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Abstract. In this article, we present a stabilized finite element (FE)
method for the linearized viscoelastic fluid flow problems by Discontin-
uous Galerkin (DG) Method. The FE spaces for the unknown variables
are chosen as P1−P0−P1, where the fluid velocity and the pressure are
discretized by the lowest-order Lagrange elements and the stress ten-
sor is discretized by piecewise P1 polynomial. In order to get a stable
scheme, we added a stabilization term in the discretized weak formula-
tion. This method has some prominent features: parameter-free, avoid-
ing calculation of higher-order derivatives and its behaviour towards
pressure is totally local. We obtained optimal error estimates and pre-
sented several numerical experiments to verify the proposed scheme.
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1 Introduction

Viscoelastic fluids are actually a type of non-Newtonian fluids. All those
fluids that can not be modeled by a linear constitutive law equation are
called non-Newtonian fluids. They are characterized by having difficult
and high molecular weight molecules with many degrees of freedom. The
polymer solutions and molten polymers are good examples of viscoelastic
fluids. Many cases can be found in industrials and practical applications
like biological fluids, adhesives, food products, greases, blood in some
typical cases, and so on [1, 2].

The importance of viscoelastic fluid flow models has increased in the
last few years and motivates researchers due to several reasons, among
them the following are common: These fluids have long chain molecules
with many internal degrees of freedom, these type of fluids need hyper-
bolic type constitutive equations with advective non-linear terms, this
highly non-linear term may create oscillations both globally and locally
in numerical approximation. Indeed it needs some stabilization terms
to deal with these difficulties. However, to study viscoelastic properties
of the fluids many models have been proposed and applied i.e. Phan-
Thien-Tanner model, Maxwell mode, Jeffrey model, Oldroyd-B model
[3], and Johnson and Segalman model [4].

Moreover, the literature of the finite element method is increasing
day by day to approximate the viscoelastic fluid flow models and a vari-
ety of alternative stabilization formulations are continuously developing.
Additionally, so far the well-known methods available to approximate
the viscoelastic fluid flow in finite element literature are as following;
streamline-upwind Petrov-Galerkin (SUPG) method [5], discontinuous
Galerkin method (DG), two-level Oseen viscoelastic fluid flow model [6],
variational multiscale method [11, 9, 10] and multiscale method based
on two local Gauss integrations [12] etc. We are interested to apply the
DG method for the FE approximation of stress. As our best knowledge,
this method was first introduced by Reed, and Hill in [13]. After that,
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to deal with the hyperbolic nature of the constitutive equation, Lesaint
and Raviart [14] discussed and applied the DG method on the neutron
transport equation. later, Baranger and Sandri [16] have proved and
analysed the stability and error estimates of the DG method.

However, the viscoelastic fluid flow models are strongly non-linear
models, because the non-Newtonian fluid flow obeying the Oldroyd-B
model is the combination of conservation of momentum equations and
constitutive equations. This model equations are the combination or
couples with the Navier-Stokes equations. Its no doubt that the Navier-
Stokes equations itself are non-linear. The non-linear convective term
of the Navier-Stokes equation can be reduced in a linear system by re-
placing the unknown velocity with a known velocity field [18]. So in the
viscoelastic fluid flow model, the non-linearity occurs only in the consti-
tutive equation [17] which may be also replaced by a known value in the
convective term i.e., ~u(x) = ~b(x). By doing this process the non-linear
equations now modified into a linear form, what we call here a linearized
viscoelastic model.

We study the mixed FE method to approximate linearized viscoelas-
tic fluid flow, which was developed to approximate both pressure and
velocity simultaneously. To find the well-posedness of the velocity and
pressure, it is important to satisfy the inf-sup conditions. There are
very few finite element spaces which are applicable to full fill these con-
ditions see in [21, 22]. But some other spaces are also available with
some modifications worked well. So in this contribution, we are inter-
ested to choose the lowest finite elements P1 − P0 − P1. Undispute,
these pairs of elements fail to satisfy the inf-sup condition [23] but can
work similarly well with the available spaces i.e., Taylor-Hood and MINI
elements. To make lowest-equal order elements applicable, we introduce
a technical stabilization term in the discrete variational formulation.
This stabilization technique is already discussed in the literature for the
Stokes problems and also for the viscoelastic fluid flow problems ( for
example see [7, 8, 24, 25] and the references cited therein). The Lowest
order FE and stabilization methods have also been considered in Stokes-
Darcy and Navier-Stokes (see[27, 26]). So far, this method is novel to
solve the linearized version of viscoelastic fluid flow model equations with
P1− P0− P1 elements. For further justification, we have given several
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numerical tests for the applicability of these elements in the second last
section.

