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1 Introduction

One of the most important problems in engineering and sciences is ap-
proximation the root x∗ of F (x) = 0 [9, 11]. Choosing the initial value
x0 suitably guarantees the acceptable solution for the given equation. To
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this end, semi-local convergence analysis is used [21, 24, 30]. In other
words, semi-local convergence analysis provides some conditions about
how the initial value x0 to be chosen appropriately [5]. Therefore, in
semi-local convergence analysis, it is tired to find as much as possible
simple initial conditions in such way that are relaxed compared to the
current methods. We emphasize that our approach is totally different
from the previous studies. We focus on utilizing majorizing sequences
to obtain the initial conditions, which has not been considered in the
literature for k-step Newton’s method with frozen derivative. In addi-
tion, it is attempted to consider the dynamical behavior of the general
Traub’s iterative method using Julia sets and basins of attraction. The
main purpose of studying the dynamical behavior is to find the stable
and unstable regions along with the chaos of the given iterative method
in the complex plane [14, 15, 28, 27, 36]. This is another superiority
and contribution of this study. It is worth noting that the graphical ap-
proaches such as basins of attraction and parametric planes have been
applied for Newton’s and Traub’s methods to study the stability of them
[16, 7, 13]. We also point out that some of researchers have studied on
semi-local convergence of them [29, 10, 5, 26]. However, we focus on
this paper from a different point of view. We study the stability and
choas of different steps. To this end, based on the different steps of the
considered method, some systems of nonlinear equations are verified and
analyzed.

Definition 1.1. (Majorized sequence) Let {xn} be a sequence in a Ba-
nach space X, and {tn} be an increasing scalar sequence. We could
say {xn} is majorized by {tn} if ||xn+1 − xn|| ≤ tn+1 − tn, for each
n = 0, 1, 2, . . . . [18]

Hence, the convergence of the sequence {xn} is obtained from the
convergence of the sequence {tn} [26]. So far, majorized sequences have
been used for the study of semi-local analysis for two steps of iterative
methods [32, 6, 5, 19]. In this paper, we use it for a general iterative
method, say Traub’s method or k-step Newton’s method with frozen
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derivatives that is given by

xn = y0n
y1n = y0n − F ′(y0n)−1F (y0n)

y2n = y1n − F ′(y0n)−1F (y1n)
...

xn+1 = ykn = yk−1n − F ′(y0n)−1F (yk−1n ).

(1)

This method has convergence order k + 1, and it only uses the first
derivative, so its computational cost is less than one step methods such
as Chebyshev–Halley-type methods [35, 34]. S. Amat et al. in [2, 1], M.
A. Hernández-Verón in [23], and Argyros et al. in [8] studied the semi-
local convergence of k-step Newton’s method, and completely studied on
efficiency index of the method. But, we present semi-local convergence
of the method (1) by different technique, majorizing sequences. This
technique has been used only for methods with at most two steps. In
this paper, by drawing the dynamic planes for different degrees of poly-
nomials and some numerical examples, the influence of the increasing
of the steps of the k-step Newton method on the stability and conver-
gence of the method is analyzed. Based on the results of the semi-local
convergence, the radius of the convergence can be computed, and the
convergence of the method for different initial values can be shown. We
introduce it in some tables. For numerical examples, we can examine
the results for large steps of the k-step Newton method. Meanwhile,
for solving any system of equations with the k-step Newton method,
a Mathematica code is presented. One of the advantages of our study
compared to the mentioned studies is that it includes less and simpler
conditions about the initial guess. Moreover, we were able to check
the validity and applicability of our conditions for numerical examples.
Meanwhile, we provided a bound for the error ||xn − x∗|| in Example
4.1. As we expressed, our initial guess is very simple and can be used
effectively as opposed to the current studies.

This paper is organized as follow: In Section 2, by using majoriz-
ing sequences semi-local convergence of the k-step Newton’s method is
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obtained. In Section 3, the stability of the k-step Newton method is
studied on second, third, and fourth polynomials by basins of attraction
and Julia set. In Section 4, some numerical examples are presented to
show the applicability of the theoretical results.

2 Semi-local convergence of k-step Newton’s
method

To obtain the semi-local convergence, we need some auxiliary relations.
We intent to gain them by a lemma and majorizing sequences.

Lemma 2.1. Suppose L > 0, L0 > 0, and s10 > 0 be parameters. The
polynomial q that define by

q(t) = 2L0t
k+1 − L(2− tk−1 − tk), (2)

where the polynomial q has a unique root α in the interval (0, 1). We
define the sequence {tn} for n = 0, 1, 2, . . . and j = 1, 2, . . . , k − 1 by

t0 = 0, s0n = tn, s1n+1 = tn+1+
L(tn+1 − tn + sk−1n − tn)(tn+1 − sk−1n )

1− 2L0(tn+1 − t0)
,

(3)

skn = tn+1, sj+1
n = sjn +

L(sjn − tn + sj−1n − tn)(sjn − sj−1n )

1− 2L0(tn − t0)
. (4)

Then the sequence {tn} is an increasing and bounded above by t∗∗ =
s10

1− α
, so that {tn} converges to its least upper bound t∗ and we have

t1 < t∗ < t∗∗. Also, we have the following assumption:

0 <
L(t1 + sk−10 )

1− 2L0t1
≤ α < 1− 2L0s

1
0. (5)

Moreover, the following estimates are hold for n = 0, 1, . . . and j =
2, . . . , k:

(sjn − sj−1n ) ≤ α(sj−1n − sj−2n ) ≤ αkn+j−1(s10 − t0), (6)

