Journal of Mathematical Extension Vol. 15, No. 3, (2021) (5)1-19 URL: https://doi.org/10.30495/JME.2021.1436 ISSN: 1735-8299 Original Research Paper

Fixed Point Theorems in C^* -Algebra-Valued $b_v(s)$ -Metric Spaces with Application and Numerical Methods

M.H. Saboori

Mashhad Branch, Islamic Azad University

M. Hassani Mashhad Branch, Islamic Azad University

R. Allahyari^{*} Mashhad Branch, Islamic Azad University

M. Mehrabinezhad Mashhad Branch, Islamic Azad University

Abstract. We first introduce a novel notion named C^* -algebra-valued $b_v(s)$ -metric spaces. Then, we give proofs of the Banach contraction principle, the expansion mapping theorem, and Jungck's theorem in C^* -algebra-valued $b_v(s)$ -metric spaces. As an application of our results, we establish a result for an integral equation in a C^* -algebra-valued $b_v(s)$ -metric space. Finally, a numerical method is presented to solve the proposed integral equation, and the convergence of this method is also studied. Moreover, a numerical example is given to show applicability and accuracy of the numerical method and guarantee the theoretical results.

AMS Subject Classification: 47H10; 46L07 **Keywords and Phrases:** C^* -algebra, $b_v(s)$ -metric space, Fixed point theorem, Integral equation, Contractive mapping

Received: October 2019 ; Accepted: August 2020 *Corresponding Author

1 Introduction and Preliminaries

Banach contraction principle [4] was introduced by Banach in 1922, and later it is called the fixed point theorem. The fixed point theorem is a strong tool for solving existence problems in many branches of mathematics and physics.

Bakhtin [3] introduced b-metric spaces as a generalization of metric spaces and proved analogue of the Banach contraction principle in bmetric spaces. In the paper [6], Branciari introduced the concept of v-generalized metric spaces. Radenović and Mitrović [12] introduced the concept $b_v(s)$ -metric spaces as a generalization of metric spaces, bmetric spaces, and v-generalized metric spaces. On the other hand, Ma et al. [11] presented the concept of C^* -algebra-valued metric spaces. Later, this line of research was continued in [1, 5, 8, 9, 10, 14, 15, 16], where several other fixed point results were obtained in the framework of C^* -algebra-valued metric, as well as (more general) C^* -algebra-valued b-metric spaces. Now, in this paper, we introduce a new notion C^* algebra-valued $b_v(s)$ -metric spaces. Then, we prove the Banach contraction principle, expansion mapping theorem, and Jungck's theorem [2] for C^{*}-algebra-valued $b_v(s)$ -metric spaces. Also, we state a result for an integral equation in a C^* -algebra-valued $b_v(s)$ -metric space, which demonstrates an application of our main theorem. Finally, we propose a numerical method for solving the integral equation and investigate the convergence of this method. Moreover, to illustrate an application and accuracy, we present a numerical example, which guarantees the theoretical results.

We provide some auxiliary facts which will be used in the rest of the paper. Throughout this paper, \mathbb{A} always denotes a unital C^* -algebra with a unit $1_{\mathbb{A}}$. We call an element $a \in \mathbb{A}$ a *positive element*, denoted $a \succeq 0_{\mathbb{A}}$, if $a \in \mathbb{A}_h$ and $\sigma(a) \subseteq \mathbb{R}_+ = [0, +\infty)$, where $\mathbb{A}_h = \{a \in \mathbb{A} : a^* = a\}$. The set \mathbb{A}_+ indicates the positive elements of \mathbb{A} . Also, $\mathbb{A}' = \{a \in \mathbb{A} : xa = ax, \text{ for all } x \in \mathbb{A}\}.$

Lemma 1.1. [13] Let \mathbb{A} be a unital C^* -algebra with unit $1_{\mathbb{A}}$.

- (1) If $a, b \in \mathbb{A}_h$ with $a \leq b$ and $c \in \mathbb{A}$, then $c^*ac \leq c^*bc$.
- (2) For all $a, b \in \mathbb{A}_h$, if $0_\mathbb{A} \leq a \leq b$, then $||a|| \leq ||b||$.

Lemma 1.2. [7, 13] Suppose that A is a unital C^* -algebra with unit 1_A .

- (1) For any $x \in \mathbb{A}_+$, it follows that $x \leq 1_{\mathbb{A}}$ if and only if $||x|| \leq 1$.
- (2) If $a \in \mathbb{A}_+$ with $||a|| \prec \frac{1}{2}$, then $1_{\mathbb{A}} a$ is invertible and $||a(1_{\mathbb{A}} a)^{-1}|| \prec 1$.
- (3) Suppose that $a, b \in \mathbb{A}_+$ with ab = ba; then $ab \succeq 0_{\mathbb{A}}$.
- (4) For $a \in \mathbb{A}'$, if $b \succeq c \succeq 0_{\mathbb{A}}$ and $1_{\mathbb{A}} a \in \mathbb{A}'_+$ is an invertible element, then $(1_{\mathbb{A}} - a)^{-1}b \succeq (1_{\mathbb{A}} - a)^{-1}c$.