This method has some important features, it is free of parameters,
it does not need any higher-order derivatives, and it can be easily over-
written computational code in the existing framework of the viscoelas-
tic fluid flow easily. We prove the well-posedness of the finite element
scheme with the weak coercivity method, and optimal convergence or-
der is obtained. To show the validation of the theoretical analysis we
present several numerical examples.

The paper is organized as follows: In the next section, we give an in-
troduction of the governing equations for the linearized viscoelastic fluid
flow model and some notations. In section 3, we discuss the variational
formulation, and some well-known lemmas. To justify the proposed
scheme, the stability and optimal convergence analysis are derived in
section 4. The results of the numerical simulations are illustrated in
section 5. We end this work with short conclusion. We deal with the
following two-dimensional steady-state modeling equations under the in-
fluence of applied forces and stresses which are reported in [29, 28].

τ + λ((~u · ∇τ) + ĝ(τ,∇~u))− 2αD(~u) = 0, (1)

where λ is denoted as Weissenberg number [30]. Hence the ĝ(τ,∇~u) is
defined as:

ĝ(τ,∇~u) =
1− a

2
(τ(∇~u) + (∇~u)T τ)− 1 + a

2
((∇~u)τ + τ(∇~u)T ). (2)

a ∈ [−1, 1] is considered as a material parameter. The momentum equa-
tion under influence of forces f can be written as:

Re(~ut + (~u · ∇)~u)−∇ · τ tot = f.

Here Re is known as Reynolds number, while Oldroyd model is described
by τT = −pI+τN+τ where τN and τ are, the Newtonian and viscoelastic
part of the extra stress tensor. The Newtonian part is given by τN =
2(1− α)D(~u) and deformation tensor is defined as:

D(~u) =
1

2
(∇~u+ (∇~u)T ).
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The gradient of ~u is defined in such that (∇~u)ij = ∂~ui
∂xj

= ~uj,i. The

viscoelastic flows are important for understanding several problems in
non-Newtonian fluid mechanics especially those related to flow instabil-
ities [29]. The (1 − α) denotes the total viscosity; which is considered
Newtonian. Hence α ∈ (0, 1) implies the proportion of total viscosity
that is supposed to be viscoelastic in nature. We re-write the momentum
equation based on the above information as [7, 8].

Re(~ut + (~u · ∇)~u)− 2(1− α)∇ ·D(~u)−∇ · τ +∇p = f.

1.1 Governing equations

We consider the open bounded and connected domain Ω with homoge-
nous Dirichlet boundary conditions in the viscoelastic case; but there
is no inflow boundary, and, thus, no boundary condition is required for
stress tensors in this model equation [8, 7]. So the model equations are
given by:

τ + λ(~u · ∇)τ + λĝ(τ,∇~u)− 2αD(~u) = 0, in Ω, (3)

∇p− 2(1− α)∇ ·D(~u)−∇ · τ = f, in Ω, (4)

∇ · ~u = 0, in Ω, (5)

~u = 0, on Γ. (6)

Where f represents a body force, τ denotes polymeric stress tensor, ~u the
velocity vector, p pressure of the fluid and λ is the Weissenberg number.
The well-posedness of the (3)-(6) are discussed in [33, 31].

In the main analysis part, we will consider the Oseen system as a
linearization of the model equations as
Find the solution (τ ,~u, p) such that:

τ + λ(b · ∇)τ + λĝ(τ,∇~b)− 2αD(~u) = 0 in Ω, (7)

∇p− 2(1− α)∇ ·D(~u)−∇ · τ = f in Ω, (8)

∇ · ~u = 0 in Ω, (9)

~u = 0 on ∂Ω. (10)

It is well-known from [33] as :
~b ∈ H1

0 (Ω), ∇ ·~b = 0, ‖ ~b ‖∞ ≤M, ‖ ∇~b ‖∞≤M <∞.
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1.2 Variational formulation

We consider some notations used in function spaces are as Sobolev space
written as H1(Ω) with the norm || · ||1 and seminorm | · |1. The L2(Ω)
inner product and norm are denoted by (·, ·), || · ||=|| · ||0 respectively,
the Lp(Ω) norm by || · ||Lp , with the special cases of L2(Ω) and L∞(Ω)
norms being written as || · || and || · ||∞.

For further discussion, we introduce spaces for the unknown velocity
~u, the pressure p, and the stress tensor τ as:

X : = H1
0 (Ω)2 := {v ∈ H1(Ω)2 : v = 0 on ∂Ω},

Q : = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0},

S : = {τ = (τij); τij = τji : τij ∈ L2(Ω); i, j = 1, 2}
∩{τ = (τij);~b · ∇τ ∈ L2(Ω),∀ ~b ∈ X}.