(s1n+1 − skn) ≤ α(skn − sk−1n ) ≤ αk(n+1)(s10 − t0), (7)

tn = s0n ≤ s1n ≤ s2n ≤ · · · ≤ sk−1n ≤ skn = tn+1. (8)
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Proof. We have q(0) = −2L and q(1) = 2L0. Hence, by intermediate
value theorem, q(t) has roots in the interval (0, 1). q′(t) = 2(k+1)L0t

k+
Ltk−2(tk + k − 1) > 0 for all points in the interval (0, 1). Hence, the
graph of q only intersects the x-axis in the interval (0, 1). So, q has
unique root in the interval (0, 1) that we denote it by α.
In what follows, we try to prove that the sequence {tn} is bounded
and increasing. This is equivalent to validity of estimates (6)-(8). But
they are true if the following relations are true for m = 0, 1, . . . and
j = 1, . . . , k − 1:

0 <
L(sjm − tm + sj−1m − tm)

1− 2L0tm
< α, (9)

0 <
L(skm − tm + sk−1m − tm)

1− 2L0tm+1
< α, (10)

tm = s0m ≤ s1m ≤ s2m ≤ · · · ≤ sk−1m ≤ skm = tm+1. (11)

We prove (9)-(11) by induction on m. Using the difintion (4) ,we have
for j = 1, . . . , k − 1

sj+1
0 − sj0 = L(sj0 + sj−10 )(sj0 − s

j−1
0 ), (12)

that is, if sj0 − s
j−1
0 > 0, then sj+1

0 − sj0 > 0 for every j = 1, . . . , k − 1.

Hence, because s00 = t0 = 0 and s10 > 0, we conclude that sj+1
0 − sj0 > 0

for every j = 1, . . . , k − 1. So as a result, the relation (11) is true for
m = 0.
Also, using (5), the relations (9) and (10) are true for m = 0. Now, we
suppose relations (9)-(11) are true for m = 1, 2, . . . , n. We have to prove
them for m > n. Meanwhile, we have

0 <
L(sjm−1 − tm−1 + sj−1m−1 − tm−1)

1− 2L0tm−1
<
L(sjm − tm + sj−1m − tm)

1− 2L0tm

<
L(skm − tm + sk−1m − tm)

1− 2L0tm+1
.

(13)

Therefore, it would be enough that the correctness of the relation (10)
can be proved. Using the hypotheses of induction and relations (6) and
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(7), it is deduced that:

sjn ≤ sj−1n + αkn+j−1(s10 − t0)
≤ sj−2n + αkn+j−2(s10 − t0) + αkn+j−1(s10 − t0)
≤ s1n + αkn+1(s10 − t0) + · · ·+ αkn+j−1(s10 − t0)
≤ skn−1 + αkn(s10 − t0) + αkn+1(s10 − t0) + · · ·+ αkn+j−1(s10 − t0)
≤ s01 + α(s10 − t0) + · · ·+ αkn+j−1(s10 − t0)

=
1− αkn+j

1− α
(s10 − t0) ≤

s10
1− α

= t∗∗, for j = 1, . . . , k.

Now, based on the relation (13), the following relation have been shown.

L(skm − skm−1 + sk−1m − skm−1)
1− 2L0skm

< α,

or,

L(s10 − t0)(1−α
km+k

1−α − 1−αk(m−1)+k

1−α + 1−αkm+k−1

1−α − 1−αk(m−1)+k

1−α )

1− 2L0
1−αkm+k

1−α (s10 − t0)
< α,

or
Lαkm−1(s10 − t0)(2− αk − αk−1)
1− α− 2L0(1− αkm+k)(s10 − t0)

< 1. (14)

The function fm(t) is defined on the interval (0, 1) by the following
relation:

fm(t) = Ltkm−1(s10− t0)(2− tk− tk−1) + 2L0(1− tkm+k)(s10− t0) + t− 1.

The relation (14) is true if fm(α) < 0 for all m = 1, 2, . . . . For this aim,
by some algebraic relations, the following recurrent relation is obtained:

fm+1(t)− fm(t) = (1− tk)tkm−1(s10 − t0)(2L0t
k+1 − L(2− tk−1 − tk)).

Because α is root of q, we get that

fm+1(α)− fm(α) = (1− tk)αkm−1(s10 − t0)q(α) = 0.

Therefore, for each m = 1, 2, . . . , we have

fm+1(α) = fm(α) = f∞(α),
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where f∞(α) = limm→∞fm(t). In the other hand, according to the
assumption (5), the relation f∞(α) = 2L0s

1
0 + α − 1 < 0 is established.

So, we conclude that fm(α) < 0 and the estimates (6)-(8) are true.
Therefore, {tn} is an increasing and bounded sequence by t∗∗, so it
converges to least upper bound t∗ and the proof is completed. �

Now, we show the semi-local convergence of the k-step Newton’s
method by using this lemma.

Theorem 2.2. Let F : D ⊆ X → Y be a Fréchet- differentiable operator
and X and Y are Banach spaces such that D be a convex subset of X.
Divided difference of order one for operator F on D × D defines by
[., .;F ]. Also, we have [x, x;F ] = F ′(x). Suppose that there exist x0 ∈ D
and 0 < L0 ≤ L such that for every x, y, z, and t ∈ D

F ′(x0)
−1 ∈ L(Y,X), (15)

||F ′(x0)−1F (x0)|| ≤ s10, (16)

||F ′(x0)−1([x, y;F ]− F ′(x0))|| ≤ L0(||x− x0||+ ||y − x0||), (17)

||F ′(x0)−1([x, y;F ]− [z, t;F ])|| ≤ L(||x− z||+ ||y − t||), (18)

and all of the hypotheses of Lemma 2.1 are confirmed. Then, the se-
quence {xn}, generated by the method (1), converges to x∗ ∈ U(x0, t

∗) ⊆
D and remains in U(x0, t

∗). Moreover, x∗ is the unique solution of
F (x) = 0 in the U(x0, t

∗). Also, the following estimate holds for each
n = 0, 1, 2, . . .

||x∗ − xn|| ≤ t∗ − tn. (19)

Proof. By induction on n, we shall show that

Λ1 : ||y1n − xn|| ≤ s1n − tn,
Λj : ||yjn − yj−1n || ≤ sjn − sj−1n , for j = 2 . . . , k − 1,

Λk : ||xn+1 − yk−1n || ≤ tn+1 − sk−1n .

