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1. Introduction and Preliminaries

In 1940, S. M. Ulam states a question concerning the stability of group
homomorphisms. In fact, for a group G1 and a metric group G2 with
metric d and for any given ε > 0, if there exists a δ > 0 such that for
any function h : G1 −→ G2 that satisfies the inequality

d(h(xy), h(x)h(y)) < δ, x, y ∈ G1,

there exists a homomorphisms H : G1 −→ G2 such that d(h(x),H(x)) <
ε for all x ∈ G1?
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Following this question, in [2], D. H. Hyers gave the first affirmative an-
swer to the Ulam’s question for linear mappings on Banach spaces. Then
T. M. Rassias [14] and P. Gǎvruta [1] and some other researchers, gen-
eralized the Hyers’s Theorem and gave some approaches of the stability
of Ulam-Hyers-Rassias problem. See for instance [6], [12] and [13].
In 2003, Radu in [11] used the following fixed point Theorem for the
proof of the stability of additive functional equation of Rassias [14]:

Theorem 1.1. Let (X, d) be a complete generalized metric space and let
J : X −→ X be a contraction map with a Lipschitz constant 0 6 L < 1.
Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) <∞ for all n > n0,

(2) the sequence {Jnx} converges to a fixed point x∗ of J ,

(3) x∗ is the unique fixed point of J in the set Y := {y ∈ X | d(Jn0x, y) < ∞},

(4) d(y, x∗) 6 1
1−Ld(y, Jy) for all y ∈ Y .

Following the Radu’s paper, some authors interested the same method
in the stability problems. For example, Park and Rassias in [10] and [8]
used this method for solving the Cauchy and Cauchy-Jensen functional
equations. Here, by using the Radu’s method of fixed point, we first prove
some extensions of the stability of Cauchy functional equations of [10]
and then the stability of functional equations in triple systems.

2. Stability of the Cauchy Functional Equations

In [10], the authors proved that for Banach algebras A and B, if f :
A −→ B is a mapping for which there exists a function ϕ : A × A −→
[0,∞) that satisfy the following conditions:
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lim
j−→∞

2−jϕ(2jx, 2jy) = 0,

‖µf(x+ y)− f(µx)− f(µy)‖ 6 ϕ(x, y),

‖f(xy)− f(x)f(y)‖ 6 ϕ(x, y),

ϕ(2x, 2x) 6 2Lϕ(x, x),

for some 0 6 L < 1 and for all scalar µ with absolute value 1 and all
x, y ∈ A; then there exists a unique homomorphism H : A −→ B such
that for all x ∈ A, ‖f(x)−H(x)‖ 6 1

2−2Lϕ(x, x). That is, H is a solution
of the Cauchy functional equation

µf(x+ y)− f(µx)− f(µy) = 0,

that satisfies the homomorphism equation f(xy)− f(x)f(y) = 0. Here,
we will obtain some refinement of it on the product algebras.

Theorem 2.1. Let G be an additive group and F be a Banach space.
If f : G×G −→ F and ϕ : G×G −→ [0,∞) are mappings such that for
all a, b, c ∈ G the following conditions hold:

‖f((a, b) + (c, d))− f(a, b)− f(c, d)‖ 6 ϕ(a+ c, b+ d), (1)

‖f(a, b)− f(b, a)‖ 6 ϕ(a, b),

ϕ(2a, 2b) 6 2Lϕ(a, b), (2)

for some 0 6 L < 1, then the map

T : G×G −→ F , T (a, b) = lim
n−→∞

2−nf(2na, 2nb) , a, b ∈ G,

is the unique additive map such that for all a, b ∈ G,

‖f(a, b)− T (a, b)‖ 6
L

1− L
ϕ(a, b),

T (a, b) = T (b, a).
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Proof. Consider X as the set of all functions g : G × G −→ F and
define a generalized metric d on X by

d(g, h) := inf{c ∈ [0,∞] : ‖g(a, b)−h(a, b)‖ 6 c ϕ(a, b), for all a, b ∈ G}.