2 Main results

Definition 2.1. Let X be a nonempty set and let \mathbb{A} be a C^* -algebra. The mapping $d: X \times X \to \mathbb{A}_+$ is called C^* -algebra-valued $b_v(s)$ -metric, if there exists $s \in \mathbb{A}'_+$ with $||s|| \succeq 1$ such that d satisfies

- (1) $d(x, y) = 0_{\mathbb{A}}$ if and only if x = y for all $x, y \in X$.
- (2) d(x,y) = d(y,x) for all $x, y \in X$.
- (3) $d(x,y) \leq s[d(x,u_1) + d(u_1,u_2) + \dots + d(u_{v-1},u_v) + d(u_v,y)]$, for all $x, y \in X$ and for all distinct elements $u_1, u_2, \dots, u_v \in X \{x, y\}$ in which $v \in \mathbb{N}$.

Definition 2.2. Suppose that (X, \mathbb{A}, d) is a C^* -algebra-valued $b_v(s)$ metric space. Then $T: X \to X$ is called a C^* -algebra-valued contractive mapping, if there exists $B \in \mathbb{A}$ with $||B|| \prec 1$ such that

$$d(Tx, Ty) \preceq B^* d(x, y) B \quad \text{for all } x, y \in X.$$
(1)

Example 2.3. Let $X = \ell^p = \{x = \{x_n\} \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p \prec +\infty\}, p \in (0,1)$, and let $\mathbb{A} = \mathbb{M}_{2 \times 2}(\mathbb{R})$.

Define $d(x, y) = \text{diag}\left(\left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}, \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}\right)$ in which "diag" denotes a diagonal matrix and $x, y \in X$. It is easy to verify that d(.,.) is a C^* -algebra-valued $b_v(s)$ -metric. For proving (3) of Definition 2.1 with v = 2, we only need to use the following inequality:

$$\left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}} \\ \leq 2^{\left(\frac{2}{p}\right)} \left[\left(\sum_{n=1}^{+\infty} |x_n - u_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{+\infty} |u_n - z_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |z_n - y_n|^p\right)^{\frac{1}{p}} \right],$$

which implies that $d(x,y) \leq s \left[d(x,u) + d(u,z) + d(z,y) \right]$, where $s = 2^{\left(\frac{2}{p}\right)} I \in \mathbb{A}'_+$, for all $x, y \in X$ and for all distinct elements $u, z \in X - \{x, y\}$.

Lemma 2.4. Let (X, \mathbb{A}, d) be a C^* -algebra-valued $b_v(s)$ -metric space and let $s \in \mathbb{A}'_+$. Then (X, \mathbb{A}, d) is a C^* -algebra-valued $b_{2v}(s^2)$ -metric space.

Proof. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued $b_v(s)$ -metric space. Let

$$d(x,y) \leq s \Big[d(x,u_1) + d(u_1,u_2) + \dots + d(u_v,y) \Big]$$

for all $x, y \in X$ and for all distinct elements $u_1, u_2, \ldots, u_v \in X - \{x, y\}$. Then, for different $s_1, s_2, \ldots, s_v \in X - \{x, y, u_1, u_2, \ldots, u_v\}$, we have

$$d(u_v, y) \preceq s \Big[d(u_v, s_1) + d(s_1, s_2) + \dots + d(s_v, y) \Big].$$

On the other hand, for every C^* -algebra, if a and b are positive elements with $a \leq b$, and in addition $s \in \mathbb{A}'_+$, then $sa \leq sb$. Now, by the above inequality, we have

$$sd(u_v, y) \preceq s \Big[s[d(u_v, s_1) + \dots + d(s_v, y)] \Big].$$

Furthermore, if $a, b \succeq 0_{\mathbb{A}}$, then $a + b \succeq 0_{\mathbb{A}}$. Hence we can write

$$d(x,y) \leq s \Big[d(x,u_1) + d(u_1,u_2) + \dots + d(u_{v-1},u_v) + s [d(u_v,s_1) + \dots + d(s_v,y)] \Big].$$

Since $I \leq s$ and $s \in \mathbb{A}'_+$, so $s \leq s^2$ and $sb \leq s^2b$ for all positive element $b \in \mathbb{A}$. Hence, for all positive elements $a, b, c \in \mathbb{A}$, if $a \leq sb + s^2c$, then

 $a \leq s^2 b + s^2 c$. Thus, we get d(x, y) $\leq s^2 \Big[d(x, u_1) + d(u_1, u_2) + \dots + d(u_v, s_1) + d(s_1, s_2) + \dots + d(s_v, y) \Big],$

which implies that (X, \mathbb{A}, d) is a C^{*}-algebra-valued $b_{2v}(s^2)$ -metric space. \Box

Lemma 2.5. Let (X, \mathbb{A}, d) be a C^* -algebra-valued $b_v(s)$ -metric space, let $T: X \to X$, and let $\{x_n\}$ be a sequence in X defined by $x_0 \in X$ and $x_{n+1} = Tx_n$ such that $x_n \neq x_{n+1}$ $(n \succeq 0)$. If T is a C^* -algebra-valued contractive mapping, then $x_n \neq x_m$ for all distinct numbers $m, n \in \mathbb{N}$.