For n = 0 and first step, by assumption (16), we have

||y10 − x0|| = ||F ′(x0)−1F (x0)|| ≤ s10 ≤ t∗.

Hence, y10 ∈ U(x0, t
∗), and Λ1 holds for n = 0.
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For the jth step of k-step Newton’s method, j = 1, . . . , k− 1, we obtain
that

F ′(xn)(yjn − yj−1n ) = −F (yj−1n ). (20)

Also, For the jth step of k-step Newton’s method, j = 2, . . . , k − 1, by
using (20) and (17), we get that

||yj0 − y
j−1
0 || = ||F ′(x0)−1(F (yj−10 )− F (yj−20 ) + F (yj−20 ))||

= ||F ′(x0)−1(F (yj−10 )− F (yj−20 )− F ′(x0)(yj−10 − yj−20 ))||
≤ ||F ′(x0)−1([yj−10 , yj−20 ;F ]− F ′(x0))||||yj−10 − yj−20 ||
≤ L0(||yj−10 − x0||+ ||yj−20 − x0||)||yj−10 − yj−20 ||
≤ L(||yj−10 − x0||+ ||yj−20 − x0||)||yj−10 − yj−20 || = sj0 − s

j−1
0 .

(21)

Hence, for j = 2, . . . , k − 1, we have

||yj0 − x0|| ≤ ||y
j
0 − y

j−1
0 ||+ ||yj−10 − yj−20 ||+ · · ·+ ||y10 − x0||

≤ sj0 − s
j−1
0 + sj−10 − sj−20 + · · ·+ s10 − t0 = sj0 ≤ t

∗.

Therefore, yj0 ∈ U(x0, t
∗), and Λj holds for n = 0 , for j = 2, . . . , k − 1.

Then for last step, kth step, of k-step Newton’s method, such as (21)
we obtain that

||yk0 − yk−10 || = ||x1 − yk−10 ||
≤ ||F ′(x0)−1([x1, yk−10 ;F ]− F ′(x0))||||x1 − yk−10 ||
≤ L(||x1 − x0||+ ||yk−10 − x0||)||x1 − yk−10 ||
= t1 − sk−10 ,

and

||x1−x0|| ≤ ||x1−yk−10 ||+ ||yk−10 −x0|| ≤ t1−sk−10 +sk−10 − t0 = t1 ≤ t∗.

So, x1 ∈ U(x0, t
∗), and Λk holds for n = 0.



USING MAJORIZING SEQUENCES FOR THE SEMI-LOCAL ... 9

Now, we try to show Λi is true for i = 1, . . . , k when n = 1 by in-
duction on j. First, we have to show F ′(x1)

−1 exists so that using (17)
and (5), we can deduce that

||F ′(x0)(F ′(x1)− F ′(x0))|| ≤ L0(||x1 − x0||+ ||x1 − x0||) = 2L0t1 < 1.

It follows by the Banach lemma on invertible operators that F ′(x1)
−1

exists and

||F ′(x1)−1F ′(x0)|| ≤
1

1− 2L0||x1 − x0||
. (22)

Using (17), (22), and the kth step of the method (1), for the first step
of k-step Newton’s method, we get that

||y11 − x1|| ≤ ||F ′(x1)−1F ′(x0)||||F ′(x0)−1F (x1)||

≤ ||F
′(x0)

−1(F (x1)− F (yk−10 )− F ′(x0)(x1 − yk−10 ))||
1− 2L0||x1 − x0||

≤ ||F
′(x0)

−1([x1, y
k−1
0 ;F ]− F ′(x0))||||x1 − yk−10 ||

1− 2L0||x1 − x0||

≤ L0(||x1 − x0||+ ||yk−10 − x0||)||x1 − yk−10 ||
1− 2L0||x1 − x0||

≤ L(t1 − t0 + sk−10 − t0)(t1 − sk−10 )

1− 2L0(t1 − t0)
= s11 − t1,

and

||y11 − x0|| ≤ ||y11 − x1||+ ||x1 − x0|| ≤ s11 − t1 + t1 − t0 = s11 ≤ t∗.

So, y11 ∈ U(x0, t
∗), and Λ1 holds for n = 1.

Now, we suppose Λi is true for every i < j. Then using (20) and (18),
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for jth step of the method (1) for j = 2, . . . , k, it is obtained that

||yj1 − y
j−1
1 || ≤ ||F ′(x1)−1F ′(x0)||||F ′(x0)−1F (yj−11 )||

≤ ||F
′(x0)

−1(F (yj−11 )− F (yj−21 )− F ′(x1)(yj−11 − yj−21 ))||
1− 2L0||x1 − x0||

≤ ||F
′(x0)

−1([yj−11 , yj−21 ;F ]− F ′(x1))||||yj−11 − yj−21 ||
1− 2L0||x1 − x0||

≤ L(||yj−11 − x1||+ ||yj−21 − x1||)||yj−11 − yj−21 ||
1− 2L0||x1 − x0||

≤ L(sj−11 − t1 + sj−21 − t1)(sj−11 − sj−21 )

1− 2L0(t1 − t0)
= sj1 − s

j−1
1 ,

and by hypotheses of induction, it is deduced that

||yj1−x0|| ≤ ||y
j
1−y

j−1
1 ||+ ||yj−11 −x0|| ≤ sj1−s

j−1
1 +sj−11 − t0 = sj1 ≤ t

∗.