Then, in fact, d is a complete generalized metric on X. Now define
J : X −→ X by Jg(a, b) := 1

2g(2a, 2b). since

‖1
2
g(2a, 2b)− 1

2
h(2a, 2b)‖ 6

1
2
d(g, h)ϕ(2a, 2b)

6 Ld(g, h)ϕ(a, b),

and by (1),

‖f(2a, 2b)− 2f(a, b)‖ 6 ϕ(2a, 2b) 6 2Lϕ(a, b),

for all g, h ∈ X and all a, b ∈ G; J is a contraction with constant at
most L, such that d(f, Jf) 6 L and so by Theorem 1.1, J has a unique
fixed point function T in Y = {g ∈ X : d(f, g) <∞}. Furthermore,

d(f, T ) 6
1

1− L
d(f, Jf) 6

L

1− L
,

T (a, b) = lim
n−→∞

2−nf(2na, 2nb),

for all a, b ∈ G. So for all a, b ∈ G,

‖T (a, b)− T (b, a)‖ = lim
n−→∞

2−n‖f(2na, 2nb)− f(2nb, 2na)‖

6 lim
n−→∞

2−nϕ(2na, 2nb) = 0,

where the last equality holds by (2). This shows that T (a, b) = T (b, a),
for all a, b ∈ G.
For the proof of additivity of T , it is sufficient to note that

‖T ((a, b) + (c, d))− T (a, b)− T (c, d)‖
= lim

n−→∞
2−n‖f((2na, 2nb) + (2nc, 2nd))

− f(2na, 2nb)− f(2nc, 2nd)‖
6 lim

n−→∞
2−nϕ(2n(a+ c), 2n(b+ d)) = 0.
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Finally, we will prove that T is unique. If H is an additive function on
G×G, such that

‖f(a, b)−H(a, b)‖ 6
L

1− L
ϕ(a, b),

for all a, b ∈ G, then d(f,H) 6 L
1−L < ∞ and so H ∈ Y . On the other

hands,

JH(a, b) =
1
2
H(2a, 2b) = H(a, b).

This shows that H is a fixed point of J in Y and so H = T , thanks to
the uniqueness of fixed point of J in Y . �
As a corollary, we have the following refinement of Theorem 2.1 of [10].

Theorem 2.2. Suppose that A and B are two algebras such that B is
also a Banach space. If f : A × A −→ B and ϕ : A × A −→ [0,∞) are
two mappings that satisfy the following conditions:

‖µf((a, b) + (c, d))− f(µa, µb)− f(µc, µd)‖ 6 ϕ(a+ c, b+ d), (3)

‖f(a, b)− f(b, a)‖ 6 ϕ(a, b),

‖f((ac, bd))− f(a, b)f(c, d)‖ 6 ϕ(ac, bd), (4)

ϕ(2a, 2b) 6 2Lϕ(a, b). (5)

for some 0 6 L < 1 and all a, b, c, d ∈ A and all scalar µ with absolute
value 1,then there exists a unique algebraic homomorphism H : A×A −→ B

such that for all a, b ∈ A,

‖f(a, b)−H(a, b)‖ 6
L

1− L
ϕ(a, b), (6)

H(a, b) = H(b, a).

Proof. By Theorem 2.1, the additive function H : A×A −→ B defined by

H(a, b) = lim
n−→∞

2−nf(2na, 2nb), a, b ∈ A,
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is the unique additive map satisfying the above conditions (6). We only
need to prove that it is an algebraic homomorphism. By hypothesis (3),
one has

‖µf(2n+1a, 2n+1b)− 2f(2nµa, 2nµb)‖ 6 ϕ(2n+1a, 2n+1b),

and

‖f(2n+1µa, 2n+1µb)− 2f(2nµa, 2nµb)‖ 6 ϕ(2n+1µa, 2n+1µb).

