P of R with $S \cap P=\emptyset$ and α-prime ideals of $S^{-1} R$.

Proof. Suppose P is an α-prime ideal in R and $\left(\frac{a}{s}\right)\left(\frac{b}{t}\right) \in S^{-1} P$ for $\frac{a}{s}, \frac{b}{t} \in S^{-1} R$. Then the exists $u \in S$ such that $u a b \in P$. So $u a \in P$ or $\alpha(b) \in P$. Thus, $\frac{u a}{u s}=\frac{a}{s} \in S^{-1} P$ or $\frac{\alpha(b)}{t} \in S^{-1} P$, that is, $\frac{a}{s} \in S^{-1} P$ or $\bar{\alpha}\left(\frac{b}{t}\right) \in S^{-1} P$. Hence $S^{-1} P$ is $\bar{\alpha}$-prime ideal in $S^{-1} R$. The other side is obtained from Proposition 2.21.

From Proposition 2.21 and Proposition 2.23, we can conclude the following.

Proposition 2.24. Let $f: R \rightarrow S$ be a ring homomorphism and assume that $\alpha \in \operatorname{End}(R) \cap \operatorname{End}(S)$ commutes with f. Then an ideal I containing Ker α is an α-prime ideal if and only if $f(I)$ is an α-prime ideal.

Corollary 2.25. Let I and J be two ideals of a ring R such that $I \subseteq J$. Then J / I is $\bar{\alpha}$-prime ideal in R / I if and only if J is α-prime in R, where $\bar{\alpha}$ is the induced map on R / I from α.

References

[1] I. Akray, I-prime ideals, Journal of Algebra and related topics, 4(2) (2016), 41-47.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing company, 1969.
[5] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[6] R. Gilmer and J. Ohm, Primary ideals and valuation ideals, Trans. Amer. Math. Soc., 117 (1965), 237-250.
[7] I. Kaplansky, Commutative Rings, Revised Edition, Chicago, University of Chicago press, 1974.

Ismael Akray
Department of Mathematics
Associate Professor of Mathematics
Faculty of Science, Soran University
Erbil city, Kurdistan region, Iraq
E-mail: ismael.akray@soran.edu.iq

Haval Mahmood Mohammed Salih

Department of Mathematics

Associate Professor of Mathematics
Faculty of Science, Soran University
Erbil city, Kurdistan region, Iraq
E-mail: havalmahmood07@gmail.com

[^0]: Received: August 2019; Accepted: April 2020

 * Corresponding Author