So, yj1 ∈ U(x0, t
∗), and Λj holds for n = 1 and every j = 2, . . . , k.

If we replace the role of x1, y
1
1, y21, y31, ...,yk1 with xn, y1n, y2n, y3n, ...,ykn,

the relations Λj , j = 1, . . . , k are true. Also, it is obtained that

||xn+1 − xn|| = ||ykn − y0n|| ≤ Σi=k−1
i=0 ||yk−in − yk−i−1n ||

≤ Σi=k−1
i=0 (sk−in − sk−i−1n ) = skn − s0n.

Hence, {xn} is a Cauchy sequence in the closed subset, U(x0, t
∗), of the

Banach space X. Therefore, {xn} converges to x∗ in the U(x0, t
∗). By

relation (20), it is deduced that

||F ′(x0)−1F (yjn)|| ≤ L(||yjn − xn||+ ||yj−1n − xn||)||yjn − yj−1n ||.

By letting k →∞ and for j = 1, . . . , k, we get that

F (x∗) = lim
k→∞

F (yjn) = 0,

because F is continuous and the sequences {yjn} are majorized by the
sequence {xn}, so the point x∗ is the solution of F (x) = 0.
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Also, if y∗ is another solution of the equation F (x) = 0 in the U(x0, t
∗),

then by (5), it is obtained that

||F ′(x0)([x∗, y∗;F ]− F ′(x0))|| ≤ L0(||x∗ − x0||+ ||y∗ − x0||)

≤ L0(t
∗ + t∗) ≤ L0(

2s10
1− α

)

≤ 1.

Therefore, [x∗, y∗;F ]−1 exists by Banach lemma on invertible operators.
So, using the relation

[x∗, y∗;F ](x∗ − y∗) = F (x∗)− F (y∗) = 0,

we get that x∗ = y∗.

The sequence {xn} is a Cauchy sequence, so by induction on m for
each m = 1, 2, . . . , we have

||xm+n − xn|| ≤ tm+n − tn,

then, by letting m→∞, it is obtained that

||x∗ − xn|| ≤ t∗ − tn,

where this error bound is always less than
2s10
1−α − t1, so the estimate (19)

is satisfied. Hence, the proof of Theorem is completed. �

3 Complex dynamics

In this section, we compare the stability of the k-step Newton method
for some k based on the concepts of Julia sets and basins of attraction.
We first explain some basic concepts according to the Blanchard paper
[12].

Definition 3.1. Let R : Ĉ→ Ĉ be the rational function corresponding
to the function f . An orbit of z0 ∈ Ĉ is denoted by

O+(z0) = {z0, R(z0), R
2(z0), . . . , R

n(z0), . . . },
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where Ĉ is Riemann sphere. In addition, the point z0 is a periodic point
of period n if it satisfies Rn(z0) = z0, and is a fixed point if n = 1.
Moreover, a fixed point z0 is called attractor, superattractor, indifferent,
or repulsive if |R′(z0)| < 1, |R′(z0)| = 0, |R′(z0)| = 1, or |R′(z0)| > 1,
respectively. Any fixed point of the rational function R that is not the
root of the function f is denoted by strange fixed point . Each root of the
equation R′(z) = 0 is denoted by critical points, and free critical points
if f(z) is also equal to zero. For more details, one can refer to [30].

Theorem 3.2. (Fatou-Julia) Let R be a rational function. There exists,
at least, one critical point in the connected component of the basin of
attraction of an attracting fixed periodic point [20, 25].

Definition 3.3. If α is a root of the function f , then the following set
is denoted by basin of attraction or convergence region of α:

A(α) = {z0 ∈ Ĉ : lim
n→∞

Rn(z0) = α}.

Julia and Fatou sets have an important role in the analysis of the dynam-
ical system defined by iterating the rational function R. In the following,
we try to introduce these two significant sets. We have to propose some
definitions and preliminary propositions. For further descriptions, one
can see [17, ?].

Definition 3.4. Suppose {fα} is a family of complex analytic functions
defined on a domain D. {fα} is called a normal family if every infinite
subset of it contains a subsequence which converges uniformly on every
compact subset of D.

Definition 3.5. Let R be the rational function associated with iteration
φ. The point z is a stable point for R if there is a neighborhood U of z
such that {Rn(z)}, for n = 0, 1, . . . , form a normal family on U .

Definition 3.6. All of the stable points of R belong to stable set of R
that is called normal set or Fatou set.

Definition 3.7. Julia set is the complement of Fatou set and is the
unstable set.
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Fatou set is denoted by F(R), and Julia set is denoted by J (R).
They are completely invariant under R; that is

R(F(R)) = F(R) = R−1(F(R)), R(J (R)) = J (R) = R−1(J (R))

In [12, 17, ?], we see that the behavior of rational map on Julia set is
chaotic and on Fatou set is stable.

Remark 3.8. In this paper, for numerical results and plotting the pic-
tures, we work in Mathematica. For plotting the pictures, we have used
the codes that base of them presented in [33]. The computer specifica-
tions are Intel(R) Xeon(R), CPU E7-4870 2.40 GHz (2 processors), with
16 GB of RAM.

3.1 Conjugacy classes

Theorem 3.9. (Scaling Theorem for Newton’s method [4]) Let T (x) =
αx + β, with α 6= 0, be an affine map. Let g(x) = (foT )(x) such that
f(x) be a polynomial. Then the fixed point operators of Newton’s method
on f and g, Rf and Rg, respectively, are affinely conjugated by T , that
is, (ToRg)(x) = (RfoT )(x) for all x.