Proof. Suppose, to the contrary, that $x_n = x_{n+p}$ for some $n \succeq 0$ and $p \succeq 1$.

Since T is a $C^*\text{-algebra-valued contractive mapping, there exists <math display="inline">B\in\mathbb{A}$ with $\|B\|\prec 1$ such that

$$d(Tx, Ty) \preceq B^* d(x, y) B$$
, for all $x, y \in X$.

On the other hand, we have $Tx_n = Tx_{n+p}$, and the assumptions imply $x_{n+1} = x_{n+p+1}$. Now, we get

$$d(x_{n+1}, x_n) = d(x_{n+p+1}, x_{n+p}) \leq B^* d(x_{n+p}, x_{n+p-1}) B.$$

Similarly,

$$d(x_{n+p}, x_{n+p-1}) \leq B^* d(x_{n+p-1}, x_{n+p-2})B.$$

Now, using Lemma 1.1, we conclude

$$0_{\mathbb{A}} \leq d(x_{n+1}, x_n) = d(x_{n+p+1}, x_{n+p}) \leq B^* d(x_{n+p}, x_{n+p-1}) B$$
$$\leq (B^*)^2 d(x_{n+p-1}, x_{n+p-2}) B^2$$
$$\vdots$$
$$\leq (B^*)^p d(x_{n+1}, x_n) B^p.$$

Finally, by applying Lemma 1.1 again, we obtain

$$\begin{aligned} \|d(x_{n+1}, x_n)\| & \preceq \|(B^*)^p d(x_{n+1}, x_n) B^p\| \\ & \preceq \|(B^*)^p\| \|d(x_{n+1}, x_n)\| \|B^p\| \\ & \preceq \|B^*\|^p \|d(x_{n+1}, x_n)\| \|B\|^p \\ & = \|B\|^{2p} \|d(x_{n+1}, x_n)\| \\ & \prec \|d(x_{n+1}, x_n)\|, \end{aligned}$$

which is a contradiction. \Box

Definition 2.6. Let (X, \mathbb{A}, d) be a C^* -algebra-valued $b_v(s)$ -metric space. Suppose that $\{x_n\} \subset X$ and $x \in X$. If, for any $\varepsilon \succ 0$, there is a natural number N such that $||d(x_n, x)|| \leq \varepsilon$ for all $n \succ N$, then $\{x_n\}$ is said to be convergent with respect to \mathbb{A} , also $\{x_n\}$ converges to x, or x is the limit of $\{x_n\}$. We denote it by $\lim_{n \to +\infty} x_n = x$.

For any $\varepsilon \succ 0$, if there is a natural number N such that $||d(x_n, x_m)|| \preceq \varepsilon$ for all $n, m \succ N$, then $\{x_n\}$ is called a *Cauchy sequence with respect to* \mathbb{A} .

We say (X, \mathbb{A}, d) is a complete C^* -algebra-valued $b_v(s)$ -metric space if every Cauchy sequence with respect to \mathbb{A} is convergent.

Theorem 2.7. Suppose that (X, \mathbb{A}, d) is a complete C^* -algebra-valued $b_v(s)$ -metric space with coefficient s. Let $T : X \to X$ be a C^* -algebra-valued contractive mapping with constant B. If there exists a natural number n_0 such that $s(B^*)^{n_0}B^{n_0} \prec 1_{\mathbb{A}}$ and $B^{n_0} \in \mathbb{A}'$, then T has a unique fixed point in X.

Proof. It is clear that if $B = 0_{\mathbb{A}}$, then T maps X into a single point. Thus without loss of generality, one can suppose that $B \neq 0_{\mathbb{A}}$.

Choose $x_0 \in X$, and set $\{x_n\}$ by $x_{n+1} = Tx_n = T^{n+1}x_0, n = 0, 1, 2, ...$ If $x_n = x_{n+1}$ for some $n \succeq 0$, then T has a unique fixed point in X. Otherwise, we consider $x_n \neq x_{n+1}$ $(n \succeq 0)$. Using Lemma 2.5 implies that $x_n \neq x_m$ for all distinct numbers $n, m \in \mathbb{N}$. On the other hand, notice that $s[d(x, u_1) + d(u_1, u_2) + \cdots + d(u_{v-1}, u_v) + d(u_v, y)], s \in \mathbb{A}'_+$, is also a positive element. Now, by Lemma 1.1 and the condition (1) on

FIXED POINT THEOREM IN C*-ALGEBRA-VALUED $b_v(s)$ -METRIC SPACES... 7

T, it follows that

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1}) \leq B^* d(x_n, x_{n-1})B$$

$$\leq (B^*)^2 d(x_{n-1}, x_{n-2})B^2$$

$$\vdots$$

$$\leq (B^*)^n d(x_1, x_0)B^n.$$

We consider the following two cases:

(1) $v \succeq 2$ (2) v = 1.

