Fixed Point Methods in the Stability of the Cauchy Functional Equations

Z. Dehvari
Yazd University
S. M. Moshtaghioun*
Yazd University

Abstract

By using the fixed point methods, we prove some generalized Hyers-Ulam stability of homomorphisms for Cauchy and CauchyJensen functional equations on the product algebras and on the triple systems.

AMS Subject Classification: 39A10; 39B72; 47H10; 46B03
Keywords and Phrases: Cauchy functional equation, Cauchy-Jensen functional equation, fixed point, generalized Hyers-Ulam stability, triple system.

1. Introduction and Preliminaries

In 1940, S. M. Ulam states a question concerning the stability of group homomorphisms. In fact, for a group G_{1} and a metric group G_{2} with metric d and for any given $\varepsilon>0$, if there exists a $\delta>0$ such that for any function $h: G_{1} \longrightarrow G_{2}$ that satisfies the inequality

$$
d(h(x y), h(x) h(y))<\delta, \quad x, y \in G_{1},
$$

there exists a homomorphisms $H: G_{1} \longrightarrow G_{2}$ such that $d(h(x), H(x))<$ ε for all $x \in G_{1}$?

[^0]Following this question, in [2], D. H. Hyers gave the first affirmative answer to the Ulam's question for linear mappings on Banach spaces. Then T. M. Rassias [14] and P. Găvruta [1] and some other researchers, generalized the Hyers's Theorem and gave some approaches of the stability of Ulam-Hyers-Rassias problem. See for instance [6], [12] and [13].
In 2003, Radu in [11] used the following fixed point Theorem for the proof of the stability of additive functional equation of Rassias [14]:

Theorem 1.1. Let (X, d) be a complete generalized metric space and let $J: X \longrightarrow X$ be a contraction map with a Lipschitz constant $0 \leqslant L<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geqslant n_{0}$,
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point x^{*} of J,
(3) x^{*} is the unique fixed point of J in the set $Y:=\left\{y \in X \mid d\left(J^{n_{0}} x, y\right)<\infty\right\}$,
(4) $d\left(y, x^{*}\right) \leqslant \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Following the Radu's paper, some authors interested the same method in the stability problems. For example, Park and Rassias in [10] and [8] used this method for solving the Cauchy and Cauchy-Jensen functional equations. Here, by using the Radu's method of fixed point, we first prove some extensions of the stability of Cauchy functional equations of [10] and then the stability of functional equations in triple systems.

2. Stability of the Cauchy Functional Equations

In [10], the authors proved that for Banach algebras A and B, if f : $A \longrightarrow B$ is a mapping for which there exists a function $\varphi: A \times A \longrightarrow$ $[0, \infty)$ that satisfy the following conditions:

$$
\begin{aligned}
\lim _{j \longrightarrow \infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right) & =0 \\
\|\mu f(x+y)-f(\mu x)-f(\mu y)\| & \leqslant \varphi(x, y) \\
\|f(x y)-f(x) f(y)\| & \leqslant \varphi(x, y) \\
\varphi(2 x, 2 x) & \leqslant 2 L \varphi(x, x)
\end{aligned}
$$

for some $0 \leqslant L<1$ and for all scalar μ with absolute value 1 and all $x, y \in A$; then there exists a unique homomorphism $H: A \longrightarrow B$ such that for all $x \in A,\|f(x)-H(x)\| \leqslant \frac{1}{2-2 L} \varphi(x, x)$. That is, H is a solution of the Cauchy functional equation

$$
\mu f(x+y)-f(\mu x)-f(\mu y)=0
$$

that satisfies the homomorphism equation $f(x y)-f(x) f(y)=0$. Here, we will obtain some refinement of it on the product algebras.

Theorem 2.1. Let G be an additive group and F be a Banach space. If $f: G \times G \longrightarrow F$ and $\varphi: G \times G \longrightarrow[0, \infty)$ are mappings such that for all $a, b, c \in G$ the following conditions hold:

$$
\begin{align*}
\|f((a, b)+(c, d))-f(a, b)-f(c, d)\| & \leqslant \varphi(a+c, b+d) \tag{1}\\
\|f(a, b)-f(b, a)\| & \leqslant \varphi(a, b) \\
\varphi(2 a, 2 b) & \leqslant 2 L \varphi(a, b) \tag{2}
\end{align*}
$$

for some $0 \leqslant L<1$, then the map

$$
T: G \times G \longrightarrow F \quad, \quad T(a, b)=\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} a, 2^{n} b\right) \quad, \quad a, b \in G
$$

is the unique additive map such that for all $a, b \in G$,

$$
\begin{gathered}
\|f(a, b)-T(a, b)\| \leqslant \frac{L}{1-L} \varphi(a, b) \\
T(a, b)=T(b, a)
\end{gathered}
$$

