Journal of Mathematical Extension Vol. 6, No. 4, (2012), 1-9

New Topologies on the Rings of Continuous Functions

F. Manshoor

Islamic Azad University-Abadan Branch

Abstract. Two new topologies are defined on C(X). These topologies make C(X) to be a zero-dimensional (completely regular) Hausdorff space. C(X) endowed by these topologies is denoted by $C_o(X)$ and $C_{o^{-1}}(X)$. The relations between X, $C_o(X)$ and $C_{o^{-1}}(X)$ are studied and closedness of z-ideals and maximal ideals are investigated in $C_o(X)$ and $C_{o^{-1}}(X)$.

AMS Subject Classification: 54C40

Keywords and Phrases: C(X), closed maximal ideal, strongly pseudocompact

1. Introduction

In this paper, X assumed to be completely regular Hausdorff space and $C(X)(C^*(X))$ stands for the ring of all real valued (bounded) continuous) functions on X. Whenever $C(X) = C^*(X)$, we call X a pseudocompact space. An ideal I in C(X) is said to be a z-ideal if $Z(f) \subseteq Z(g)$, $f \in I$ and $g \in C(X)$ imply that $g \in I$, where $Z(f) = \{x \in X : f(x) = 0\}$. Equivalently, I is a z-ideal if $M_f \subseteq I$ for each $f \in I$, where M_f is intersection of all maximal ideals containing f, see [2] and [5,4]. Therefore every maximal ideal is a z-ideal. A space X is called a P-space if every G_{δ} -set (every zero set) in X is open and it is called zero-dimensional if it contains a base of closed-open sets.

In this article we define two topologies on C(X) and C(X) endowed by these topologies denote by $C_o(X)$ and $C_{o^{-1}}(X)$. We show that these

Received: April 2012; Accepted: November 2012

spaces are Hausdorff, completely regular and zero-dimensional spaces. We study the relations between topological properties of the space X, $C_o(X)$ and $C_{o^{-1}}(X)$. For example we have shown that X is a P-space if and only if $C_o(X)$ is discrete, and X is pseudocompact if and only if the set of units of C(X) (those members u of C(X) with $Z(u) = \emptyset$) is a discrete subspace of $C_{o^{-1}}(X)$. Finally we have investigated the closed ideals of $C_o(X)$ and $C_{o^{-1}}(X)$ and we observed that z-ideals and maximal ideals are closed in $C_o(X)$ and z-ideals are open in $C_{o^{-1}}(X)$ as well. We have also observed that real maximal ideals are closed in $C_{o^{-1}}(X)$ and it turns out that whenever X is pseudocompact then every maximal ideals is closed in $C_{o^{-1}}(X)$ and whenever X is normal, the converse is also true. For the definition of real maximal ideals and undefined terms and notations, the reader is referred to [4].

2. $C_o(X)$ and $C_{o^{-1}}(X)$

Several topologies are defined on C(X) and are studied by topologists, such as pointwise convergence which C(X) considered as the subspace of \mathbb{R}^X with product topology [1], compact open topology or uniform topology [6], *m*-topology which is finer than uniform topology [4] and [5] and many other topologies on C(X), for example see [3]. Here we introduce two new topologies on C(X).

For each $f \in C(X)$ and each open subset G in X, such that $Z(f) \subseteq G$, we define

$$B(f,G) = \{g \in C(X) : G_f^c \subseteq Z(f-g)\},\$$

where $G_f^c = Z(f) \cup G^c$.

It is evident that the collection $\{B(f,G): G \text{ is open in } X, \text{ and } Z(f) \subseteq G\}$ is the base for the neighborhood system at f, for each $f \in C(X)$. In fact $f \in B(f,G)$, for all open set G which $Z(f) \subseteq G$, and $B(f,G \cap H) \subseteq$ $B(f,G) \cap B(f,H)$, for all open sets G, H such that $Z(f) \subseteq G$ and $Z(f) \subseteq H$. Finally for open set G that $Z(f) \subseteq G$, whenever $g \in B(f,G)$, then $B(g,G) \subseteq B(f,G)$. We call the topology generated by this base, open-topology and C(X) endowed with this topology denotes by $C_o(X)$. To introduce another topology on C(X), let r be a positive rational number, and $f \in C(X)$. We consider the set $G_{r,f} = f^{-1}((-r,+r))$, and define

$$B(f, G_{r,f}) = \{ g \in C(X) : G_{r_f}^c \subseteq Z(f - g) \},\$$

where $G_{r_f}^c = Z(f) \cup G_{r,f}^c$.