For study the convergence regions of k-step Newton’s method for
finding the roots of the function f , we can use Theorem 3.9 and study
on a family of functions and next extend the results for all of the func-
tions that have the features in family where it is very helpful.
S. Amat et.al in [3, 2] have presented the dynamical studies for k-step
Newton’s method for some steps. In [3], they presented dynamical be-
havior for two steps Newton’s method. In [2], they presented three
basins of attraction for comparing the stability of three, four, and five
steps Newton’s method. They showed that black regions are bigger in
four steps method.
Our aim in this paper is to study the convergence regions and stability
behavior of k-step Newton’s method for different steps, one, two,...,and
eight steps, and compare them with together for two, three, and four
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degree polynomials.
Therefore, we consider p(x) = x2 + c where c is an arbitrary complex
number, and second degree polynomials can be parameterized to it. (one
can see [12]). So, our results can be acceptable for all of the second degree
polynomials. Now, the map Rk,p(x, c) is called the rational operator as-
sociated with the polynomial p(x) = x2 +c and k-step Newton’s method
for k = 1, . . . , 6.

Also, Blanchard in [12] showed that by conjugacy map h(x) = x−i
√
c

x+i
√
c

(a Möbius transformation) rational operator R of Newton’s method for
quadratic polynomials is conjugate to the rational map x2. The Möbius
transformation has these properties:

i)h(∞) = 1, ii)h(i
√
c) = 0, iii)h(−i

√
c) =∞.

In the analogous ways, operators Rk,p(x, c) on quadratic polynomials for
k-step Newton’s method, for k = 2, 3, 4, 5, 6, is conjugated to operator
Rk,p(x). Therefore, we have

Rk,p(x) = h oRk,p(x, c) o h
−1(x).

One can compute Rk,p(x) for each k by a computer software such as
Mathematica, easily.

Remark 3.10. We mention that
√
c is the principal second root of c.

3.2 Strange fixed points

Strange fixed points are the roots of the equation Rk,p(x) = x that are
not the zeros of p(x) = 0, where Rk,p is conjugated to rational opera-
tor associated with iteration function of k-step Newton’s method. By
conjugacy relations, the roots of p(x) are equivalent to 0 and ∞. It is
clear that ∞ is the fixed point for Rk,p(x) for all k = 1, 2, . . . . We solve
the equations Rk,p(x) = x for x and k = 1, 2, 3, 4, 5, 6, 7, 8, and obtain
all of the fixed points of Rk,p(x) except ∞. For all of the k, one of the
roots is 0. So others are strange fixed points. In Table 1, we can see the
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numbers of the roots of the equation Rk,p(x) = x for different k.

Remark 3.11. Infinity is the strange fixed point for Rk,p(x, c) for each
k. Moreover, by Möbius transformation, infinity changes to 1. It is clear
that |R′k,p(1)| > 1 for each k. Therefore, infinity is a repulsive strange
fixed point.

Table 1: fixed points for Rk,p(x) except of infinity

k 1 2 3 4 5 6 7 8 9

numbers 2 4 8 16 32 64 128 256 512

Möbius transformation changes the roots of polynomial p(x) to 0 and
∞ that they are supperattracting points. If we compute the |R′k,p(x)|
for strange fixed point x, we find that all of the strange fixed points
are repulsive, so, there is no attracting strange fixed point for k-step
Newton method on the family of quadratic polynomials. Therefore,
there is no free critical point for k-step Newton method on the family of
the quadratic polynomials, because by using Theorem 3.2, critical points
belong to basin of attraction of the attracting fixed points.

3.3 Julia sets

Because we have not any critical point for quadratic polynomials, we
cannot plot parameter planes. Thus, for comparing the behavior of k-
step Newton’s methods on quadratic polynomials, we use Julia sets. It
is noteworthy that for quadratic polynomials, Blanchard in [13] proved
that one step Newton method is globally convergent.
Figure 1 shows that when the steps of the k-step Newton’s method
increases, the Julia set becomes more complicated and purple color be-
comes bigger.
Red regions are stable points. For any z in the red regions, the orbit
of z has a convergent subsequence to 0 or ∞ while yellow regions are
unstable points. Purple color is the points that orbit of them does not
converge to 0 or ∞. The pictures concluded that increasing in the steps
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of the k-step Newton method may increase the chaotic in root finding.

(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method

Figure 1: Comparing the Julia sets for 1,2,3,4,5 steps Newton’s method for
second degree polynomials

3.4 Basins of attraction

Dynamic planes show basins of attraction of any root along with chaotic
behaviors. We plot dynamic planes for x2 + c, x3 + c, x4 + c, where c
is arbitrary chosen. In Figures 2-7 we must have two distinct colors for
second degree polynomials, three distinct colors for third degree poly-
nomials, and four distinct colors for fourth degree polynomials. But we
see that when the step k increases, we have more distinct colors and
chaotic behaviors increase, too. Black points are the roots of polynomi-
als. Moreover, these figures show that for high-order polynomials, when
the steps of the method (1) increase, the basins of attraction of the roots
of polynomial become smaller at a faster rate.
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(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method (f) 6-step Newton’s method

(g) 7-step Newton’s method

Figure 2: Dynamic planes of k-step Newton’s method for p(x) = x2 − 1

4 Numerical Examples

We want to confirm our theoretical results for semi-local convergence by
some numerical examples.

Example 4.1. Let F : Rm → Rm be a differentiable function where

F (x1, x2, . . . , xm) = (ex1 − 1, ex2 − 1, . . . , exm − 1), xi ∈ (−1, 1),

i = 1, . . . ,m.