Proof. Consider X as the set of all functions $g: G \times G \longrightarrow F$ and define a generalized metric d on X by
$d(g, h):=\inf \{c \in[0, \infty]:\|g(a, b)-h(a, b)\| \leqslant c \varphi(a, b)$, for all $a, b \in G\}$.
Then, in fact, d is a complete generalized metric on X. Now define $J: X \longrightarrow X$ by $J g(a, b):=\frac{1}{2} g(2 a, 2 b)$. since

$$
\begin{aligned}
\left\|\frac{1}{2} g(2 a, 2 b)-\frac{1}{2} h(2 a, 2 b)\right\| & \leqslant \frac{1}{2} d(g, h) \varphi(2 a, 2 b) \\
& \leqslant \operatorname{Ld}(g, h) \varphi(a, b)
\end{aligned}
$$

and by (1),

$$
\|f(2 a, 2 b)-2 f(a, b)\| \leqslant \varphi(2 a, 2 b) \leqslant 2 L \varphi(a, b)
$$

for all $g, h \in X$ and all $a, b \in G ; J$ is a contraction with constant at most L, such that $d(f, J f) \leqslant L$ and so by Theorem $1.1, J$ has a unique fixed point function T in $Y=\{g \in X: d(f, g)<\infty\}$. Furthermore,

$$
\begin{aligned}
d(f, T) & \leqslant \frac{1}{1-L} d(f, J f) \leqslant \frac{L}{1-L} \\
T(a, b) & =\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} a, 2^{n} b\right)
\end{aligned}
$$

for all $a, b \in G$. So for all $a, b \in G$,

$$
\begin{aligned}
\|T(a, b)-T(b, a)\| & =\lim _{n \longrightarrow \infty} 2^{-n}\left\|f\left(2^{n} a, 2^{n} b\right)-f\left(2^{n} b, 2^{n} a\right)\right\| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} a, 2^{n} b\right)=0,
\end{aligned}
$$

where the last equality holds by (2). This shows that $T(a, b)=T(b, a)$, for all $a, b \in G$.
For the proof of additivity of T, it is sufficient to note that

$$
\begin{aligned}
\| T((a, b) & +(c, d))-T(a, b)-T(c, d) \| \\
& =\lim _{n \longrightarrow \infty} 2^{-n} \| f\left(\left(2^{n} a, 2^{n} b\right)+\left(2^{n} c, 2^{n} d\right)\right) \\
& -f\left(2^{n} a, 2^{n} b\right)-f\left(2^{n} c, 2^{n} d\right) \| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n}(a+c), 2^{n}(b+d)\right)=0 .
\end{aligned}
$$

Finally, we will prove that T is unique. If H is an additive function on $G \times G$, such that

$$
\|f(a, b)-H(a, b)\| \leqslant \frac{L}{1-L} \varphi(a, b)
$$

for all $a, b \in G$, then $d(f, H) \leqslant \frac{L}{1-L}<\infty$ and so $H \in Y$. On the other hands,

$$
J H(a, b)=\frac{1}{2} H(2 a, 2 b)=H(a, b)
$$

This shows that H is a fixed point of J in Y and so $H=T$, thanks to the uniqueness of fixed point of J in Y.
As a corollary, we have the following refinement of Theorem 2.1 of [10].
Theorem 2.2. Suppose that A and B are two algebras such that B is also a Banach space. If $f: A \times A \longrightarrow B$ and $\varphi: A \times A \longrightarrow[0, \infty)$ are two mappings that satisfy the following conditions:

$$
\begin{gather*}
\|\mu f((a, b)+(c, d))-f(\mu a, \mu b)-f(\mu c, \mu d)\| \leqslant \varphi(a+c, b+d) \tag{3}\\
\|f(a, b)-f(b, a)\| \leqslant \varphi(a, b) \\
\|f((a c, b d))-f(a, b) f(c, d)\| \leqslant \varphi(a c, b d) \tag{4}\\
\varphi(2 a, 2 b) \leqslant 2 L \varphi(a, b) \tag{5}
\end{gather*}
$$

for some $0 \leqslant L<1$ and all $a, b, c, d \in A$ and all scalar μ with absolute value 1 ,then there exists a unique algebraic homomorphism $H: A \times A \longrightarrow B$ such that for all $a, b \in A$,

$$
\begin{align*}
\|f(a, b)-H(a, b)\| & \leqslant \frac{L}{1-L} \varphi(a, b) \tag{6}\\
H(a, b) & =H(b, a)
\end{align*}
$$