Thus

‖µH(2a, 2b) − H(2µa, 2µb)‖
= lim

n−→∞
2−n‖µf(2n+1a, 2n+1b)− f(2n+1µa, 2n+1µb)‖

6 lim
n−→∞

2−n(‖µf(2n+1a, 2n+1b)− 2f(2nµa, 2nµb)‖

+ ‖f(2n+1µa, 2n+1µb)− 2f(2nµa, 2nµb)‖)
6 lim

n−→∞
2−nϕ(2n+1a, 2n+1b)

+ lim
n−→∞

2−nϕ(2n+1µa, 2n+1µb) = 0,

where the last equality holds by (5). So H(2µa, 2µb) = µH(2a, 2b).
Since H(2a, 2b) = 2H(a, b), for all a, b ∈ A, we have

H(µa, µb) = µH(a, b),

for all a, b ∈ A and all scalar µ with absolute value 1.
Now, for the C-linearity of H, assume that λ ∈ C is an arbitrary non
zero scalar and M is an integer greater than 4|λ|. Then | λ

M | < 1
4 <

1− 2
3 = 1

3 and so by Theorem 1 of [3], there are three scalars µ1, µ2, µ3

with absolute value 1 such that 3 λ
M = µ1 + µ2 + µ3.

Also, for all x ∈ A×A, by additivity of H, we have

H(x) = H(3
1
3
x) = 3H(

1
3
x).

So, H(1
3x) = 1

3H(x), for all x ∈ A×A, and then



FIXED POINT METHODS IN THE STABILITY... 87

H(λx) = H(
M

3
3
λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x+ µ2x+ µ3x) =

M

3
(H(µ1x) +H(µ2x) +H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) = λH(x).

Finally, the following assertion shows that H is an algebraic homomor-
phism. In fact, for each (a, b) and (c, d) in A× A the relation (4) guar-
anties that

‖H((a, b)(c, d))−H(a, b)H(c, d)‖
=

‖ lim
n−→∞

2−nf(2nac, 2nbd)− lim
n−→∞

4−nf(2na, 2nb)f(2nc, 2nd)‖
= lim

n−→∞
4−n‖f(4nac, 4nbd)− f(2na, 2nb)f(2nc, 2nd)‖

6 lim
n−→∞

4−nϕ(4nac, 4nbd) = 0. �

The final Theorem of this section solves the additive functional equation,
for groups.

Theorem 2.3. Let G be an additive group and E be a Banach space.
If f : G −→ E and ϕ : G × G −→ [0,∞) are mappings that satisfy the
conditions

lim
n−→∞

2−nϕ(2nx, 2ny) = 0 , sup
x∈G

ϕ(x, x) <∞,

‖f(x+ y)− f(x)− f(y)‖ 6 ϕ(x, y),

then there exists an unique additive function T : G −→ E such that

sup
x∈G

‖f(x)− T (x)‖ 6 sup
x∈G

ϕ(x, x).

Proof. Suppose that X is the set of all functions g : G −→ E and define
a complete generalized metric d on X by

d(g, h) = sup
x∈G

‖g(x)− h(x)‖.
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If we define the mapping J : X −→ X via Jg(x) = 1
2g(2x), then a

straightforward computation shows that J is a contraction with Lips-
chitz constant L at most 1

2 such that

d(f, Jf) 6
1
2

sup
x∈G

ϕ(x, x) <∞.