In order to find the corresponding variational formulation, by taking the
inner product of stress, velocity, and pressure test functions σ, v, and q
respectively.
The given f ∈ H−1 (Ω), to seek (τ , ~u, p) ∈ S × X ×Q such that

(τ, σ) + λ((~b · ∇)τ, σ) + λ(ĝ(τ,∇~b), σ)− 2α(D(~u), σ) = 0, ∀σ ∈ S,
(11)

−(p,∇ · v) + 2(1− α)(D(~u), D(v)) + (τ,D(v)) = (f,v), ∀v ∈ X,
(12)

(q,∇ · ~u) = 0, ∀q ∈ Q.
(13)

Note that the velocity and pressure spaces, X and Q, satisfy the
inf-sup (or LBB) condition, we refer the reader to [7]. For further sim-
plification, we have multiplied 2α with equation (12) and equation (13)
and adding all equations together. After that, for ease of calculations
we introduce two operators J ((·, ·, ·), (·, ·, ·)) and B((·, ·, ·) to make the
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compact form as:

J̄ ((τ, ~u, p), (σ,v, q)) = (τ, σ) + λ(ĝ(τ,∇~b), σ)− 2α(D(~u), σ)

+2α(τ,D(v)) + 4α(1− α)(D(~u), D(v))

−2α(p,∇ · v) + 2α(q,∇ · ~u), (14)

λB(~b, τ, σ) = λ((~b · ∇)τ, σ). (15)

An equivalent formulation to (14)-(15) can be written as:

J̄ ((τ, ~u, p), (σ,v, q)) + λB(~b, τ, σ) = 2α(f,v). (16)

2 Discontinuous finite element approximation

Mostly in finite element literature, there are two main approaches have
been used to approximate the viscoelastic model problems i.e., DG
method and SUPG method [34, 37]. Here we concern, the DG method
as an upwinding technique. Let T h be a triangulation of Ω such that
Ω̃ = {∪K : K ∈ T h}. We assume that there exists a positive constants
r1,r2, hence

r1h ≤ hk ≤ r2Rk.

Where hk is the diameter of an element (triangle) K, Rk is the diameter
of the greatest ball included in K, and h = maxK∈T hhk.
Let us consider Pk(K) denotes the space of polynomials of degree less
or equal to k on K ∈ T h. We introduce discrete subspaces for the finite
element approximation of the equation (16).

X h := {v ∈ X ∩ C0(Ω̃)2;v|K ∈ P1(K)2,∀K ∈ T h},

Qh := {q ∈ Q ∩ C0(Ω̃); q|K ∈ P0(K);∀K ∈ T h},
Sh := {σ ∈ S;σ|K ∈ P1(K)2×2; ∀K ∈ T h},

We re-introduced some notations for approximating the stress which
is analyzed elsewhere [28, 32], as we define ∂Kh−(~b) = {x ∈ ∂Kk;~b(x) ·
~n(x) < 0} where ∂Kh is the boundary of Kh ∈ T h and ~n is the outward
unit normal to ∂Kh, and

∂Ωh = {∪∂K : K ∈ T h} \ ∂Ω,

τ±(~b(x)) = lim
ε→0

τ(x± ε~b(x)).
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Also, for any (τ, σ) ∈
∏

Kh∈T h

[H1(Kh)]4, we define

(τ, σ)h =
∑

Kh∈T h

(τ, σ)Kh ,

〈τ±, σ±〉
h,~b

=
∑

Kh∈T h

∫
∂Kh−(~b)

(τ±(~b), σ±(~b))|~n ·~b|ds,

〈〈τ±〉〉2
h,~b

= 〈τ±, τ±〉
h,~b
,

‖ τ ‖0,∂Ωh = (
∑

Kh∈T h

| τ |2
0,∂Kh)1/2.

The term ((~b · ∇)τ, σ) is defined by [29]

Bh(~b, τh, σh) = ((~b · ∇)τh, σh)h + (1/2)(∇ ·~bτh, σh) (17)

+〈τh+ − τh−, σh+〉
h,~b
,

= −((~b · ∇)σh, τh)h − (1/2)(∇ ·~bσh, τh) (18)

+〈τh−, σh− − σh+〉
h,~b
,

= ((~b · ∇)τh, σh)h (19)

+〈τh+ − τh−, σh+〉
h,~b
, if ∇ ·~b = 0.