We mention that e is the Exponential number. For X = (x1, . . . , xm)
and Y = (y1, . . . , ym), the divided difference [X,Y ;F ] is given by
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(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method (f) 6-step Newton’s method

(g) 7-step Newton’s method

Figure 3: Dynamic planes of k-step Newton’s method for p(x) = x2 + i
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(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method

Figure 4: Dynamic planes of k-step Newton’s method for p(x) = x3 − 1

(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method

Figure 5: Dynamic planes of k-step Newton’s method for p(x) = x3 − i
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(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method

Figure 6: Dynamic planes of k-step Newton’s method for p(x) = x4 + 1

(a) Newton’s method (b) 2-step Newton’s method (c) 3-step Newton’s method

(d) 4-step Newton’s method (e) 5-step Newton’s method

Figure 7: Dynamic planes of k-step Newton’s method for p(x) = x4 − 1
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ex1−ey1
x1−y1 . . . 0

...
. . .

...

0 . . . exm−eym
xm−ym

 ,

and Jacobian derivative of F is equal to ex1 . . . 0
...

. . .
...

0 . . . exm

 .

Suppose that ||.|| is max-norm and X0 = (x01, x
0
2, . . . , x

0
m), where x0i = x0

for each i = 1, . . . ,m.
First, we must compute L0 and L in the relations (17) and (18). Also,

we use approximation formula ex ≈ 1 + x+ x2

2 . So, we have

||F ′(X0)
−1([X,Y ;F ]−[X0, X0;F ])||

≤ ||F ′(X0)
−1||max1≤i≤m(|e

xi − eyi
xi − yi

− ex0 |)

≤ |e−x0 |max1≤i≤m(1 +
1

2
(xi + yi)− 1− (x0))

≤ |e
−x0 |
2

(||X −X0||+ ||Y −X0||),

and

||F ′(X0)
−1([X,Y ;F ]− [Z, T ;F ])||

≤ ||F ′(X0)
−1||max1≤i≤m(|e

xi − eyi
xi − yi

− ezi − eti
zi − ti

|)

≤ |e−x0 |max1≤i≤m(1 +
1

2
(xi + yi)− 1− 1

2
(zi + ti))

≤ |e
−x0 |
2

(||X − Z||+ ||Y − T ||).

Hence, it is obtained L = L0 = e−x0
2 . By relation (16), we consider

s10 = |1− e−x0 |. Also, by relations (3) and (4), we have t1 = sk0, s00 = 0,
and for j = 1, . . . , k − 1

sj+1
0 = sj0 + L(sj0 + sj−10 )(sj0 − s

j−1
0 ).
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When the steps of k-step Newton’s method increase, then we must

choose the initial guess x0 more close to the solution x∗ = {
m︷ ︸︸ ︷

0, 0, . . . , 0}.
In the Table 2, by Mathematica code, for different x0, we compute L0,
s10, t1, and α. We compute α by the relation (2). Moreover, for a given
x0, we calculate the maximum value for the error bound ||x∗−xn||, (19),

by
2s10
1−α − t1.

Hence, we conclude that

0 <
L(t1 + sk−10 )

1− 2L0t1
< α < 1− 2L0s

1
0,

for every step k and and given x0.
So, we can conclude that when k increases, the initial guess x0 must be
chosen closer to the solution x∗.

Table 2: Results of the semi-local convergence for Example 4.1

k x0 L = L0 s10 sk0 = t1
L(sk−1

0 + t1)

1− 2L0t1
α 1− 2L0s

1
0 ||x∗ − xn||

1 0.1 0.452919 0.0951626 0.0951626 0.0471098 0.5 0.913893 0.190325
2 0.1 0.452919 0.0951626 0.0992596 0.0966399 0.722714 0.913893 0.343193
3 0.1 0.452919 0.0951626 0.09962 0.0988909 0.803761 0.913893 0.484932
4 0.1 0.452919 0.0951626 0.0996525 0.0990894 0.847597 0.913893 0.624415
5 0.1 0.452919 0.0951626 0.0996554 0.0991073 0.875282 0.913893 0.763021
6 0.1 0.452919 0.0951626 0.0996556 0.0991089 0.894404 0.913893 0.901191
7 0.1 0.452919 0.0951626 0.0996557 0.099109 0.908419 0.913893 1.03911
8 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.91914 0.990149 0.123054
9 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.91914 0.990149 0.137447
20 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.96633 0.990149 0.295524
30 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.977341 0.990149 0.439121
50 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.986299 0.990149 0.72626
60 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.988561 0.990149 0.86982
69 0.01 0.495025 0.00995017 0.00999967 0.00999916 0.99004 0.990149 0.999022
70 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.990181 0.999001 0.10612
100 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.993109 0.999001 0.145055
150 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.995397 0.999001 0.217154
200 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.996545 0.999001 0.289254
300 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.997694 0.999001 0.433451
690 0.001 0.4995 0.0009995 0.00999967 0.0100905 0.998996 0.999001 0.995822
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4.1 Systems of nonlinear equations

We first analyze some systems of nonlinear equations. They are very
important in many areas of mathematics and engineering. For solving
the system by k-step Newton’s method, similar to Newton’s method,
we first linearize the system, and then solve it. Suppose that we want
to solve the following system of nonlinear equations F (X) = 0, which
F = (f1, f2, . . . , fn)T and X = (x1, x2, . . . , xn)T . Let fi : D ⊆ Rn → R
be differentiable functions, and D is a convex subset of Rn. Let Y be
an approximate solution for F (X) = 0. We attempt to compute the
H = (h1, h2, . . . , hn)T such that (y1 + h1, y2 + h2, . . . , yn + hn) will be a
better solution by following equation:

X(k+1) = X(k) +H(k),

where the Jacobian system is

F ′(X(k))H(k) = −F (X(k)),

where

F ′(X) = J(X) =



∂f1(X)

∂x1

∂f1(X)

∂x2
. . .

∂f1(X)

∂xn

∂f2(X)

∂x1

∂f2(X)

∂x2
. . .

∂f2(X)

∂xn

...
...

...

∂fn(X)

∂x1

∂fn(X)

∂x2
. . .