So by generalized Banach’s contraction Theorem 1.1, J has a fixed point
map T : G −→ E that satisfies the conditions 1-4 of that theorem. Since
by hypothesis,

‖T (x+ y)− T (x)− T (y)‖ = lim
n−→∞

2−n‖f(2nx, 2ny)− f(2nx)− f(2ny)‖

6 lim
n−→∞

2−nϕ(2nx, 2ny)

= 0,

the function T is additive. Also by Theorem 1.1,

d(f, T ) 6
1

1− L
d(f, Jf)

6 2d(f, Jf)

6 sup
x∈G

ϕ(x, x). (7)

The uniqueness of the additive function T satisfying the above condition
(7), is completely similar to the uniqueness part of Theorem 2.1. �

3. Cauchy Functional Equations in Triple Sys-
tems

A triple system is a vector space V together with a trilinear mapping
V × V × V −→ V , called a triple product, and usually denoted by
{., ., .}. A triple system V is called continuous if its triple product {., ., .}
is separately continuous, and is called ∗-triple system, if V admits an
involution ∗. The most important examples of triple systems are Lie
triple systems and Jordan triple systems (see for instance, [4] and [7]).
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Also every JB∗-triple is an ∗-triple system [7]. We remember that a
complex Banach space J with a continuous triple product {., ., .} on J

is a JB∗-triple, if it is bilinear and symmetric in the outer variables
and conjugate linear in the middle variable, and satisfy the following
conditions:

(1) L(a, b){x, y, z} = {L(a, b)x, y, z}−{x, L(a, b)y, z}+{x, y, L(a, b)z},
for all a, b, x, y, z ∈ J ; where the operator L(a, b) : J −→ J is
defined by L(a, b)(x) = {a, b, x},

(2) The operator L(a, b) : J −→ J is an hermitian operator with non-
negative spectrum,

(3) ‖{x, x, x}‖ = ‖a‖3 for all a ∈ J .

In [7], the author proved the following Theorem 3.1, which solved the
Cauchy functional equation in JB∗-triples. Here, by using the familiar
generalized Banach’s contraction Theorem, we improve Theorem 1 of [3]
and we give another proof for it.
We note that, as usual, a C-linear map H : A −→ B between two
triple systems A and B is called triple homomorphism if it satisfies the
fallowing condition

H{x, y, z} = {H(x),H(y),H(z)},

for all x, y, z ∈ A. We need this definition in the rest of this article.

Theorem 3.1. Suppose that A is a normed space and B is a Banach
space and f : A −→ B and ϕ : A×A×A −→ [0,∞) are mappings such
that f(0) = 0 and

lim
n−→∞

3−nϕ(3nx, 3ny, 3nz) = 0,

ϕ(3x, 3x, 3x) 6 3Lϕ(x, x, x),

‖f(µx+ µy + µz)− µf(x)− µf(y)− µf(z)‖ 6 ϕ(x, y, z), (8)
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for some 0 6 L < 1 and all x, y, z ∈ A and for scalar µ with absolute
value 1. Then there exists an unique C-linear map H : A −→ B such
that

‖f(x)−H(x)‖ 6
1

3− 3L
ϕ(x, x, x),

for all x ∈ A. If furthermore, A and B are ∗-triple systems such that B
is continuous and the following conditions hold:

‖f(x∗)− f(x)∗‖ 6 ϕ(x, x, x), (9)

‖f{x, y∗, z} − {f(x), f(y∗), f(z)}‖ 6 ϕ(x, y, z), (10)

for all x, y, z ∈ A, then the C-linear map H is an ∗-homomorphism and
triple homomorphism.

Proof. Define the complete generalized metric

d(g, h) = inf{c ∈ [0,∞] : ‖g(x)− h(x)‖ 6 cϕ(x, x, x), for all x ∈ A}

on the space X consisting of all functions g : A −→ B. Since

‖1
3
g(3x)− 1

3
h(3x)‖ 6

1
3
d(g, h)ϕ(3x, 3x, 3x)

6 Ld(g, h)ϕ(x, x, x),

for all x ∈ A; the mapping

J : X −→ X , Jg(x) =
1
3
g(3x),

for g ∈ X and x ∈ A, is a contraction with Lipschitz constant at most
L and so has an unique fixed point map H : A −→ B such that

H(x) = lim
n−→∞

3−nf(3nx),

d(f,H) 6
1

1− L
d(f, Jf).
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Since f(0) = 0, by substituting z = 0, µ = 1 and replacing 3nx and 3ny

instead of x and y respectively, in (8), one has

‖H(x+ y)−H(x)−H(y)‖ = lim
n−→∞

3−n‖f(3n(x+ y))

− f(3nx)− f(3ny)‖
6 lim

n−→∞
3−nϕ(3nx, 3ny, 0)

= 0.