Thus,

Bh(~b, τh, τh) = (1/2)〈〈τh+ − τh−〉〉2
h,~b
≥ 0. (20)

To find stability of discrete problem, the finite element pair (X h,Qh)
must satisfy inf-sup condition:

sup
vh∈Xh

(qh,∇ · vh)

|| vh ||1
≥ C || qh ||0, ∀qh ∈ Qh, (21)

where C is a positive constant independent of h.
Obviously, it is well-known for the finite element pairs, some space pairs
do not satisfy the inf-sup conditions and results a pressure oscillation in
numerical formulation. Hence it needs stabilization term to circumvent
the inf-sup condition. Here our aim is to add the stabilization term. We
define the following operator G(p, q) = ((I −Π)p, (I −Π)q) as stabiliza-
tion term in this contribution, this has been discussed in the literature
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[22, 27]. To the best of our knowledge, so far, this method has not been
considered in the existing literature for the linearized viscoelastic fluids
flows. For conciseness, we restate some important lemmas directly from
the [22, 26, 25] to estimate the inequalities.

Lemma 2.1. Let Qh and X h be the spaces defined above. Then, there
exist positive constants C1 and C2 such that

sup
vh∈Xh

∫
Ω p

h∇ · vhdΩ

‖ vh ‖1
≥ C1 ‖ ph ‖0 −C2h ‖ ∇ph ‖0,∀ph ∈ Qh. (22)

Proof. See detail in [22].

Lemma 2.2. There exists a positive non-zero constant C such that

Ch ‖ ∇ph ‖0 ≤ ‖ ph −Πph ‖0 . (23)

Proof. As given in [22].
The local pressure projection Π : L2(Ω) → R2 [22], this relation is

symmetric and bilinear.

G(ph, qh) = (ph −Πph, qh −Πqh).

Now, we can write the finite element scheme with the additional term
as: Find (~uh, τh, ph) ∈ (X h × Sh ×Qh) such that

(τh, σh) + λBh(~b, τh, σh) + λ(ĝ(τh,∇~b), σh)

−2α(D(~uh), σh) = 0,∀σh ∈ Sh, (24)

−(ph,∇ · vh) + 2(1− α)(D(~uh), D(vh))

+(τ,D(vh)) = (f,vh), ∀vh ∈ X h, (25)

(qh,∇ · ~uh) + G(ph, qh) = 0,∀qh ∈ Qh. (26)

We can rewrite the discrete system of equations (24)-(26) in the operator
form, J as a coupled equations defined on (Sh ×X h ×Qh) by

J ((τh, ~uh, ph), (σh,vh, qh)) = (τh, σh) + λ(ga(τh,∇~b), σh)

− 2α(D(~uh), σh) + 2α(τh, D(vh))

+ 4α(1− α)(D(~uh), D(vh))− 2α(ph,∇ · vh)

+ 2α(qh,∇ · ~uh) + 2αG(ph, qh). (27)
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Further simplification, we can rewrite the discrete equations with oper-
ator J and B for the approximation of the unknowns.

Find (~uh, τh, ph) ∈ (X h × Sh × Qh) satisfies ∀(σh,vh, qh) ∈ (Sh ×
X h ×Qh)

J ((τh, ~uh, ph), (σh,vh, qh)) + λBh((~b, τh, σh)) = 2α(f,vh). (28)

We make the following assumptions and inequalities:

‖ ~u− ~̃uh ‖1 ≤ Ch ‖ ~u ‖2, (29)

‖ p−Πp̃h ‖0 ≤ Ch ‖ p ‖1, (30)

‖ τ − τ̃h ‖0 +h ‖ ∇(τ − τ̃h) ‖0
+h1/2 ‖ τ − τ̃h ‖0,∂Ωh ≤ Ch ‖ τ ‖2, (31)

‖ Πph ‖0 ≤ C ‖ p ‖0 . (32)

The inverse inequalities are recalled as [32]:

‖ ∇τh ‖0,h ≤ Ch−1 ‖ τh ‖0, τh ∈ Sh.

‖ τh ‖20,∂k ≤ C
1

hk
‖ τh ‖20,k, τh ∈ Sh.

3 Stability and error estimates

In this section, we illustrate the existence and uniqueness of the finite
element scheme. We assume that the problem satisfies the solution un-
der the condition M > 0.

Theorem 3.1. Given f ∈ H−1(Ω), if 1 − 2λMd > 0. There exists a
unique solution (τh, ~uh, ph) ∈ (Sh ×X h ×Qh) satisfying (28).

Proof.

J ((τh, ~uh, ph), (σh,vh, qh)) + λBh(~b, τh, σh) = F (σh,vh, qh)

∀(σh,vh, qh) ∈ Sh ×X h ×Qh), (33)
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the right hand side of equation (33) can be explained as F(·) : Sh×X h →
R is a functional so,

F(σh,vh, qh) = 2α(f,vh).