Let $v\succeq 2$. Also, suppose that $m\succ n;$ then the triangle inequality for the $b_v(s)\text{-metric }d$ implies that

$$d(x_n, x_m) \leq s \Big[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+\nu-3}, x_{n+\nu-2}) \\ + d(x_{n+\nu-2}, x_{n+n_0}) + d(x_{n+n_0}, x_{m+n_o}) + d(x_{m+n_o}, x_m) \Big] \\ \leq s \Big[(B^*)^n d(x_0, x_1) B^n + (B^*)^{n+1} d(x_0, x_1) B^{n+1} + \dots \\ + (B^*)^{n+\nu-3} d(x_0, x_1) B^{n+\nu-3} + (B^*)^n d(x_{\nu-2}, x_{n_0}) B^n \\ + (B^*)^{n_0} d(x_n, x_m) B^{n_0} + (B^*)^m d(x_{n_0}, x_0) B^m \Big].$$

So, $d(x_n, x_m) - s(B^*)^{n_0} d(x_n, x_m) B^{n_0}$

$$\leq s(B^*)^n d(x_0, x_1) B^n + s(B^*)^{n+1} d(x_0, x_1) B^{n+1} + \dots + s(B^*)^{n+\nu-3} d(x_0, x_1) B^{n+\nu-3} + s(B^*)^n d(x_{\nu-2}, x_{n_0}) B^n + s(B^*)^m d(x_{n_0}, x_0) B^m.$$

On the other hand, by Lemma 1.1, we have $d(x_n, x_m)(1_{\mathbb{A}} - s(B^*)^{n_0}B^{n_0})$

M.H. SABOORI et al.

- $\leq ||d(x_n, x_m)(1_{\mathbb{A}} s(B^*)^{n_0} B^{n_0})||1_{\mathbb{A}}|$
- $\leq \|s(B^*)^n d(x_0, x_1)B^n + s(B^*)^{n+1} d(x_0, x_1)B^{n+1} + \cdots$ $+ s(B^*)^{n+\nu-3} d(x_0, x_1)B^{n+\nu-3} + s(B^*)^n d(x_{\nu-2}, x_{n_0})B^n$ $+ s(B^*)^m d(x_{n_0}, x_0)B^m \|_{1_{\mathbb{A}}}$
- $\leq \|s(B^*)^n d(x_0, x_1) B^n \| 1_{\mathbb{A}} + \|s(B^*)^{n+1} d(x_0, x_1) B^{n+1} \| 1_{\mathbb{A}} + \dots \\ + \|s(B^*)^{n+\nu-3} d(x_0, x_1) B^{n+\nu-3} \| 1_{\mathbb{A}} + \|s(B^*)^n d(x_{\nu-2}, x_{n_0}) B^n \| 1_{\mathbb{A}} \\ + \|s(B^*)^m d(x_{n_0}, x_0) B^m \| 1_{\mathbb{A}}$
- $\leq \|s\| \| (B^*)^n \| \| d(x_0, x_1) \| \| B^n \| 1_{\mathbb{A}} + \|s\| \| (B^*)^{n+1} \| \| d(x_0, x_1) \| \| B^{n+1} \| 1_{\mathbb{A}} \\ + \|s\| \| (B^*)^{n+\nu-3} \| \| d(x_0, x_1) \| \| B^{n+\nu-3} \| 1_{\mathbb{A}} \\ + \|s\| \| (B^*)^n \| \| d(x_{\nu-2}, x_{n_0}) \| \| B^n \| 1_{\mathbb{A}} \\ + \|s\| \| (B^*)^m \| \| d(x_{n_0}, x_0) \| \| B^m \| 1_{\mathbb{A}}$
- $\leq ||s|||B^*||^n ||d(x_0, x_1)|||B||^n 1_{\mathbb{A}} + ||s|||B^*||^{n+1} ||d(x_0, x_1)|||B||^{n+1} 1_{\mathbb{A}}$ $+ ||s|||B^*||^{n+v-3} ||d(x_0, x_1)|||B||^{n+v-3} 1_{\mathbb{A}} + ||s|||B^*||^n ||d(x_{v-2}, x_{n_0})|||B||^n 1_{\mathbb{A}}$ $+ ||s|||B^*||^m ||d(x_{n_0}, x_0)|||B||^m 1_{\mathbb{A}}.$

Now, since $(1_{\mathbb{A}} - s(B^*)^{n_0}B^{n_0}) \in \mathbb{A}'_+$ and it is invertible. Hence, by Lemma 1.2, we have