Proof. By Theorem 2.1, the additive function $H: A \times A \longrightarrow B$ defined by

$$
H(a, b)=\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} a, 2^{n} b\right), \quad a, b \in A
$$

is the unique additive map satisfying the above conditions (6). We only need to prove that it is an algebraic homomorphism. By hypothesis (3), one has

$$
\left\|\mu f\left(2^{n+1} a, 2^{n+1} b\right)-2 f\left(2^{n} \mu a, 2^{n} \mu b\right)\right\| \leqslant \varphi\left(2^{n+1} a, 2^{n+1} b\right)
$$

and

$$
\left\|f\left(2^{n+1} \mu a, 2^{n+1} \mu b\right)-2 f\left(2^{n} \mu a, 2^{n} \mu b\right)\right\| \leqslant \varphi\left(2^{n+1} \mu a, 2^{n+1} \mu b\right)
$$

Thus

$$
\begin{aligned}
\| \mu H(2 a, 2 b) & -H(2 \mu a, 2 \mu b) \| \\
& =\lim _{n \longrightarrow} 2^{-n}\left\|\mu f\left(2^{n+1} a, 2^{n+1} b\right)-f\left(2^{n+1} \mu a, 2^{n+1} \mu b\right)\right\| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n}\left(\left\|\mu f\left(2^{n+1} a, 2^{n+1} b\right)-2 f\left(2^{n} \mu a, 2^{n} \mu b\right)\right\|\right. \\
& \left.+\left\|f\left(2^{n+1} \mu a, 2^{n+1} \mu b\right)-2 f\left(2^{n} \mu a, 2^{n} \mu b\right)\right\|\right) \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n+1} a, 2^{n+1} b\right) \\
& +\lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n+1} \mu a, 2^{n+1} \mu b\right)=0,
\end{aligned}
$$

where the last equality holds by (5). So $H(2 \mu a, 2 \mu b)=\mu H(2 a, 2 b)$. Since $H(2 a, 2 b)=2 H(a, b)$, for all $a, b \in A$, we have

$$
H(\mu a, \mu b)=\mu H(a, b),
$$

for all $a, b \in A$ and all scalar μ with absolute value 1 .
Now, for the \mathbb{C}-linearity of H, assume that $\lambda \in \mathbb{C}$ is an arbitrary non zero scalar and M is an integer greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<$ $1-\frac{2}{3}=\frac{1}{3}$ and so by Theorem 1 of [3], there are three scalars $\mu_{1}, \mu_{2}, \mu_{3}$ with absolute value 1 such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$.
Also, for all $x \in A \times A$, by additivity of H, we have

$$
H(x)=H\left(3 \frac{1}{3} x\right)=3 H\left(\frac{1}{3} x\right) .
$$

So, $H\left(\frac{1}{3} x\right)=\frac{1}{3} H(x)$, for all $x \in A \times A$, and then

$$
\begin{aligned}
H(\lambda x) & =H\left(\frac{M}{3} 3 \frac{\lambda}{M} x\right)=\frac{M}{3} H\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} H\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(H\left(\mu_{1} x\right)+H\left(\mu_{2} x\right)+H\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) H(x)=\lambda H(x) .
\end{aligned}
$$

Finally, the following assertion shows that H is an algebraic homomorphism. In fact, for each (a, b) and (c, d) in $A \times A$ the relation (4) guaranties that

$$
\begin{gathered}
\|H((a, b)(c, d))-H(a, b) H(c, d)\| \\
= \\
\left\|\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} a c, 2^{n} b d\right)-\lim _{n \xrightarrow{\infty}} 4^{-n} f\left(2^{n} a, 2^{n} b\right) f\left(2^{n} c, 2^{n} d\right)\right\| \\
=\lim _{n \xrightarrow{\prime}} 4^{-n}\left\|f\left(4^{n} a c, 4^{n} b d\right)-f\left(2^{n} a, 2^{n} b\right) f\left(2^{n} c, 2^{n} d\right)\right\| \\
\leqslant \lim _{n \longrightarrow \infty} 4^{-n} \varphi\left(4^{n} a c, 4^{n} b d\right)=0
\end{gathered}
$$

The final Theorem of this section solves the additive functional equation, for groups.