So H is additive. On the other hands, similar to the proof of Theorem
2.2, one can obtains that H(µx) = µH(x), for all scalar µ with absolute
value 1 and all x ∈ A. This is a critical point for the proof of C-linearity
of H, as shown in the proof of Theorem 2.2. Also, by (8),

‖1
3
f(3x)− f(x)‖ 6

1
3
ϕ(x, x, x),

and so

d(f, Jf) 6
1
3
.

Hence

‖f(x)−H(x)‖ 6
1

1− L
d(f, Jf)ϕ(x, x, x)

6
1

3− 3L
ϕ(x, x, x).

This finishes the proof of the first part of the theorem. If furthermore,
A and B are ∗-triple systems that satisfy the conditions (9) and (10),
then for each x ∈ A,

H(x∗) = lim
n−→∞

3−nf(3nx∗) = lim
n−→∞

3−nf(3nx)∗

= ( lim
n−→∞

3−nf(3nx))∗ = H(x)∗,
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where the second equality holds by (9). Also

‖H{x, y∗, z} − {H(x),H(y∗),H(z)}‖
= ‖ lim

n−→∞
3−3nf{3nx, 3ny∗, 3nz}

− { lim
n−→∞

3−nf(3nx), lim
n−→∞

3−nf(3ny∗), lim
n−→∞

3−nf(3nz)}‖

= lim
n−→∞

3−3n‖f{3nx, 3ny∗, 3nz} − {f(3nx), f(3ny∗), f(3nz)}‖

6 lim
n−→∞

3−3nϕ(3nx, 3ny, 3nz)

= 0,

where the second equality holds by continuity of B and the third equal-
ity holds by the condition (10). This finishes the proof of the second
part of the theorem. �

Theorem 3.2. Suppose that A and B are triple systems such that B is
continuous and f : A −→ B and ϕ : A×A×A −→ [0,∞) are mappings
such that f(0) = 0 and

lim
n−→∞

8nϕ(2−nx, 2−ny, 2−nz) = 0,

‖f(
µx+ µy

2
+ µz) + f(

µx+ µz

2
+ µy) + f(

µy + µz

2
+ µx)

−2µ(f(x) + f(y) + f(z))‖ 6 ϕ(x, y, z), (11)

‖f{x, y, z} − {f(x), f(y), f(z)}‖ 6 ϕ(x, y, z), (12)

ϕ(
x

2
, 0, 0) 6

L

2
ϕ(x, 0, 0),

for some 0 6 L < 1 and all x, y, z in A. Then there exists an unique
triple homomorphism H : A −→ B such that for all x ∈ A,

‖f(x)−H(x)‖ 6
1

1− L
ϕ(x, 0, 0).
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Proof. Define the complete generalized metric d on X consisting of all
functions g : A −→ B, by

d(g, h) = inf{c ∈ [0,∞] : ‖g(x)− h(x)‖ 6 cϕ(x, 0, 0), for all x ∈ A},

and consider the mapping J : X −→ X via Jg(x) = 2g(x
2 ). Letting

µ = 1 and y = z = 0 in (11), we get

‖2f(
x

2
)− f(x)‖ 6 ϕ(x, 0, 0),

for all x ∈ A. Hence d(f, Jf) 6 1. Since J is a contraction map with
Lipschitz constant at most L and d(f, Jf) 6 1, by Theorem 1.1 there
exists a mapping H : A −→ B such that for all x ∈ A,

H(x) = lim
n−→∞

2nf(
x

2n
),

‖f(x)−H(x)‖ 6
1

1− L
ϕ(x, 0, 0).