 $d(x_n, x_m)$

$$\leq \left(\|s\| \|B^*\|^n \|d(x_0, x_1)\| \|B\|^n + \|s\| \|B^*\|^{n+1} \|d(x_0, x_1)\| \|B\|^{n+1} \\ + \|s\| \|B^*\|^{n+\nu-3} \|d(x_0, x_1)\| \|B\|^{n+\nu-3} + \|s\| \|B^*\|^n \|d(x_{\nu-2}, x_{n_0})\| \|B\|^n \\ + \|s\| \|B^*\|^m \|d(x_{n_0}, x_0)\| \|B\|^m \right) (1_{\mathbb{A}} - s(B^*)^{n_0} B^{n_0})^{-1} \\ \longrightarrow 0_{\mathbb{A}} \quad (as \quad m, n \to +\infty).$$

Therefore $\{x_n\}$ is a Cauchy sequence with respect to A. If v = 1, then the proof follows from Lemma 2.4. By completeness of (X, \mathbb{A}, d) , there exists $x^* \in X$ such that $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} Tx_{n-1} = x^*$. Since

$$d(Tx^*, x^*)$$

$$\leq s \Big[d(Tx^*, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+v}, x^*) \Big]$$

$$= s \Big[d(Tx^*, Tx_n) + d(Tx_n, Tx_{n+1}) + \dots + d(x_{n+v}, x^*) \Big]$$

$$\leq s \Big[B^* d(x^*, x_n) B + (B^*)^n d(x_0, x_1) B^n + \dots + d(Tx_{n+v-1}, x^*) \Big],$$

it follows that

 $\|d(Tx^*,x^*)\|$

$$\leq \|s[B^*d(x^*, x_n)B + (B^*)^n d(x_0, x_1)B^n + \dots + d(Tx_{n+\nu-1}, x^*)\|$$

- $\leq \|s\| \|B^*\| \|d(x^*, x_n)\| \|B\| + \|s\| \|(B^*)^n\| \|d(x_0, x_1)\| \|B^n\| + \cdots$
- $+ \|s\| \| (B^*)^{n+v-2} \| \| d(x_0, x_1) \| \| B^{n+v-2} \| + \| d(x_{n+v}, x^*) \|$ $\leq \|s\| \| B^* \| \| d(x^*, x_n) \| \| B \| + \|s\| \| B^* \|^n \| d(x_0, x_1) \| \| B \|^n + \cdots$ $+ \|s\| \| B^* \|^{n+v-2} \| d(x_0, x_1) \| \| B \|^{n+v-2} + \| d(x_1, \dots, x^*) \|$

$$+ \|s\| \|B^*\|^{n+c-2} \|d(x_0, x_1)\| \|B\|^{n+c-2} + \|d(x_{n+v}, x^*)\|$$

$$\rightarrow 0 \quad (as \ n \to +\infty),$$

which shows that $Tx^* = x^*$.

To prove that x^* is the unique fixed point, we suppose that $y^* (\neq x^*)$ is another fixed point of T. Then by applying condition (1), we have

$$0_{\mathbb{A}} \leq d(x^*, y^*) = d(Tx^*, Ty^*) \leq B^* d(x^*, y^*) B.$$

Using the norm of \mathbb{A} , we have

$$0 \leq ||d(x^*, y^*)|| = ||d(Tx^*, Ty^*)||$$

$$\leq ||B^*|| ||d(x^*, y^*)|| ||B||$$

$$= ||B||^2 ||d(x^*, y^*)||$$

$$\prec ||d(x^*, y^*)||,$$

which is impossible. So $d(x^*, y^*) = 0_{\mathbb{A}}$ and $x^* = y^*$, which implies that the fixed point is unique. \Box

Definition 2.8. [11] let X be a nonempty set. We call a mapping T is a C^* -algebra-valued expansion mapping on X, if $T: X \to X$ satisfies

- (1) T(X) = X;
- (2) $d(Tx,Ty) \succeq B^* d(x,y)B$, for all $x, y \in X$,

where $B \in \mathbb{A}$ is an invertible element and $||B^{-1}|| \prec 1$.

Theorem 2.9. Consider a complete C^* -algebra-valued $b_v(s)$ -metric space (X, \mathbb{A}, d) with coefficient s. Let $T : X \to X$ be a C^* -algebra-valued expansion mapping with constant B. If there exists a natural number n_0 such that $(B^{-1})^{n_0} \in \mathbb{A}'$ and $s((B^{-1})^*)^{n_0}(B^{-1})^{n_0} \prec 1_{\mathbb{A}}$, then T has a unique fixed point in X.

Proof. First, we show that T is invertible. Since by condition (1) of Definition 2.8, T is surjective, it is enough to show that T is injective. Indeed, for any $x, y \in X$ with $x \neq y$, if T(x) = T(y), we have

$$0_{\mathbb{A}} = d(Tx, Ty) \succeq B^* d(x, y) B.$$

Since $B^*d(x, y)B \in \mathbb{A}_+$, therefore $B^*d(x, y)B = 0_{\mathbb{A}}$. On the other hand, *B* is invertible, then $d(x, y) = 0_{\mathbb{A}}$, which is impossible. Thus *T* is injective.