Theorem 2.3. Let G be an additive group and E be a Banach space. If $f: G \longrightarrow E$ and $\varphi: G \times G \longrightarrow[0, \infty)$ are mappings that satisfy the conditions

$$
\begin{gathered}
\lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y\right)=0 \quad, \quad \sup _{x \in G} \varphi(x, x)<\infty \\
\|f(x+y)-f(x)-f(y)\| \leqslant \varphi(x, y)
\end{gathered}
$$

then there exists an unique additive function $T: G \longrightarrow E$ such that

$$
\sup _{x \in G}\|f(x)-T(x)\| \leqslant \sup _{x \in G} \varphi(x, x)
$$

Proof. Suppose that X is the set of all functions $g: G \longrightarrow E$ and define a complete generalized metric d on X by

$$
d(g, h)=\sup _{x \in G}\|g(x)-h(x)\|
$$

If we define the mapping $J: X \longrightarrow X$ via $J g(x)=\frac{1}{2} g(2 x)$, then a straightforward computation shows that J is a contraction with Lipschitz constant L at most $\frac{1}{2}$ such that

$$
d(f, J f) \leqslant \frac{1}{2} \sup _{x \in G} \varphi(x, x)<\infty
$$

So by generalized Banach's contraction Theorem 1.1, J has a fixed point $\operatorname{map} T: G \longrightarrow E$ that satisfies the conditions 1-4 of that theorem. Since by hypothesis,

$$
\begin{aligned}
\|T(x+y)-T(x)-T(y)\| & =\lim _{n \longrightarrow \infty} 2^{-n}\left\|f\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y\right) \\
& =0
\end{aligned}
$$

the function T is additive. Also by Theorem 1.1,

$$
\begin{align*}
d(f, T) & \leqslant \frac{1}{1-L} d(f, J f) \\
& \leqslant 2 d(f, J f) \\
& \leqslant \sup _{x \in G} \varphi(x, x) \tag{7}
\end{align*}
$$

The uniqueness of the additive function T satisfying the above condition (7), is completely similar to the uniqueness part of Theorem 2.1.

3. Cauchy Functional Equations in Triple Systems

A triple system is a vector space V together with a trilinear mapping $V \times V \times V \longrightarrow V$, called a triple product, and usually denoted by $\{., .,$.$\} . A triple system V$ is called continuous if its triple product $\{., .,$. is separately continuous, and is called $*$-triple system, if V admits an involution $*$. The most important examples of triple systems are Lie triple systems and Jordan triple systems (see for instance, [4] and [7]).

Also every $J B^{*}$-triple is an $*$-triple system [7]. We remember that a complex Banach space J with a continuous triple product $\{., .,$.$\} on J$ is a $J B^{*}$-triple, if it is bilinear and symmetric in the outer variables and conjugate linear in the middle variable, and satisfy the following conditions:
(1) $L(a, b)\{x, y, z\}=\{L(a, b) x, y, z\}-\{x, L(a, b) y, z\}+\{x, y, L(a, b) z\}$, for all $a, b, x, y, z \in J$; where the operator $L(a, b): J \longrightarrow J$ is defined by $L(a, b)(x)=\{a, b, x\}$,
(2) The operator $L(a, b): J \longrightarrow J$ is an hermitian operator with nonnegative spectrum,
(3) $\|\{x, x, x\}\|=\|a\|^{3}$ for all $a \in J$.

In [7], the author proved the following Theorem 3.1, which solved the Cauchy functional equation in $J B^{*}$-triples. Here, by using the familiar generalized Banach's contraction Theorem, we improve Theorem 1 of [3] and we give another proof for it.
We note that, as usual, a \mathbb{C}-linear map $H: A \longrightarrow B$ between two triple systems A and B is called triple homomorphism if it satisfies the fallowing condition

$$
H\{x, y, z\}=\{H(x), H(y), H(z)\}
$$

for all $x, y, z \in A$. We need this definition in the rest of this article.
Theorem 3.1. Suppose that A is a normed space and B is a Banach space and $f: A \longrightarrow B$ and $\varphi: A \times A \times A \longrightarrow[0, \infty)$ are mappings such that $f(0)=0$ and

$$
\begin{gather*}
\lim _{n \longrightarrow \infty} 3^{-n} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0 \\
\varphi(3 x, 3 x, 3 x) \leqslant 3 L \varphi(x, x, x) \\
\|f(\mu x+\mu y+\mu z)-\mu f(x)-\mu f(y)-\mu f(z)\| \leqslant \varphi(x, y, z) \tag{8}
\end{gather*}
$$

for some $0 \leqslant L<1$ and all $x, y, z \in A$ and for scalar μ with absolute value 1 . Then there exists an unique \mathbb{C}-linear map $H: A \longrightarrow B$ such that

$$
\|f(x)-H(x)\| \leqslant \frac{1}{3-3 L} \varphi(x, x, x)
$$

for all $x \in A$. If furthermore, A and B are $*$-triple systems such that B is continuous and the following conditions hold:

$$
\begin{align*}
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| & \leqslant \varphi(x, x, x), \tag{9}\\
\left\|f\left\{x, y^{*}, z\right\}-\left\{f(x), f\left(y^{*}\right), f(z)\right\}\right\| & \leqslant \varphi(x, y, z), \tag{10}
\end{align*}
$$

for all $x, y, z \in A$, then the \mathbb{C}-linear map H is an $*$-homomorphism and triple homomorphism.