The collection $\{B(f, G_{r,f}) : r \in \mathbb{Q}^+\}$ is also the base for neighborhood system at f, for each $f \in C(X)$. In fact $f \in B(f, G_{r,f})$, for all $r \in \mathbb{Q}^+$, $B(f, G_{r,f}) \cap B(f, G_{s,f}) = B(f, G_{r,f})$, for all $r, s \in \mathbb{Q}^+$ such that $r \leq s$, and finally for $r \in \mathbb{Q}^+$, whenever $g \in B(f, G_{r,f})$, then $B(g, G_{r,g}) \subseteq$ $B(f, G_{r,f})$, for in this case $G_{r,f}^c \subseteq G_{r,g}^c$. We call the topology generated by this base, invers open-topology and C(X) endowed with this topology denotes by $C_{o^{-1}}(X)$.

Proposition 2.1. The following statements hold:

- (a) $C_o(X)$ and $C_{o^{-1}}(X)$ are Hausdorff spaces.
- (b) $C_o(X)$ and $C_{o^{-1}}(X)$ are zero-dimensional spaces.
- (c) $C_o(X)$ and $C_{o^{-1}}(X)$ are completely regular spaces.

Proof. We prove the properties for $C_{o^{-1}}(X)$, the proof for $C_o(X)$ is similar. To prove (a) let $f, g \in C(X)$ and $f \neq g$. There exists $x_0 \in X$, such that $f(x_0) \neq g(x_0)$. Now consider three cases:

Case 1: $x_0 \notin Z(f) \cup Z(g)$. Then there exists $i \in \mathbb{Q}^+$ such that $x_0 \notin f^{-1}((-i,i))$ and $x_0 \notin g^{-1}((-i,i))$. Hence $x_0 \in G_{i_f}^c \cap G_{i_g}^c$, and therefore $B(f, G_{i,f}) \cap B(g, G_{i,g}) = \phi$.

Case 2: $x_0 \in Z(g) \setminus Z(f)$. Then there exists $i \in \mathbb{Q}^+$ such that $x_0 \notin f^{-1}((-i,i))$. Hence $x_0 \in G_{i_f}^c \cap G_{i_g}^c$, and therefore $B(f,G_{i,f}) \cap B(g,G_{i,g}) = \phi$.

Case 3: $x_0 \in Z(f) \setminus Z(g)$. This is similar to case 2.

To prove (b), it is sufficient to show that $B(f, G_{r,f})$ is closed, for all $f \in C(X)$ and $r \in \mathbb{Q}^+$. Let $g \notin B(f, G_{r,f})$, then there exists $x_0 \in G_{r_f}^c$ such that $g(x_0) \neq f(x_0)$. Now consider two cases:

Case 1: $x_0 \notin Z(g)$. Then there exists $i \in \mathbb{Q}^+$ such that $x_0 \notin g^{-1}((-i,i))$. Hence $x_0 \in G^c_{r_f} \cap G^c_{i_g}$, and therefore $B(g,G_{i,g}) \subseteq B(f,G_{r,f})^c$.

Case 2: $x_0 \in Z(g)$. This implies that $x_0 \in G_{r_f}^c \cap G_{r_g}^c$ and therefore $B(g, G_{r,g}) \subseteq B(f, G_{r,f})^c$.

Finally it is clear that part (b) implies part(c). \Box

One of the our goals is to find the relationship between topological structures of the spaces X, $C_o(X)$ and $C_{o^{-1}}(X)$. For this purpose, we give the following propositions.

Proposition 2.2. X is a P-space if and only if $C_o(X)$ is discrete.

Proof. Let X be a P-space and $f \in C(X)$. Then Z(f) is an open set in X. Take G = Z(f), hence $G_f^c = Z(f) \cup Z(f)^c = X$. Therefore $B(f,G) = \{f\}$ and this means that $C_o(X)$ is discrete.