∂fn(X)

∂xn


. (23)

Also, for X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) the divided dif-
ference [X,Y ;F ] is matrix ([X,Y ;F ]ij), i, j = 1, . . . , n, where

[X,Y ;F ]ij =
fi(x1, . . . , xj , yj+1, . . . , yn)− fi(x1, . . . , xj−1, yj , . . . , yn)

xj − yj
,

(24)
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see [31].
We can solve the above system by the following Mathematica code.
For the examples in the paper, the initial value X0,0 is the same X0,
tolerance is considered 10−6, and accuracy is considered 1000, but, this
code is applicable for every system with any accuracy and tolerance if
the convenient initial value is chosen.

Clear["Global‘*"]

nn = Input["accuracy"];

M = Input["tolerance"];

v = Input["number of equations of the system"];

n = Input["steps of the method"];

Y = Table[Subscript[y, i], {i, 1, v}];

For[i=1,i<=v,i++,Subscript[f,i][Y_]=Input[Subscript[f,i]]];

(*Subscript[f,i] is the ith equation of the given system*)

F = Function[Y, Table[Subscript[f, i][Y], {i,1,v}]];

G[Y_] = Table[

D[Subscript[f, i][Y],Subscript[y, j]],{i,1,v},{j,1,v}];

J[c_]:=Flatten[G[Y]/.{Table[Y[[i]]->c[[i]],{i,1,v}]},1];

Subscript[X,0,0] = Input["initial value"];

Subscript[X,1,0] = Subscript[X, 0, 0] + 1;

k = 0;

While[Norm[Subscript[X,k+1,0]-Subscript[X,k,0], 2] > M,

k++;For[m = 0, m < n, m++,

Subscript[H, k, m] =

SetAccuracy[

LinearSolve[J[Subscript[X,k,0]],-F[Subscript[X,k,m]]],nn];

Subscript[X,k,m+1] =Subscript[X,k,m]+Subscript[H,k,m]];

Subscript[X,k+1,0] =Subscript[X,k,n];]

X^* = Subscript[X, k + 1, 0] // N

Example 4.2. Suppose F (X) = 0 be the system of nonlinear equations.
We consider the system F as follow: (e is the Exponential number)

A : F (X) =


f1(x1, x2, x3) = x1x2 − x23 − 1 = 0,

f2(x1, x2, x3) = x1x2x3 − x21 + x22 − 2 = 0,

f3(x1, x2, x3) = ex1 − ex2 + x3 − 3 = 0,

(25)
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where D = [0, 2]3 ⊆ R3. The solution X∗ for F in D is (1.777671918,
1.423960598, 1.237471118).
For choosing appropriate initial values, we use the conditions obtained
in the section 2. So, we first compute the divided difference [X,Y ;F ]
for X = (x1, x2, x3) and Y = (y1, y2, y3) by using (24).

[X,Y ;F ] =

 y2 x1 −x3 − y3
−x1 − y1 + y2y3 x2 + y2 + x1y3 x1x2

ex1−ey1
x1−y1

−ex2+ey2
x2−y2 1

 .

Also, using (23), we have

F ′(X) =

 x2 x1 −2x3
−2x1 + x2x3 2x2 + x1x3 x1x2

ex1 −ex2 1

 .

We consider max-norm or ∞-norm, for computing norm ||.||. Hence, we
have for given X0 and X,Y, Z, T ∈ D :

||F ′(X0)
−1([X,Y ;F ]− [Z, T ;F ])|| ≤ ||F ′(X0)

−1||8(||X−Z||+ ||Y −T ||),

also, we can obtain

||F ′(X0)
−1([X,Y ;F ]−F ′(X0))|| ≤ ||F ′(X0)

−1||5(||X−X0||+||Y −X0||).

Therefore, by relations (17) and (18), we have L = 8||F ′(X0)
−1|| and

L0 = 5||F ′(X0)
−1||.

By using, relations (2), (12), and (16), we confirm the condition (5) for
different X0. We show the results in the table 4. We conclude that when
the steps of k-step Newton’s method increase, we must choose X0 closer
to the solution X∗ i.e. ||X0 −X∗|| decrease.
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Table 3: Results of the semi-local convergence for Example 4.2

k X0 ||X0 −X∗|| L L0 s10 sk0 = t1
L(sk−1

0 + t1)

1− 2L0t1
α 1− 2L0s

1
0

1 (1.77,1.4,1.23) 0.039 3.7091 3.3845 0.0241 0.0241 0.1070 0.5153 0.8366
2 (1.77,1.4,1.23) 0.039 3.7091 3.3845 0.0241 0.0263 0.2277 0.7838 0.8366
3 (1.77,1.4,1.23) 0.039 3.7091 3.3845 0.0241 0.0267 0.2201 0.8135 0.8366
4 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.8557 0.9481
5 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.8821 0.9481
6 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9003 0.9481
7 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9137 0.9481
8 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9237 0.9481
9 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9318 0.9481
10 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9383 0.9481
11 (1.77,1.42,1.23) 0.019 3.6892 3.3664 0.0077 0.0079 0.0618 0.9437 0.9481
20 (1.777,1.423,1.237) 0.009 3.6673 3.3464 0.00096 0.00096 0.0071 0.9684 0.9935
40 (1.777,1.423,1.237) 0.009 3.6673 3.3464 0.00096 0.00096 0.0071 0.9840 0.9935
70 (1.777,1.423,1.237) 0.009 3.6673 3.3464 0.00096 0.00096 0.0071 0.9908 0.9935

Example 4.3. For comparing with the system A, we compute the so-
lution of another system by the k-step Newton method. We consider
G : D ⊆ R6 → R6 is a differentiable function, and D = [−3, 3]6 and
X∗=(0.2480194, -2.599051, 1.066914, 2.811747, 1.578335, 2.505069).