Proof. Define the complete generalized metric

$$
d(g, h)=\inf \{c \in[0, \infty]:\|g(x)-h(x)\| \leqslant c \varphi(x, x, x), \text { for all } x \in A\}
$$

on the space X consisting of all functions $g: A \longrightarrow B$. Since

$$
\begin{aligned}
\left\|\frac{1}{3} g(3 x)-\frac{1}{3} h(3 x)\right\| & \leqslant \frac{1}{3} d(g, h) \varphi(3 x, 3 x, 3 x) \\
& \leqslant L d(g, h) \varphi(x, x, x)
\end{aligned}
$$

for all $x \in A$; the mapping

$$
J: X \longrightarrow X \quad, \quad J g(x)=\frac{1}{3} g(3 x),
$$

for $g \in X$ and $x \in A$, is a contraction with Lipschitz constant at most L and so has an unique fixed point map $H: A \longrightarrow B$ such that

$$
\begin{aligned}
H(x) & =\lim _{n \xrightarrow{\infty}} 3^{-n} f\left(3^{n} x\right), \\
d(f, H) & \leqslant \frac{1}{1-L} d(f, J f) .
\end{aligned}
$$

Since $f(0)=0$, by substituting $z=0, \mu=1$ and replacing $3^{n} x$ and $3^{n} y$ instead of x and y respectively, in (8), one has

$$
\begin{aligned}
\|H(x+y)-H(x)-H(y)\| & =\lim _{n \longrightarrow \infty} 3^{-n} \| f\left(3^{n}(x+y)\right) \\
& -f\left(3^{n} x\right)-f\left(3^{n} y\right) \| \\
& \leqslant \lim _{n \longrightarrow \infty} 3^{-n} \varphi\left(3^{n} x, 3^{n} y, 0\right) \\
& =0 .
\end{aligned}
$$

So H is additive. On the other hands, similar to the proof of Theorem 2.2, one can obtains that $H(\mu x)=\mu H(x)$, for all scalar μ with absolute value 1 and all $x \in A$. This is a critical point for the proof of \mathbb{C}-linearity of H, as shown in the proof of Theorem 2.2. Also, by (8),

$$
\left\|\frac{1}{3} f(3 x)-f(x)\right\| \leqslant \frac{1}{3} \varphi(x, x, x)
$$

and so

$$
d(f, J f) \leqslant \frac{1}{3} .
$$

Hence

$$
\begin{aligned}
\|f(x)-H(x)\| & \leqslant \frac{1}{1-L} d(f, J f) \varphi(x, x, x) \\
& \leqslant \frac{1}{3-3 L} \varphi(x, x, x) .
\end{aligned}
$$

This finishes the proof of the first part of the theorem. If furthermore, A and B are $*$-triple systems that satisfy the conditions (9) and (10), then for each $x \in A$,

$$
\begin{aligned}
H\left(x^{*}\right) & =\lim _{n \longrightarrow} 3^{-n} f\left(3^{n} x^{*}\right)=\lim _{n \longrightarrow \infty} 3^{-n} f\left(3^{n} x\right)^{*} \\
& =\left(\lim _{n \longrightarrow} 3^{-n} f\left(3^{n} x\right)\right)^{*}=H(x)^{*},
\end{aligned}
$$

where the second equality holds by (9). Also

$$
\begin{aligned}
\| H\left\{x, y^{*}, z\right\} & -\left\{H(x), H\left(y^{*}\right), H(z)\right\} \| \\
& =\| \lim _{n} 3^{-3 n} f\left\{3^{n} x, 3^{n} y^{*}, 3^{n} z\right\} \\
& -\left\{\lim _{n} 3^{-n} f\left(3^{n} x\right), \lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} y^{*}\right), \lim _{n \longrightarrow} 3^{-n} f\left(3^{n} z\right)\right\} \| \\
& =\lim _{n \longrightarrow \infty} 3^{-3 n}\left\|f\left\{3^{n} x, 3^{n} y^{*}, 3^{n} z\right\}-\left\{f\left(3^{n} x\right), f\left(3^{n} y^{*}\right), f\left(3^{n} z\right)\right\}\right\| \\
& \leqslant \lim _{n \longrightarrow \infty} 3^{-3 n} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right) \\
& =0,
\end{aligned}
$$

where the second equality holds by continuity of B and the third equality holds by the condition (10). This finishes the proof of the second part of the theorem.