We can easily get the continuity of the right hand side as:

| F(σh,vh, qh) | ≤ 2α ‖ f ‖−1‖ vh ‖1 (34)

≤ 2α ‖ f ‖−1||| (σh,vh, qh) |||(Sh×Xh×Qh),

where ||| (σh,vh, qh) |||(Sh×Xh×Qh)= (‖ σh ‖20 + ‖ vh ‖21 + ‖ qh ‖20)
1
2 .

The operators J and B used in (33) is continuous and coercive in (Sh×
X h ×Qh), if 1− 2λMd > 0. By using inverse inequalities we can get,

Bh(~b, τh, σh) = ((~b · ∇)τh, σh)h + 〈τh+ − τh−, σh+〉
h,~b

≤ C
[
‖ ~b ‖∞‖ ∇τh ‖0,h‖ σh ‖0

+ ‖ ~b ‖∞‖ τh ‖0,∂Ωh‖ σh ‖0,∂Ωh

]
≤ C

[
M ‖ ∇τh ‖0‖ σh ‖0 + ‖ ~b ‖∞ (h−1/2 ‖ τh ‖0)

×(h−1/2 ‖ σh ‖0)
]

≤ C
[
M(h−1 ‖ τh ‖0) ‖ σh ‖0

+Mh−1 ‖ τh ‖0‖ σh ‖0
]

≤ CMh−1 ‖ τh ‖0‖ σh ‖0 . (35)

Note that J is continuous and coercive, if 1− 2λMd > 0:

λ(ga(τh,∇~b), σh) ≤ 2dλ ‖ ∇~b ‖∞‖ τh ‖0‖ σh ‖0
≤ 2dMλ ‖ τh ‖0‖ σh ‖0, (36)

Now (33) can be summarized as:

J ((τh, ~uh, ph), (σh,vh, qh)) + λBh(~b, τh, σh)

≤ ‖ τh ‖0‖ σh ‖0 +2Mdλ ‖ τh ‖0‖ σh ‖0
+2α ‖ D(~uh) ‖0‖ σh ‖0 +2α ‖ τh ‖0‖ D(vh) ‖0
+4α(1− α) ‖ D(~uh) ‖0‖ D(vh) ‖0
+2αd ‖ qh ‖0‖ ∇~uh ‖0 +2αd ‖ ph ‖0‖ ∇vh ‖0
+2α ‖ ph ‖0‖ qh ‖0 +CMh−1 ‖ τh ‖0‖ σh ‖0

≤ C ||| (τh, ~uh, ph) |||(Sh×Xh×Qh)||| (σh,vh, qh) |||(Sh×Xh×Qh),(37)
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where C is a constant independent on h.
To find weakly coercivity, for all ph ∈ Qh ⊂ Q, there exists a positive
constant Υ used hereinafter represents a constant and ~w ∈ X such that:
(∇ · ~w, ph) =‖ ph ‖20, ‖ ~w ‖1≤ Υ ‖ ph ‖0. Assigning the value in FE
approximation for normalization of ~wh ∈ Xh of ~w( [22, 26, 35, 25]),
assume

‖ ~wh ‖1 ≤ Υ0 ‖ ph ‖0 . (38)

As from the reference paper [22], we have∫
Ω
ph∇ · ~whdΩ ≥ C1 ‖ ph ‖20 −C2 ‖ (I −Π)ph ‖0‖ ph ‖0 . (39)

For weak coercivity we substitute (vh = ~uh − ξ ~wh, qh = ph, σh = τh)
in the bilinear form of J , where ξ ∈ R,

J ((τh, ~uh, ph), (τh, ~uh − ξ ~wh, ph)) + λBh(~b, τh, τh) (40)

= J ((τh, ~uh, ph), (τh, ~uh, ph)) + J ((τh, ~uh, ph), (0,−ξ ~wh, 0))

+λBh(~b, τh, τh).

The right hand side of the above equation (40) appears in three new
terms, each term can be bounded as,
First term of (40).
From (27) and (36), we have

J ((τh, ~uh, ph), (τh, ~uh, ph))

≥ ‖ τh ‖20 +λ(ga(τh,∇~b), τh)

+4α(1− α) ‖ D(~uh) ‖20 +2α ‖ (I −Π)ph ‖20
≥ ‖ τh ‖20 −2λMd ‖ τh ‖20

+4α(1− α) ‖ D(~uh) ‖20 +2α ‖ (I −Π)ph ‖20
≥ (1− 2λMd) ‖ τh ‖20

+4α(1− α) ‖ D(~uh) ‖20 +2α ‖ (I −Π)ph ‖20 .