Conversely, suppose that $C_o(X)$ is discrete and Z(f) is a zeroset in X. Then there exists open subset G of X such that $Z(f) \subseteq G$ and $B(f,G) = \{f\}$. We claim that Z(f) = G. For the otherwise, there exists $t \in G \setminus Z(f)$. Hence $t \notin G_f^c$. But G_f^c is closed and X is a completely regular space, therefore there exists $g \in C(X)$ such that g(t) = 0 and $g(G_f^c) = \{1\}$. Then $G_f^c \subseteq Z(fg - f)$, thus $fg \in B(f,G)$. But $fg \neq f$ and this is a contradiction. \Box

Proposition 2.3. X is connected if and only if every nonzero isolated point in $C_o(X)$ is a unit in $C_o(X)$.

Proof. Let X is connected and $f \in C_o(X)$ is a nonzero isolated point. Then Z(f) is open in $C_o(X)$, by the proof of Proposition 2.2. Thus Z(f) is an open-closed subset of X, therefore $Z(f) = \phi$, i.e., f is a unit.

Conversely, suppose that f is a idempotent of C(X). Then Z(f) is an open subset in X, for $Z(f) = f^{-1}((-1,+1))$. Hence f is is isolated in $C_o(X)$. Therefore f = 0 or f = 1, i.e., X is connected, by [4]. \Box

In the following proposition, U(X) is the set of all units of C(X).

Proposition 2.4. The following statements hold:

(a) X is pseudocompact space if and only if U(X) is a discrete subspace of $C_{o^{-1}}(X)$.

(b) X is finite if and only if $C_{o^{-1}}(X)$ is discrete.

Proof. Let X be pseudocompact and $f \in U(X)$. Then there exists $i \in \mathbb{Q}^+$ such that |f(x)| > i, for all $x \in X$. We take $G_{i,f} = f^{-1}((-i,i))$, hence $G_{i_f}^c = X$. Therefore $B(f, G_{i,f}) = \{f\}$, i.e., f is an isolated point.

Conversely, suppose that $f \in C(X)$ and $g = \frac{1}{|f|+1}$, so g is unit. Hence there exists $i \in \mathbb{Q}^+$ such that $B(g, G_{i,g}) \cap U(X) = \{g\}$, for U(X) is a discrete subspace of $C_{o^{-1}}(X)$. The function h defined by

$$h(x) = \left\{ \begin{array}{ll} g(x) & \quad G_{i_g}^c \\ i & \quad o.w. \end{array} \right.$$

is continuous and clearly $h \in B(g, G_{i,g}) \cap U(X)$. Hence h = g and this means that g is bounded away from zero. So f is bounded.

To prove (b), we let $X = \{x_1, x_2, ..., x_n\}$ and $f \in C(X)$. If f = 0, then it is clearly that f is an isolated point, for $B(0, G_{r,0}) = \{0\}$, for all $r \in \mathbb{Q}^+$. But if $f \neq 0$, then there exists $r \in \mathbb{Q}^+$ such that $r < Min\{|f(x_i)| : x_i \in Coz(f)\}$. Hence $G_{r_f}^c = X$, so $B(f, G_{r,f}) = \{f\}$.

Conversely, Suppose that $C_{o^{-1}}(X)$ is discrete. Then $C_o(X)$ is also discrete, for $C_o(X)$ is finer than $C_{o^{-1}}(X)$. Hence X is a P-space, by Proposition 2.2. On the other hand X is pseudocompact by (a), therefore X must be finite. \Box

It is not hard to show that whenever X is countably compact, then $C_o(X) = C_{o^{-1}}(X)$ and whenever $C_o(X) = C_{o^{-1}}(X)$, then X is pseudocompact. The next proposition provides necessary and sufficient condition for the concidence of two spaces. At first, we define strongly pseudocompact space.

Definition 2.5. A topological space X is strongly pseudocompact if for every closed subset $F \subseteq X$ and for every $f \in C(X)$, whenever $f|_F$ is unit in C(F), then $f|_F$ is bounded away from zero.

Clearly, every countably compact space is a strongly pseudocompact space and every strongly pseudocompact space is a pseudocompact space.

Proposition 2.6. A topological space X is strongly pseudocompact if and only if $C_o(X) = C_{o^{-1}}(X)$.