Theorem 3.2. Suppose that A and B are triple systems such that B is continuous and $f: A \longrightarrow B$ and $\varphi: A \times A \times A \longrightarrow[0, \infty)$ are mappings such that $f(0)=0$ and

$$
\begin{gather*}
\lim _{n \longrightarrow \infty} 8^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z\right)=0, \\
\| f\left(\frac{\mu x+\mu y}{2}+\mu z\right)+f\left(\frac{\mu x+\mu z}{2}+\mu y\right)+f\left(\frac{\mu y+\mu z}{2}+\mu x\right) \\
-2 \mu(f(x)+f(y)+f(z)) \| \leqslant \varphi(x, y, z), \tag{11}\\
\|f\{x, y, z\}-\{f(x), f(y), f(z)\}\| \leqslant \varphi(x, y, z), \tag{12}\\
\varphi\left(\frac{x}{2}, 0,0\right) \leqslant \frac{L}{2} \varphi(x, 0,0),
\end{gather*}
$$

for some $0 \leqslant L<1$ and all x, y, z in A. Then there exists an unique triple homomorphism $H: A \longrightarrow B$ such that for all $x \in A$,

$$
\|f(x)-H(x)\| \leqslant \frac{1}{1-L} \varphi(x, 0,0)
$$

Proof. Define the complete generalized metric d on X consisting of all functions $g: A \longrightarrow B$, by

$$
d(g, h)=\inf \{c \in[0, \infty]:\|g(x)-h(x)\| \leqslant c \varphi(x, 0,0), \text { for all } x \in A\}
$$

and consider the mapping $J: X \longrightarrow X$ via $J g(x)=2 g\left(\frac{x}{2}\right)$. Letting $\mu=1$ and $y=z=0$ in (11), we get

$$
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leqslant \varphi(x, 0,0)
$$

for all $x \in A$. Hence $d(f, J f) \leqslant 1$. Since J is a contraction map with Lipschitz constant at most L and $d(f, J f) \leqslant 1$, by Theorem 1.1 there exists a mapping $H: A \longrightarrow B$ such that for all $x \in A$,

$$
\begin{aligned}
H(x) & =\lim _{n \xrightarrow{\infty}} 2^{n} f\left(\frac{x}{2^{n}}\right) \\
\|f(x)-H(x)\| & \leqslant \frac{1}{1-L} \varphi(x, 0,0)
\end{aligned}
$$

It is enough to prove that H is \mathbb{C}-linear and triple homomorphism. Since, by (11),

$$
\begin{align*}
\| H\left(\frac{\mu x+\mu y}{2}+\mu z\right) & +H\left(\frac{\mu x+\mu z}{2}+\mu y\right)+H\left(\frac{\mu y+\mu z}{2}+\mu x\right) \\
& -2 \mu(H(x)+H(y)+H(z)) \| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z\right)=0 \tag{13}
\end{align*}
$$

by substituting $\mu=1$ and $y=z=0$ in (13) we have

$$
H\left(\frac{x}{2}\right)=\frac{1}{2} H(x),
$$

for all $x \in A$. So, if in (13), we set $\mu=1, y=-x$ and $z=0$, we obtain that $H(-x)=-H(x)$, for all $x \in A$.
Now, if in (13) we set $\mu=1, z=-y$ and then we replace x and y by $x+y$ and $x-y$ respectively, we obtain that

$$
H(x+y)=H(x)+H(y),
$$

i.e., H is additive. This allows that one can repeat the technique of Theorem 2.2 and conclude that H is \mathbb{C}-linear. Finally,

$$
\begin{aligned}
\| H\{x, y, z\} & -\{H(x), H(y), H(z)\}\|=\| \lim _{n \longrightarrow \infty} 8^{n} f\left\{2^{-n} x, y 2^{-n}, 2^{-n} z\right\} \\
& -\left\{\lim _{n \longrightarrow \infty} 2^{n} f\left(2^{-n} x\right), \lim _{n \longrightarrow} 2^{n} f\left(2^{-n} y\right), \lim _{n \longrightarrow \infty} 2^{n} f\left(2^{-n} z\right)\right\} \| \\
& =\lim _{n \longrightarrow \infty} 8^{n} \| f\left\{2^{-n} x, 2^{-n} y, 2^{-n} z\right\} \\
& -\left\{f\left(2^{-n} x\right), f\left(2^{-n} y\right), f\left(2^{-n} z\right)\right\} \| \\
& \leqslant \lim _{n \longrightarrow \infty} 8^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z\right) \\
& =0,
\end{aligned}
$$

where the second equality holds by continuity of B and the last inequality holds by (12).
By the same method one can prove the following corollary:
Corollary 3.3. Suppose that A and B are triple systems such that B is continuous and $f: A \longrightarrow B$ and $\varphi: A \times A \times A \longrightarrow[0, \infty)$ are mappings satisfying (11) and (12) such that

$$
\begin{gathered}
\lim _{n \longrightarrow \infty} 8^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=0 \\
\varphi(2 x, 0,0) \leqslant 2 L \varphi(x, 0,0)
\end{gathered}
$$

for some $0 \leqslant L<1$ and all x, y, z in A. Then there exists an unique triple homomorphism $H: A \longrightarrow B$ such that for all $x \in A$,

$$
\|f(x)-H(x)\| \leqslant \frac{L}{1-L} \varphi(x, 0,0)
$$

Proof. It is sufficient in the proof of the previous theorem, one defines $J g(x)=\frac{1}{2} g(2 x)$