Next, we will show that T has a unique fixed point in X. In fact, since T is invertible, for any $x, y \in X$, it follows that

$$d(Tx, Ty) \succeq B^* d(x, y) B.$$

In the above formula, we replace x and y by $T^{-1}(x)$ and $T^{-1}(y)$, respectively, and we get

$$d(x,y) \succeq B^* d(T^{-1}x, T^{-1}y)B.$$

Now by part (1) of Lemma 1.1, we have

$$(B^{-1})^* d(x,y) B^{-1} \succeq (B^{-1})^* B^* d(T^{-1}x, T^{-1}y) B B^{-1}$$

= $(B^*)^{-1} B^* d(T^{-1}x, T^{-1}y) B B^{-1}$
= $d(T^{-1}x, T^{-1}y).$

Using Theorem 2.7, there exists unique $x^* \in X$ such that $T^{-1}x^* = x^*$, which means that there is a unique fixed point $x^* \in X$ such that $Tx^* = x^*$. \Box In the following theorem, we prove Jungcks theorem in C^* -algebra-valued $b_v(s)$ -metric spaces.

Theorem 2.10. Consider (X, \mathbb{A}, d) is a complete C^* -algebra-valued $b_v(s)$ metric space with coefficient s. Let T and I be commuting mappings of X into itself such that the range of I contains the range of T and I is continuous and satisfies the inequality

$$d(Tx, Ty) \preceq B^* d(Ix, Iy) B \quad for \ all \ x, y \in X, \tag{2}$$

where $B \in \mathbb{A}$ with $||B|| \prec 1$. If there exists a natural number n_0 such that $s(B^*)^{n_0}B^{n_0} \prec 1_{\mathbb{A}}$ and $B^{n_0} \in \mathbb{A}'$. Then T and I have a unique common fixed point.

FIXED POINT THEOREM IN C^* -ALGEBRA-VALUED $b_v(s)$ -METRIC SPACES... 11

Proof. Let $x_0 \in X$ be arbitrary. Then Tx_0 and Ix_0 are well-defined. Since $Tx_0 \in I(X)$, there is $x_1 \in X$ such that $Ix_1 = Tx_0$. In general, if x_n is chosen, then we choose a point x_{n+1} in X such that $Ix_{n+1} = Tx_n$. Now, we show that $\{Ix_n\}$ is Cauchy. From (2), for all $m, n \in \mathbb{N}$, we have

$$d(Ix_m, Ix_n) = d(Tx_{m-1}, Tx_{n-1}) \leq B^* d(Ix_{m-1}, Ix_{n-1})B.$$
(3)

Now, we have the following two cases.

Case 1 If $Ix_n = Ix_{n+1}$ for some $n \succeq 0$, then $Ix_n = Ix_{n+1} = Tx_n = \omega$. We show that ω is a unique common fixed point of T and I. Since T and I commute, thus $I\omega = I(Tx_n) = T(Ix_n) = T\omega$. Now, let $d(T\omega, \omega) \succ 0_{\mathbb{A}}$. Hence

$$d(T\omega,\omega) = d(T\omega,Tx_n) \preceq B^* d(I\omega,Ix_n)B = B^* d(T\omega,\omega)B.$$

Using the norm of \mathbb{A} , we have

$$||d(T\omega,\omega)|| \prec ||d(T\omega,\omega)||.$$

This is a contradiction. Thus $||d(T\omega, \omega)|| = 0$, $d(T\omega, \omega) = 0_{\mathbb{A}}$, and $T\omega = \omega = I\omega$. By condition (2), ω is a unique common fixed point of T and I.

Case 2 Now suppose that $Ix_n \neq Ix_{n+1}$ for all $n \succeq 0$. From Lemma 2.5 and inequality (3), we have $Ix_n \neq Ix_{n+p}$ for all $n \succeq 0$ and $p \succeq 1$. With a similar argument used in the proof of Theorem 2.7, we can prove that the sequence $\{Ix_n\}$ is Cauchy. Since the C^* -algebra-valued $b_v(s)$ -metric space (X, \mathbb{A}, d) is complete, so $\{Ix_n\}$ converges to $u \in X$ such that

$$\lim_{n \to +\infty} Ix_n = \lim_{n \to +\infty} Tx_{n-1} = u.$$

Since I is continuous, inequality (2) implies that both I and T are continuous. Since T and I commute, we obtain

$$Iu = I(\lim_{n \to +\infty} Tx_{n-1}) = I(\lim_{n \to +\infty} Tx_n) = \lim_{n \to +\infty} ITx_n$$
$$= \lim_{n \to +\infty} TIx_n = T(\lim_{n \to +\infty} Ix_n) = Tu.$$

Let $Tu = Iu = \nu$. Thus $T\nu = TIu = ITu = I\nu$. If $Tu \neq T\nu$, then from (2), we get

$$\begin{aligned} \|d(Tu, T\nu)\| &\preceq \|B^*d(Iu, I\nu)B\| = \|B^*d(Tu, T\nu)B\| \\ &\preceq \|B^*\| \|d(Tu, T\nu)\| \|B\| \\ &\prec \|d(Tu, T\nu)\|. \end{aligned}$$

This is a contradiction. So $||d(Tu, T\nu)|| = 0$, $d(Tu, T\nu) = 0_{\mathbb{A}}$, and $Tu = T\nu$. Thus, we obtain $T\nu = I\nu = \nu$.