Proof. Let X be strongly pseudocompact and B(f, U) be a nhood base at $f \in C_o(X)$, where U is an open subset in X such that $Z(f) \subseteq U$. If $g \in B(f, U)$, then $g|_{U^c}$ is unit in $C(U^c)$, for $Z(g) \subseteq U$. Hence $g|_{U^c}$ is bounded away from zero, i.e., there exists $i \in \mathbb{Q}^+$ such that |g(x)| > i,

for each $x \in U^c$. Take $G_{i,g} = g^{-1}((-i,i))$, then $U^c \subseteq G_{i,g}$ and $Z(f) \subseteq Z(g)$, hence we have $B(g, G_{i,g}) \subseteq B(f, U)$, therefore B(f, U) is open in $C_{o^{-1}}(X)$. This means that $C_o(X) = C_{o^{-1}}(X)$.

Conversely, suppose that $F \subseteq X$ is closed and $f \in C(X)$ such that $f|_F$ is unit element in C(F). We consider the nhood base $B(f, F^c)$ at $f \in C_o(X)$ (note that $Z(f) \subseteq F^c$). Then there exists $i \in \mathbb{Q}^+$ such that $B(f, G_{i,f}) \subseteq B(f, F^c)$, for $C_o(X) = C_{o^{-1}}(X)$. Now we have $G_{i,f} \subseteq F^c$, for if $x_0 \in G_{i,f} \setminus F^c$, then there exists $h \in C(X)$ such that $h(G_{i,f}^c) = \{1\}$ and $h(x_0) = 0$. Hence $fh \in B(f, G_{i,f})$, but $fh \notin B(f, F^c)$, a contradiction. Therefore $F \subseteq G_{i,f}^c$ and this means that $|f(x)| \ge r$, for all $x \in F$, i.e., $f|_F$ is bounded away from zero. \Box

3. Maximal Ideals in $C_o(X)$ and $C_{o^{-1}}(X)$

We know that maximal ideals are closed in C(X) with m-topology $(C_m(X))$, see 2N in [4]. In this section we investigate the closedness maximal ideals in $C_o(X)$ and $C_{o^{-1}}(X)$, and we will observe that the maximal ideals in $C_o(X)$ and the real maximal ideals in $C_{o^{-1}}(X)$ are closed. But at first, in the next proposition we show that maximal ideals are also open.

Proposition 3.1. Every z-ideal is open in $C_o(X)$ and in $C_{o^{-1}}(X)$.

Proof. Let *I* be a *z*-ideal of C(X) and $f \in I$. We show that $B(f, X) \subseteq I$. I. In fact if $g \in B(f, X)$, then $Z(f) \subseteq Z(f-g)$ and hence $Z(f) \subseteq Z(g)$, therefore $g \in I$, for *I* is *z*-ideal. Thus *I* is an open subset in $C_o(X)$. Similarly, *I* is open in $C_{o^{-1}}(X)$. \Box

Proposition 3.2. Every maximal ideal is closed in $C_o(X)$.

Proof. Let M be a maximal ideal of $C_o(X)$ and $g \in cl_o M \setminus M$, where cl_o means the closure with respect to the topology of $C_o(X)$. Then there exists $k \in M$ such that $Z(k) \cap Z(g) = \emptyset$, by Theorem 2.6 in [4], and hence $Z(g) \subseteq Coz(k) = X \setminus Z(k)$. Now we consider nhood base B(g, Coz(k)) at g. Clearly $B(g, Coz(k)) \cap M \neq \emptyset$, for $g \in cl_o M$. So there exists $h \in M$ such that $Coz(k)_q^c \subseteq Z(g-h)$, hence $Z(g) \cup Z(k) \subseteq Z(g-h)$ and

therefore $Z(k) \cap Z(h) = \emptyset$. This is a contradiction, because $k, h \in M$. \Box

Proposition 3.2. shows that every maximal ideal in $C_o(X)$ is closed, however maximal ideals are not necessarily closed in $C_{o^{-1}}(X)$. But real maximal ideals are closed in $C_{o^{-1}}(X)$.

Proposition 3.3. Every real maximal ideal is closed in $C_{o^{-1}}(X)$.