B :



g1(x1, x2, x3, x4, x5, x6) = x1x2 − 5x3 + x24 − x6 + x5 − 1 = 0,

g2(x1, x2, x3, x4, x5, x6) = x2x3 − x5x21 + x22 − 2 + x6 − x4 − x5 = 0,

g3(x1, x2, x3, x4, x5, x6) = ex1 − x6ex2 + x3 − 3 + x4x6 − x45 = 0,

g4(x1, x2, x3, x4, x5, x6) = x2x5 − x23 − 1 + x25x6,

g5(x1, x2, x3, x4, x5, x6) = x1x2x6 − x21 + x2 − 2 + x26,

g6(x1, x2, x3, x4, x5, x6) = ex1 + x3 − 3 + 2x5 − x6.

We have that

G(X) = (g1(x1, x2, x3, x4, x5, x6),

g2(x1, x2, x3, x4, x5, x6), g3(x1, x2, x3, x4, x5, x6),

g4(x1, x2, x3, x4, x5, x6), g5(x1, x2, x3, x4, x5, x6),

g6(x1, x2, x3, x4, x5, x6)).

For system B, by using (24), the divided difference [X,Y ;G] for X =
(x1, . . . , x6) and Y = (y1, . . . , y6) is

y2 x1 −5 x4 + y4 1 −1

−(x1 + y1)y5 x2 + y2 + y3 x2 −1 −x21 − 1 1

ex1−ey1
x1−y1

(−ex2+ey2 )y6
x2−y2

1 y6
y4
5−x4

5
x5−y5

x4 − ex2

0 y5 −x3 − y3 0 x2 + (x5 + y5)y6 x25
−x1 − y1 + y2y6 x1y6 + 1 0 0 0 x1x2 + x6 + y6

ex1−ey1
x1−y1

0 1 0 2 −1

 ,
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and also by using (23), G′(X) is

x2 x1 −5 2x4 1 −1
−2x1x5 2x2 + x3 x2 −1 −x21 − 1 1
ex1 −ex2x6 1 x6 −4x35 x4 − ex2
0 x5 −2x3 0 x2 + 2x5x6 x25

x2x6 − 2x1 x1x6 + 1 0 0 0 x1x2 + 2x6
ex1 0 1 0 2 −1

 .

By using (17) and (18), we compute L and L0 for given X0:

L0 = 25||G′(X0)
−1||, andL = 49||G′(X0)

−1||,

thus, we confirm the condition (5) for different k. We will show the
condition (5) is true for every k, but when k increased, we must choose
X0 closer to X∗. We show the results in the table 5.

Table 4: Results of the semi-local convergence for Example 4.3

k X0 ||X0 −X∗|| L L0 s10 sk0 = t1
1 (0.248, -2.599, 1.067, 2.81, 1.578, 2.505) 2.2e-3 60.4415 30.8375 1.7e-3 1.9e-3
2 (0.248, -2.599, 1.067, 2.81, 1.578, 2.505) 2.2e-3 60.4415 30.8375 1.7e-3 1.9e-3
3 (0.248, -2.599, 1.067, 2.81, 1.578, 2.505) 2.2e-3 60.4415 30.8375 1.7e-3 1.9e-3
4 (0.248, -2.599, 1.067, 2.811, 1.578, 2.505) 1.2e-3 60.4194 30.8262 7.4e-4 7.8e-4
5 (0.248, -2.599, 1.067, 2.811, 1.578, 2.505) 1.2e-3 60.4194 30.8262 7.4e-4 7.8e-4
6 (0.248, -2.599, 1.067, 2.811, 1.578, 2.505) 1.2e-3 60.4194 30.8262 7.4e-4 7.8e-4
7 (0.248, -2.599, 1.067, 2.811, 1.578, 2.505) 1.2e-3 60.4194 30.8262 7.4e-4 7.8e-4
8 (0.248, -2.599, 1.067, 2.811, 1.578, 2.505) 1.2e-3 60.4194 30.8262 7.4e-4 7.8e-4
9 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5
10 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5
11 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5
20 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5
40 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5
70 (0.248, -2.599, 1.067, 2.8117, 1.5783, 2.505) 2.4e-4 60.4221 30.8276 6.8e-5 6.8e-5

L(sk−1
0 + t1)

1− 2L0t1
α 1− 2L0s

1
0

1.183e-1 6.145e-1 8.92e-1
2.524e-1 8.081e-1 0.892
0.2687 0.8700 0.892
9.954e-1 0.9014 0.954
0.9956e-1 0.9205 0.954
0.9956e-1 0.9334 0.954
0.9956e-1 0.9427 0.954
0.9956e-1 0.9497 0.954
8.41e-3 0.95518 0.9957
8.41e-3 0.95958 0.9957
8.41e-3 0.96319 0.9957
8.41e-3 0.97959 0.9957
8.41e-3 0.98974 0.9957
8.41e-3 0.99412 0.9957
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Conclusions

In this paper, we presented the semi-local convergence of k-step New-
ton’s method by using majorizing sequences. This is a novelty that we
obtained semi-local convergence of a k-step iterative method by majoriz-
ing sequences where k can be greater than two. Meanwhile, for quadratic
polynomials, by Julia set, we obtained that there exist more chaotic be-
haviors when the steps of the method (1) increase. Then by using basins
of attraction, we obtained the same conclusions for polynomials of the
second, third, and fourth degrees. We showed that when k increase, the
basin of attractions are smaller. In the end, we confirmed the theoreti-
cal results of semi-local convergence and dynamical study in numerical
examples. We showed that as the steps of the method (1) increase, the
convergence radius becomes smaller. By these applicable examples, we
obtained the same results of dynamic study. We can compute the ACOC
about k + 1 for k-step Newton’s method (1) by different k. In addition,
in Example 4.1, we could find a bound for ||X∗ −Xn||.
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