It is enough to prove thatH is C-linear and triple homomorphism. Since,
by (11),

‖H(
µx+ µy

2
+ µz) + H(

µx+ µz

2
+ µy) +H(

µy + µz

2
+ µx)

− 2µ(H(x) +H(y) +H(z))‖

6 lim
n−→∞

2nϕ(2−nx, 2−ny, 2−nz) = 0, (13)

by substituting µ = 1 and y = z = 0 in (13) we have

H(
x

2
) =

1
2
H(x),

for all x ∈ A. So, if in (13), we set µ = 1, y = −x and z = 0, we obtain
that H(−x) = −H(x), for all x ∈ A.
Now, if in (13) we set µ = 1, z = −y and then we replace x and y by
x+ y and x− y respectively, we obtain that

H(x+ y) = H(x) +H(y),
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i.e., H is additive. This allows that one can repeat the technique of
Theorem 2.2 and conclude that H is C-linear. Finally,

‖ H{x, y, z} − {H(x),H(y),H(z)}‖ = ‖ lim
n−→∞

8nf{2−nx, y2−n, 2−nz}

− { lim
n−→∞

2nf(2−nx), lim
n−→∞

2nf(2−ny), lim
n−→∞

2nf(2−nz)}‖

= lim
n−→∞

8n‖f{2−nx, 2−ny, 2−nz}

− {f(2−nx), f(2−ny), f(2−nz)}‖
6 lim

n−→∞
8nϕ(2−nx, 2−ny, 2−nz)

= 0,

where the second equality holds by continuity of B and the last inequal-
ity holds by (12). �
By the same method one can prove the following corollary:

Corollary 3.3. Suppose that A and B are triple systems such that B is
continuous and f : A −→ B and ϕ : A×A×A −→ [0,∞) are mappings
satisfying (11) and (12) such that

lim
n−→∞

8−nϕ(2nx, 2ny, 2nz) = 0,

ϕ(2x, 0, 0) 6 2Lϕ(x, 0, 0),

for some 0 6 L < 1 and all x, y, z in A. Then there exists an unique
triple homomorphism H : A −→ B such that for all x ∈ A,

‖f(x)−H(x)‖ 6
L

1− L
ϕ(x, 0, 0).

Proof. It is sufficient in the proof of the previous theorem, one defines
Jg(x) = 1

2g(2x) �.

Theorem 3.4. Suppose that A and B are triple systems such that B is
continuous. If f : A −→ B and ϕ : A× A −→ [0,∞) are two mappings
that satisfy the following conditions:

lim
j−→∞

2−jϕ(2jx, 2jy) = 0,
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‖µf(x+ y)− f(µx)− f(µy)‖ 6 ϕ(x, y), (14)

f(2n{x, y, z}) = {f(2nx), f(y), f(z)}, (15)

ϕ(x, x) 6 2Lϕ(x
2 ,

x
2 ),

for some 0 6 L < 1, all µ with absolute value 1 and all x, y ∈ A, then
there exists an unique triple homomorphism H : A → B such that for
all x ∈ A,

‖f(x)−H(x)‖ 6
1

2− 2L
ϕ(x, x). (16)

Proof. The proof of the first part of this theorem is similar to the proof
of Theorem 2.1 of [10]. In fact, the generalized (complete) metric

d(g, h) = inf{c ∈ [0,∞] : ‖g(x)− h(x)‖ 6 c ϕ(x, x), for all x ∈ A},

on the space X consisting of all functions g : A −→ B, allow us to define
the contraction map J : X −→ X via Jg(x) = 1

2g(2x), for all x ∈ A.
By Theorem 1.1, J has a fixed point function H ∈ X that satisfies the
conditions 1-4 of that theorem. Furthermore

H(x) = lim
n−→∞

2−nf(2nx),

for all x ∈ A. So,

‖H(x+ y)−H(x)−H(y)‖ = lim
n−→∞

2−n‖f(2n(x+ y))

− f(2nx)− f(2ny)‖
6 lim

n−→∞
2−nϕ(2nx, 2ny)

= 0,

for all x, y ∈ A; that is, H is additive. In particular,

H(2x) = 2H(x), (17)
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for all x ∈ A. Now, by (14),

‖µH(2x)−H(2µx)‖ = lim
n−→∞

2−n‖µf(2n+1x)− f(2n+1µx)‖

6 lim
n−→∞

2−nϕ(2nx, 2nx)

= 0.