The second term of (40):

J ((τh, ~uh, ph), (0,−ξ ~wh, 0))

= −4α(1− α)ξ(D(~uh), D(~wh))− 2αξ(τh, D(~wh))

+2αξ(ph,∇ · ~wh). (41)
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To estimate right hand side of equation (41), by using (29),(38), (39),
and Young’s inequality. To further majorisation of the right-hand side
in (41), we deduce that,

| 4α(1− α)ξ(D(~uh), D(~wh)) | ≤ 4α(1− α)ξ ‖ D(~uh) ‖0‖ D(~wh) ‖0
≤ 4α(1− α)ξ ‖ D(~uh) ‖0 Υ0 ‖ ph ‖0

≤ 12α(1− α)2ξΥ2
0

C1
‖ D(~uh) ‖20

+αξ
C1

3
‖ ph ‖20,

| 2αξ(τh, D(~wh)) | ≤ 2αξ ‖ τh ‖0‖ D(~wh) ‖0
≤ 2αξΥ0 ‖ τh ‖0‖ ph ‖0

≤ 3αξΥ2
0

1

C1
‖ τh ‖20 +

C1αξ

3
‖ ph ‖20,

| 2αξ(ph,∇ · wh) | ≥ 2αξ(C1 ‖ ph ‖20 −C2 ‖ (I −Π)ph ‖0‖ ph ‖0)

≥ 2αξC1 ‖ ph ‖20 −2αξC2 ‖ (I −Π)ph ‖0‖ ph ‖0

≥ 2αξC1 ‖ ph ‖20 −3αξ
C2

2

C1
‖ (I −Π)ph ‖20

−αξC1

3
‖ ph ‖20,

by substituting all the bounds above in the equation (41), we obtain:

J
(
(τh, ~uh, ph), (0,−ξ ~wh, 0)

)
≥ −3αξΥ2

0

1

C1
‖ τh ‖20

−12α(1− α)2ξΥ2
0

C1
‖ D(~uh) ‖20

+αξC1 ‖ ph ‖20 −3αξ
C2

2

C1
‖ (I −Π)ph ‖20 .

The third term of (40):

λBh(~b, τh, τh) = (λ/2)〈〈τh+ − τh−〉〉2
h,~b
≥ 0. (42)
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By using equation (40) and substitute the three bounded terms, we get

J ((τh, ~uh, ph), (τh, ~u− ξ ~wh, ph))

≥ (1− 2λMd− ε1δλMd− 12α(1− α)ξ

C1
) ‖ τh ‖20

+(4α(1− α)− α2δ2

ε2
− 48α(1− α)(1− α)2ξ

C1
) ‖ D(~uh) ‖20

+αξC1 ‖ ph ‖20 +(2α− 3αξ
C2

2

C1
) ‖ (I −Π)ph ‖20

≥ C3 ‖ τh ‖20 +C4 ‖ D(~uh) ‖20 +C5 ‖ ph ‖20
≥ C∗ ||| (τh, ~uh, ph) |||2Sh×Xh×Qh . (43)

�
The error estimate provides an approximate solution with the same

order as the chosen pair of the FE solution for the linearized viscoelastic
fluid flow equations.

Theorem 3.2. For (τh, ~uh, ph) ∈ (Sh × X h × Qh) satisfies equation
(28) and (τ, ~u, p) ∈ (S × X × Q) satisfies (16), then for M satisfying
1− 2λMd > 0, as follows:

‖ τ − τh ‖0 + ‖ (~u− ~uh) ‖1 + ‖ p− ph ‖0 ≤ Ch. (44)

Proof.Subtracting equation (28) from equation (16) yields;

J ((τ − τh, ~u− ~uh, p− ph), (σh,vh, qh))

+λBh(~b, τ − τh, σh) = 0 ∀(σh,vh, qh) ∈ (Sh ×X h ×Qh), (45)

by adding and subtracting the projection terms (τ̃h, ~̃uh, p̃h) and using
the orthogonality gives,

J ((τ̃h − τh,~̃uh − ~uh, p̃h − ph), (σh,vh, qh)) + λBh(~b, τ̃h − τh, σh)

= J ((τ̃h − τ, ~̃uh − ~u, p̃h − p), (σh,vh, qh))

+ λBh(~b, τ̃h − τ, σh) + 2αG(p, qh). (46)
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To get error bounds, we choose left hand side of the equation (46), by
setting σh = (τ̃h − τh), vh = (~̃uh − ~uh) and qh = (p̃h − ph), we have

J ((τ̃h − τh, ~̃uh − ~uh, p̃h − ph), (τ̃h − τh, ~̃uh − ~uh, p̃h − ph))