Theorem 3.4. Suppose that A and B are triple systems such that B is continuous. If $f: A \longrightarrow B$ and $\varphi: A \times A \longrightarrow[0, \infty)$ are two mappings that satisfy the following conditions:

$$
\lim _{j \longrightarrow \infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)=0
$$

$$
\begin{gather*}
\|\mu f(x+y)-f(\mu x)-f(\mu y)\| \leqslant \varphi(x, y), \tag{14}\\
f\left(2^{n}\{x, y, z\}\right)=\left\{f\left(2^{n} x\right), f(y), f(z)\right\}, \tag{15}\\
\varphi(x, x) \leqslant 2 L \varphi\left(\frac{x}{2}, \frac{x}{2}\right),
\end{gather*}
$$

for some $0 \leqslant L<1$, all μ with absolute value 1 and all $x, y \in A$, then there exists an unique triple homomorphism $H: A \rightarrow B$ such that for all $x \in A$,

$$
\begin{equation*}
\|f(x)-H(x)\| \leqslant \frac{1}{2-2 L} \varphi(x, x) \tag{16}
\end{equation*}
$$

Proof. The proof of the first part of this theorem is similar to the proof of Theorem 2.1 of [10]. In fact, the generalized (complete) metric

$$
d(g, h)=\inf \{c \in[0, \infty]:\|g(x)-h(x)\| \leqslant c \varphi(x, x), \text { for all } x \in A\}
$$

on the space X consisting of all functions $g: A \longrightarrow B$, allow us to define the contraction map $J: X \longrightarrow X$ via $J g(x)=\frac{1}{2} g(2 x)$, for all $x \in A$. By Theorem 1.1, J has a fixed point function $H \in X$ that satisfies the conditions 1-4 of that theorem. Furthermore

$$
H(x)=\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

for all $x \in A$. So,

$$
\begin{aligned}
\|H(x+y)-H(x)-H(y)\| & =\lim _{n \longrightarrow \infty} 2^{-n} \| f\left(2^{n}(x+y)\right) \\
& -f\left(2^{n} x\right)-f\left(2^{n} y\right) \| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y\right) \\
& =0
\end{aligned}
$$

for all $x, y \in A$; that is, H is additive. In particular,

$$
\begin{equation*}
H(2 x)=2 H(x), \tag{17}
\end{equation*}
$$

for all $x \in A$. Now, by (14),

$$
\begin{aligned}
\|\mu H(2 x)-H(2 \mu x)\| & =\lim _{n \longrightarrow \infty} 2^{-n}\left\|\mu f\left(2^{n+1} x\right)-f\left(2^{n+1} \mu x\right)\right\| \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} x\right) \\
& =0
\end{aligned}
$$

Hence $\mu H(2 x)=H(2 \mu x)$ and so by (17), $\mu H(x)=H(\mu x)$, for all $x \in A$ and all μ with absolute value 1 . This implies that H is \mathbb{C}-linear. For the proof of (16), letting $\mu=1$ and $y=x$ in (14), we get

$$
\|f(2 x)-2 f(x)\| \leqslant \varphi(x, x)
$$

and so

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leqslant \frac{1}{2} \varphi(x, x)
$$

for all $x \in A$. Hence $d(f, J f) \leqslant \frac{1}{2}$ and so

$$
d(f, H) \leqslant \frac{1}{1-L} d(f, J f) \leqslant \frac{1}{2-2 L}
$$

This proves that the inequality (16) is satisfied. By a similar method to the proof of Theorem 2.1, one can see the uniqueness of H. Also, it follows from (15) that

$$
\begin{aligned}
H\{x, y, z\} & =\lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n}\{x, y, z\}\right) \\
& =\lim _{n \longrightarrow} 2^{-n}\left\{f\left(2^{n} x\right), f(y), f(z)\right\} \\
& =\lim _{n \longrightarrow \infty}\left\{2^{-n} f\left(2^{n} x\right), f(y), f(z)\right\} \\
& =\{H(x), f(y), f(z)\},
\end{aligned}
$$

for all x, y, z in A and so by linearity of H and trilinearity of the product on the triple systems A and B we have:

$$
\begin{aligned}
H\{x, y, z\} & =4^{-n} H\left\{x, 2^{n} y, 2^{n} z\right\} \\
& =4^{-n}\left\{H(x), f\left(2^{n} y\right), f\left(2^{n} z\right)\right\} \\
& =\left\{H(x), 2^{-n} f\left(2^{n} y\right), 2^{-n} f\left(2^{n} z\right)\right\},
\end{aligned}
$$

for all positive integer n and all $x, y, z \in A$. This implies the equality

$$
\begin{aligned}
H\{x, y, z\} & =\left\{H(x), \lim _{n \longrightarrow} 2^{-n} f\left(2^{n} y\right), \lim _{n \longrightarrow \infty} 2^{-n} f\left(2^{n} z\right)\right\} \\
& =\{H(x), H(y), H(z)\},
\end{aligned}
$$

for all $x, y, z \in A$. Thus, $H: A \longrightarrow B$ is a triple homomorphism satisfying (16), as desired.

Theorem 3.5. Assume that A and B are triple systems such that B is continuous. If $f: A \longrightarrow B$ and $\varphi: A \times A \times A \longrightarrow[0, \infty)$ are two mappings such that satisfy the following conditions:

$$
\begin{align*}
& \lim _{\longrightarrow} 2^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=0 \\
&\|\mu f(x+y)-f(\mu x)-f(\mu y)\| \leqslant \varphi(x, y, 0), \\
&\|f\{x, y, z\}-\{f(x), f(y), f(z)\}\| \leqslant \varphi(x, y, z), \tag{18}\\
& \varphi(x, x, x) \leqslant 2 L \varphi\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right),
\end{align*}
$$

for some $0 \leqslant L<1$ and for all scalar μ with absolute value 1 and all $x, y, z \in A$; then there exists an unique triple homomorphism $H: A \longrightarrow$ B such that for all $x \in A$,

$$
\|f(x)-H(x)\| \leqslant \frac{1}{2-2 L} \varphi(x, x, 0) .
$$

Proof. By a similar method of the proof of Theorem 3.4, one can show that there exists an unique \mathbb{C}-linear mapping $H: A \longrightarrow B$ via $H(x)=\lim _{n \longrightarrow} 2^{-n} f\left(2^{n} x\right)$ such that

$$
\|f(x)-H(x)\| \leqslant \frac{1}{2-2 L} \varphi(x, x, 0) .
$$

for all $x \in A$. It follows from (18) that

$$
\begin{aligned}
\| H\{x, y & y\}-\{H(x), H(y), H(z)\} \| \\
& =\lim _{n} 8^{-n}\left\|f\left\{2^{n} x, 2^{n} y, 2^{n} z\right\}-\left\{f\left(2^{n} x\right), f\left(2^{n} y\right), f\left(2^{n} z\right)\right\}\right\| \\
& \leqslant \lim _{n} 8^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right) \\
& \leqslant \lim _{n \longrightarrow \infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in A$ and so $H: A \longrightarrow B$ is a triple homomorphism.

References

[1] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224.
[3] R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249-266.
[4] H. Munthe-Kaas, G. R. W. Quispel, and A. Zanna, Application of symmetric spaces and Lie triple systems in numerical analysis, Tech. Report 217, Department of Informatics, University of Bergen, Norway, 2001.
[5] A. Najati, Stability of homomorphisms on $J B^{*}$-triples associated to a Cauchy-Jensen functional equation, J. Math. Ineq., 1 (2007), 83-103.
[6] Z. Páles, Generalized stability of the Cauchy functional equation, Aequations Math., 56(3) (1998), 222-232.
[7] C. Park, Approximate homomorphisms on $J B^{*}$-triples J. Math. Anal. Appl., 306 (2005), 375-381.
[8] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Appl., 2007 (2007), 1-15.
[9] C. Park, On an approximate automorphisms on a C^{*}-algebra, Proc. Amer. Math. Soc., 132 (2004), 1739-1745.
[10] C. Park and T. M. Rassias, Fixed points and stability of the Cauchy functional equations, Aust. J. Math. Anal. Appl., 6 (2009), 1-9.
[11] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.
[12] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130.
[13] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284.
[14] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[15] S. M. Ulam, A collection of the mathematical problems, Interscience Publ. New York, 1960.

Zahra Dehvari

Department of Mathematics
M.Sc of Mathematics

Yazd University
P.O. Box 89195-741

Yazd, Iran
E-mail: zahradehvary@yahoo.com

Seyed Mohammad Moshtaghioun

Department of Mathematics
Assistant Professor of Mathematics
Yazd University
P.O. Box 89195-741

Yazd, Iran
E-mail: moshtagh@yazd.ac.ir

[^0]: Received: December 2011; Accepted: September 2012

 * Corresponding author