Hence µH(2x) = H(2µx) and so by (17), µH(x) = H(µx), for all x ∈ A
and all µ with absolute value 1. This implies that H is C-linear. For
the proof of (16), letting µ = 1 and y = x in (14), we get

‖f(2x)− 2f(x)‖ 6 ϕ(x, x),

and so
‖f(x)− 1

2
f(2x)‖ 6

1
2
ϕ(x, x),

for all x ∈ A. Hence d(f, Jf) 6 1
2 and so

d(f,H) 6
1

1− L
d(f, Jf) 6

1
2− 2L

.

This proves that the inequality (16) is satisfied. By a similar method
to the proof of Theorem 2.1, one can see the uniqueness of H. Also, it
follows from (15) that

H{x, y, z} = lim
n−→∞

2−nf(2n{x, y, z})

= lim
n−→∞

2−n{f(2nx), f(y), f(z)}

= lim
n−→∞

{2−nf(2nx), f(y), f(z)}

= {H(x), f(y), f(z)},

for all x, y, z in A and so by linearity of H and trilinearity of the product
on the triple systems A and B we have:

H{x, y, z} = 4−nH{x, 2ny, 2nz}
= 4−n{H(x), f(2ny), f(2nz)}
= {H(x), 2−nf(2ny), 2−nf(2nz)},
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for all positive integer n and all x, y, z ∈ A. This implies the equality

H{x, y, z} = {H(x), lim
n−→∞

2−nf(2ny), lim
n−→∞

2−nf(2nz)}

= {H(x),H(y),H(z)},

for all x, y, z ∈ A. Thus, H : A −→ B is a triple homomorphism
satisfying (16), as desired. �

Theorem 3.5. Assume that A and B are triple systems such that B
is continuous. If f : A −→ B and ϕ : A × A × A −→ [0,∞) are two
mappings such that satisfy the following conditions:

lim
j−→∞

2−nϕ(2nx, 2ny, 2nz) = 0,

‖µf(x+ y)− f(µx)− f(µy)‖ 6 ϕ(x, y, 0),

‖f{x, y, z} − {f(x), f(y), f(z)}‖ 6 ϕ(x, y, z), (18)

ϕ(x, x, x) 6 2Lϕ(x
2 ,

x
2 ,

x
2 ),

for some 0 6 L < 1 and for all scalar µ with absolute value 1 and all
x, y, z ∈ A; then there exists an unique triple homomorphism H : A −→
B such that for all x ∈ A,

‖f(x)−H(x)‖ 6
1

2− 2L
ϕ(x, x, 0).

Proof. By a similar method of the proof of Theorem 3.4, one can
show that there exists an unique C-linear mapping H : A −→ B via
H(x) = lim

n−→∞
2−nf(2nx) such that

‖f(x)−H(x)‖ 6
1

2− 2L
ϕ(x, x, 0).

for all x ∈ A. It follows from (18) that
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‖H{x, y, z} − {H(x),H(y),H(z)}‖
= lim

n−→∞
8−n‖f{2nx, 2ny, 2nz} − {f(2nx), f(2ny), f(2nz)}‖

6 lim
n−→∞

8−nϕ(2nx, 2ny, 2nz)

6 lim
n−→∞

2−nϕ(2nx, 2ny, 2nz) = 0,

for all x, y, z ∈ A and so H : A −→ B is a triple homomorphism. �
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