+ λBh(~b, τ̃h − τh, τ̃h − τh)

≥ (1− 2λMd) ‖ τ̃h − τh ‖20 +4α(1− α) ‖ (~̃uh − ~uh) ‖21

+ 2α ‖ (I −Π)(p̃h − ph) ‖20 +
λ

2
〈〈(τ̃h − τh)+ − (τ̃h − τh)−〉〉2

h,~b

≥ β ||| (τ̃h − τh, D(~̃uh − ~uh), p̃h − ph) |||2 . (47)

Right hand side of equation (46) gives with the setting of σh = (τ̃h−τh),
vh = (~̃uh − ~uh) and qh = (p̃h − ph)

J ((τ̃h−τ, ~̃uh − ~u, p̃h − p), (τ̃h − τh, ~̃uh − ~uh, p̃h − ph))

+ λBh(~b, τ̃h − τ, τ̃h − τh)

≤ Ĉ
(
h−1 ‖ τ̃h − τ ‖0 + ‖ (~̃uh − ~u) ‖1 + ‖ p̃h − p ‖0

+ 2α ‖ (I −Π)p ‖
)
||| (τ̃h − τh, (~̃uh − ~uh), p̃h − ph) ||| . (48)

By using (47), (48) and triangle inequality such that:

|||(τ̃h − τh, (~̃uh − ~uh), p̃h − ph) |||2

≤ Ĉ

β

(
h−1 ‖ τ̃h − τ ‖0 + ‖ (~̃uh − ~u) ‖1 + ‖ p̃h − p ‖0

+ ‖ (I −Π)p ‖
)
||| (τ̃h − τh, (~̃uh − ~uh), p̃h − ph) ||| . (49)

Hence the desired optimal error estimate is proved as;

‖ τ − τh ‖0 + ‖ (~u− ~uh) ‖1 + ‖ p− ph ‖0 ≤ Ch.

The proof is completed. �

4 Numerical tests

This section illustrates the numerical result which is analyzed theoret-
ically in Theorem 4.2. Our motive is to confirm the theoretical results
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for the proposed stabilized lowest equal order FE pair for the Oseen vis-
coelastic fluid flow model. For numerical evaluation, we design and ex-
amine three types of different experiments: a non-physical example with
exact solution, a viscoelastic cavity flow problem and a benchmark 4-to-1
contraction channel flow [21]. In the analytical solution test, we demon-
strate the optimal convergence order for lowest equal order. The second
experiment elucidates the viscoelastic cavity flow to show the character-
istics of the pressure contour and its behavior. The flow speed, behavior
of the contours, streamlines patterns, and the pressure oscillation, are
examined by the 4-to-1 contraction channel flow. In order to show the
distinguishing features of the new stabilized model, we compared newly
formulated method for the lowest-equal-order FE (P1− P0− P1) with
the standard elements Taylor-Hood (P2− P1− P1).

4.1 Analytical solution test

The theoretical convergence rates are verified by considering fluid flow
across a unit square with a known solution. To test the numerical sta-
bility of the new stabilized method, we considered the lowest order FE
P1 − P0 − P1 pair for velocity, pressure, and stress. Different authors
used this experimental pattern for Stokes and Navier-Stokes equation
[11, 32, 36], where the function ~b(x) was chosen to be the exact solution
of velocity ~u. Moreover, the true solution of the problem for velocity
~u = (u1, u2), pressure p and polymeric stress τ is given:

~u =

(
−10(x4 − 2x3 + x2)(2y3 − 3y2 + y)
10(2x3 − 3x2 + x)(y4 − 2y3 + y2))

)
,

p = −10.0(2x− 1)(2y − 1),
τ = 2αD(~u).

The right-hand sides, initial and boundary conditions are derived by
model equations with Re = 1, a = 0, λ = 10 and α = 1. Moreover, we
have formulated the following numerical results for Rate of convergence
order R

E1 = ChR1

E2 = ChR2
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E1

E2
= C

(
h1

h2

)R

log

(
E1

E2

)
= R log

(
h1

h2

)

R =
log
(
E1
E2

)
log
(
h1
h2

) .
The numerical results are presented in different tables; In Tables 1-3, we

Table 1: The error estimate for linear viscoelastic fluid flow with
Taylor-Hood elements.

h ||τ − τh||0 ||u− uh||0 ||u− uh||1 ||p− ph||0
1/4 0.03923 0.0018893 0.04920 0.16628
1/8 0.00974 0.0002271 0.01349 0.04050
1/16 0.00245 0.0000265 0.00348 0.01009
1/32 0.00062 0.0000339 0.00088 0.00252
1/64 0.00016 0.0000925 0.00022 0.00063