Now, we claim ν is the unique common fixed point for T and I. Let $\nu^* (\neq \nu)$ be another fixed point for T and I. By inequality (2), we have

$$d(\nu,\nu^*) = d(T\nu,T\nu^*) \preceq B^* d(I\nu,I\nu^*)B.$$

Now, by using the norm of \mathbb{A} , we have

$$\begin{aligned} \|d(\nu,\nu^*)\| &= \|d(T\nu,T\nu^*)\| &\preceq \|B^*d(I\nu,I\nu^*)B\| \\ &\preceq \|B^*\| \ d(I\nu,I\nu^*)\|\|B\| \\ &\prec \|d(I\nu,I\nu^*)\| = \|d(\nu,\nu^*)\|. \end{aligned}$$

This is a contradiction, which implies that $\nu = \nu^*$. \Box

Remark 2.11. In Theorem 2.10, if I is the identity map on X, then, Theorem 2.7 holds.

3 Application

In this section, we give an existence theorem for a solution of the following integral equation.

$$x(t) = \int_E K(t, s, x(s))ds + g(t), \quad t \in E,$$
(4)

where $K : E \times E \times \mathbb{R} \to \mathbb{R}$ and $g \in C_{\mathbb{R}}(E)$.

Let $X = C_{\mathbb{R}}(E)$ be the set of all real valued continuous functions on E, where E is a nonempty Lebesgue measurable compact set in \mathbb{R}_+ . Also, $\mathbb{A} = L(H)$ is the set of all bounded linear operators on $H = L^2(E)$ with usual operator norm. We define $d' : X \times X \to \mathbb{R}_+$ by $d'(x, y) = \sup(x(t) - y(t))^2$ for all $x, y \in X$. Then, (X, d') is a complete $b_2(3)$ $t \in E$ metric space. Moreover, $\Pi_{\gamma} : H \to H$ is defined by $\Pi_{\gamma}(h) = \gamma \cdot h$ for all $\gamma \in \mathbb{C}$ and $h \in H$. Now, define $d : X \times X \to \mathbb{A}_+$ by $d(x, y) = \Pi_{d'(x,y)}$. It is clear that (X, \mathbb{A}, d) is a complete C^* -algebra-valued $b_v(s)$ -metric space with v = 2 and s = 3I. We assume that the following conditions are satisfied:

 $\|d(Tx,Ty)\|$

(i) There exists a continuous function $f: E \times E \to \mathbb{R}$ such that

$$|K(t,s,u) - K(t,s,v)| \leq \alpha |f(t,s)(u-v)|,$$

 $\begin{array}{l} \text{for } t,s\in E,\,\alpha\in(0,1) \text{ and } u,v\in\mathbb{R}.\\ (ii) \text{ It follows that } \sup_{t\in E}\int_{E}|f(t,s)|ds\preceq 1 \quad \text{for any } t,s\in E. \end{array}$

Theorem 3.1. Under the assumptions (i) and (ii) equation (4) has a unique solution in X

Proof. Let $T: X \to X$ be defined by $Tx(t) = \int_E K(t, s, x(s))ds + g(t)$, $t \in E$. Then

$$= \|\Pi_{d'(Tx,Ty)}\| = \sup_{\|h\|=1} \langle \Pi_{d'(Tx,Ty)}(h), h \rangle; h \in H$$

$$= \sup_{\|h\|=1} \int_{E} d'(Tx,Ty)h(u)\overline{h}(u)d(u); u \in E$$

$$= \sup_{\|h\|=1} \int_{E} \sup_{t \in E} \left[Tx(t) - Ty(t) \right]^{2} h(u)\overline{h}(u)d(u); u \in E$$

$$= \sup_{\|h\|=1} \int_{E} \sup_{t \in E} \left[\int_{E} \left[K(t,s,x(s)) - K(t,s,y(s)) \right] ds \right]^{2} |h(u)|^{2} du; u \in E$$

$$\leq \sup_{\|h\|=1} \int_{E} \sup_{t \in E} \left[\int_{E} \alpha |f(t,s)| (x(s) - y(s)) ds \right]^{2} |h(u)|^{2} du; u \in E$$