Proof. Let M be a real maximal ideal in $C_{o^{-1}}(X)$ and $f \in cl_{o^{-1}}M$, where $cl_{o^{-1}}$ means the closure with respect to the topology of $C_{o^{-1}}(X)$. Consider $G_{\frac{1}{n},f} = f^{-1}((-\frac{1}{n},\frac{1}{n}))$, for all $n \in \mathbb{N}$, then there exists $g_n \in C(X)$ such that $g_n \in B(f, G_{\frac{1}{n},f}) \cap M$, for all $n \in \mathbb{N}$. Since M is a real maximal ideal, $\bigcap_{n \in \mathbb{N}} Z(g_n) \in Z[M]$ by Theorem 5.14 in [4], hence there exists $l \in M$ such that $Z(l) = \bigcap_{n \in \mathbb{N}} Z(g_n)$. Now we claim that $Z(l) \subseteq Z(f)$. In fact if $x_0 \in Z(l) - Z(f)$ then $f(x_0) \neq 0$, hence there exists $n_0 \in \mathbb{N}$ such that $|f(x_0)| > \frac{1}{n_0}$ and therefore $x_0 \in G_{\frac{1}{n_f}}^c$. Since $g_{n_0} \in B(f, G_{\frac{1}{n_0}, f}), x_0 \in Z(f - g_{n_0})$. So $x_0 \in Z(f)$, a contradiction. But M is a z-ideal, then $f \in M$ and hence M is closed. \Box

Corollary 3.4. If X is pseudocompact, then every maximal ideal in $C_{o^{-1}}(X)$ is closed.

Now it is natural to ask that " is the converse of the above result true?" The next proposition shows that the answer is positive, whenever X is normal or a P-space. In the proof of this proposition we have used the notation $Neg(f) = \{x \in X : f(x) < 0\}, f \in C(X)$. We could not yet setteld this question in general.

Proposition 3.5. The following statements hold:

(a) If X is normal, then hyper real maximal ideals in $C_{o^{-1}}(X)$ are not closed.

(b) If X is P-space, then hyper real maximal ideals in $C_{o^{-1}}(X)$ are not closed.

Proof. Let X be normal and M be a hyper real maximal ideal in $C_{o^{-1}}(X)$. Then there exists $g \in C(X)$ such that Mg is infinitely small, see Theorem 5.6 in [4]. This means that $g \notin M$ and $M|g| < \frac{1}{n}$, for all

 $n \in \mathbb{N}$. Hence there exists $h_n \in M$ such that $Z(h_n) \subseteq \operatorname{Neg}(|g| - \frac{1}{n})$, for all $n \in \mathbb{N}$, by Theorem 5.4 in [4]. We consider the continuous functions $k_n : X \setminus [\operatorname{Neg}(|g| - \frac{1}{n})] \to \mathbb{R}$, defined by $k_n(x) = \frac{1}{h_n(x)}$, for all $n \in \mathbb{N}$. Since X is normal and $X \setminus [\operatorname{Neg}(|g| - \frac{1}{n})]$ is a closed subset in X, there exists $\tilde{k_n} \in C(X)$ such that $\tilde{k_n}|_{X \setminus [\operatorname{Neg}(|g| - \frac{1}{n})]} = k_n$. Now we see that $gh_n \tilde{k_n} \in$ $M \cap B(g, G_{g, \frac{1}{n}})$, for all $n \in \mathbb{N}$, hence $g \in \operatorname{cl}_{o^{-1}} M \setminus M$ and therefore M is not closed. Part (b) will be proved by a similar method. \Box

Corollary 3.6. (a) If X is a normal space, then X is pseudocompat if and only if every maximal ideal in $C_{o^{-1}}(X)$ is closed. (b) If X is P-space, then every maximal ideal in $C_{o^{-1}}(X)$ is closed if and only if X is finite.

References

- A. V. Arkhangelskii, Cp-theory, in: Recent Progress in Topology, North-Holland, Amsterdam, (1992), 1-56.
- [2] F. Azarpanah and R. Mohamadian, \sqrt{z} -ideals and $\sqrt{z^0}$ -ideals in C(X), Acta Mathematica Sinica, English Series, 23(6) (2007), 989-996.
- [3] G. Dimaio, L. Hola, D. Holy, and D. McCoy, Topology on the space of continuous functions, *Topology Appl.*, 86 (1998), 105-122.
- [4] L. Gillman and M. Jerison, Rings of Continuous Functions, springer, 1976.
- [5] E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc., 48(64) (1948), 54-99.
- [6] J. R. Munkres, Topology, a First Course, Prentic-Hall, 1974.
- [7] S. Willard, *General Topology*, Reading, Massachusetts, Addison-Wesley, 1970.

Farshid Manshoor

Department of Mathematics Asisstant Professor of Mathematics Abadan Branch, Islamic Azad University Abadan, Iran E-mail: avazerood@yahoo.com