Rate 1.0 1.1 1.8 1.2

Table 2: The error estimate for linear viscoelastic fluid flow result
obtain before addition of stabilization term with P1− P0− P1 pairs.

h ||τ − τh||0 ||u− uh||0 ||u− uh||1 ||p− ph||0
1/4 0.18798 0.02798 0.23593 1.77618
1/8 0.05412 0.00869 0.12337 1.24821
1/16 0.01649 0.00226 0.06111 0.53504
1/32 0.00510 0.00057 0.03032 1.45620
1/64 0.00166 0.00014 0.01509 0.24536

Rate 1.1 1.0 0.9 0.5
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Table 3: The error estimate for linear viscoelastic fluid flow result
obtain after addition of a stabilization term with P1− P0− P1 pairs.

h ||τ − τh||0 ||u− uh||0 ||u− uh||1 ||p− ph||0
1/4 0.28020 0.05204 0.44811 1.23944
1/8 0.10445 0.01708 0.18149 0.40238
1/16 0.03951 0.00460 0.07026 0.12951
1/32 0.01484 0.00118 0.02956 0.04116
1/64 0.00565 0.00029 0.01348 0.01318

Rate 1.0 1.1 1.3 1.6

illustrate the distinguishing feature of the finite element method for the
linearized viscoelastic fluid flow model by comparing the results with the
standard Taylor-Hood elements. Table 1: represents the computations
of the errors for the standard finite elements with P2 − P1 − P1 pair.
We have given the error H1-norm for velocity, L2-norm for velocity, L2-
norm for pressure, and L2-norm for stress, respectively with the varying
spacing h = 1/8, 1/16, 1/32, 1/64. Table 2: provides the result for the
approximation of the linearized viscoelastic fluid flow model by P1−P0−
P1 pair without stabilization. Table 3, shows the error obtained from the
approximate values with the stabilization term by using P1− P0− P1.
From the previous tables, we can observe that the velocity H1-norm
and stress L2-norm obtain optimal convergence order while the pressure
L2-norm is affected without the stabilization term. The accuracy of the
convergence order of the pressure is ensured by adding a stabilization
term, which is illustrated in Table 3. This experimental test illustrates
that the scheme we have designed can be applied successfully for the
linearized viscoelastic fluid flow model to stabilize the pressure.

4.2 4-to-1 contraction channel flow

The second example is the well-known benchmark problem for viscoelas-
tic flow “4-to-1 contraction channel flow problem” which has a huge
application in polymeric liquid industries and studied by many authors
[37]. The geometry of the 4-to-1 contraction commonly occurs in the
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forming of ‘die’ for the viscoelastic fluid. Owing to the sudden reduc-
tion in width, in the corner region, a vortex appears. Moreover, 4-to-1
in literature have been widely used to show the convergence, stability,
behavior of the streamlines of the contraction channel and the behavior
of pressure [6]. The domain is constructed in such a way that the chan-
nel lengths are sufficiently long for a fully developed Poiseuille flow at
both the inflow and outflow boundaries. The shape of typical geometry
for physical representation we presented domain very related to the pa-
per discussed [7]. To discretize this computational domain we have used
finite element meshes that are supposed to be isotropic in the region
surrounding the corner and non-isotropic and unstructured further way.
The linearized viscoelastic fluid flow problem is based on the linear form
of viscoelastic fluids. To apply the known function given in theoretical
part ~b(x) = (b1, b2) in numerical simulation, we perform following steps
in the computational code. For the brief discussion we refer reader to
[8, 7].

� We first execute output data of the approximate solution from the
non-linear velocity for true solution ~u = (u1, u2).

� We use the executed solution of (u1) and (u2) as a known solution
(u1=b1 and u2=b2). Moreover, now the solution for the approx-
imation considers for the linear one and it will be known for the
velocity field ~b = (b1, b2) respectively.

Note: These two-steps makes the system non-linear to linear. It is indeed
important to formulate for the known values for initial data.

5 Conclusion and future work

In this contribution, a new stabilized method for finite element P1−P0−
P1 pairs for the linearized viscoelastic fluid flow is presented. Some of
the finite element pairs does not fully overcome the requirement of the
essential condition i.e., inf-sup (or LBB). We overcome this difficulty
with the addition of the stabilization terms in the discrete variational
formulation. We proved the well-posedness of the scheme. The desired
error estimates are obtained. This method is easy to modify with the
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existing computational code and also convenient to prove the theoretical
analysis. Moreover, in future aspects, this method may apply for the
approximation solution of the non-linear viscoelastic fluid flow model.
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