$$= \alpha^{2} d'(x,y) \sup_{\|h\|=1} \int_{E} \sup_{t \in E} \left[\int_{E} |f(t,s)| ds \right]^{2} |h(u)|^{2} du; u \in E$$

$$\leq \alpha^{2} d'(x,y) \sup_{\|h\|=1} \int_{E} |h(u)|^{2} du; u \in E$$

$$= \alpha^{2} \sup_{\|h\|=1} \int_{E} d'(x,y) |h(u)|^{2} du; u \in E$$

$$= \alpha^{2} \|\|h\|=1 \int_{E} d'(x,y) \|h(u)|^{2} du; u \in E$$

$$= \alpha^{2} \|\|d(x,y)\|.$$

By take $B = \alpha 1_{\mathbb{A}}$, then $||B|| \prec 1$. Using Theorem 2.7, the integral equation (4) has a unique solution in X. \Box

Example 3.2. Consider the following functional integral equation:

$$x(t) = \int_0^1 \frac{4e^{-(t+1)s}}{3((t+1)^2 + 2)} \frac{|x(s)|}{1 + |x(s)|} ds + t$$
(5)

for $t \in E = [0, 1]$. Observe that this equation is a special case of (4) with

$$\begin{split} K(t,s,x(s)) &= \frac{4e^{-(t+1)s}}{3((t+1)^2+2)} \frac{|x(s)|}{1+|x(s)|},\\ f(t,s) &= \frac{4e^{-(t+1)s}}{(t+1)^2+2},\\ g(t) &= t. \end{split}$$

Notice that, for arbitrary fixed numbers $u, v \in \mathbb{R}$ and $t, s \in E = [0, 1]$, we have

$$\begin{split} |K(t,s,u) - K(t,s,v)| \\ &= |\frac{4e^{-(t+1)s}}{3((t+1)^2 + 2)} \frac{|u|}{1+|u|} - \frac{4e^{-(t+1)s}}{3((t+1)^2 + 2)} \frac{|v|}{1+|v|} \\ &\preceq \frac{1}{3} |\frac{4e^{-(t+1)s}}{(t+1)^2 + 2} ||u-v|. \end{split}$$

Thus the function K satisfies the assumption (i) with $\alpha = \frac{1}{3}$. Also, we have

Also, we have
$$\begin{split} & \sup_{0 \leq t \leq 1} \int_0^1 |f(t,s)| ds = \sup_{0 \leq t \leq 1} \int_0^1 |\frac{4e^{-(t+1)s}}{(t+1)^2 + 2}| ds = \sup_{0 \leq t \leq 1} \frac{4}{(t+1)^2 + 2} \int_0^1 e^{-(t+1)s} ds \prec \\ 1. & \text{This shows that the assumption } (ii) \text{ holds. Consequently, all the conditions of Theorem 3.1 are satisfied. Hence the integral equation (3.2) has a unique solution in <math>C_{\mathbb{R}}(E). \end{split}$$

4 Iterative method for solving integral equation

Theorem 4.1. Consider the integral equation (4). The following iteration process leads to the fixed point (function) solution of (4)

$$x_{n+1}(t) = \int_{E} K(t, s, x_n(s)) ds + g(t), \quad t \in E,$$
(6)

FIXED POINT THEOREM IN C*-ALGEBRA-VALUED $b_v(s)$ -METRIC SPACES... 15

where the initial guess $x_0(t)$ can be any arbitrary function such as 0, 1, or t.

Proof. Assume that the exact solution of (4) is $\tilde{x}(t)$. We have

$$\begin{aligned} |x_1(t) - \tilde{x}(t)| &= |\int_E \left(K(t, s, x_0(s) - K(t, s, \tilde{x}(s)) ds \right) \\ &\preceq \int_E \alpha |f(t, s)| |x_0(s) - \tilde{x}(s)| ds \\ &\preceq \alpha M, \end{aligned}$$

where $M = \max |x_0(s) - \tilde{x}(t)|, t \in E$. One can show similarly that

$$\begin{aligned} |x_2(t) - \tilde{x}(t)| &\preceq & \alpha \int_E |f(t,s)| |x_1(s) - \tilde{x}(s)| ds \\ &\preceq & \alpha^2 M \int_E |f(t,s)| ds \\ &\preceq & \alpha^2 M. \end{aligned}$$

Finally,

$$|x_{n+1}(t) - \tilde{x}(t)| \leq \alpha^{n+1} M.$$

It is clear that when n tends to infinity, $x_{n+1}(t)$ tends to the exact solution $\tilde{x}(t)$. \Box Consider the integral equation (6), we set

$$H(x_n(t)) = \int_E K(t, s, x_n(s)) ds + g(t),$$

so the integral equation (6) can be rewritten as follows:

$$x_{n+1}(t) = H(x_n(t)).$$

It is clear that the exact solution $\tilde{x}(t)$ satisfies

$$\tilde{x}(t) = H(\tilde{x}(t))$$

and $|\tilde{x}(t) - H(\tilde{x}(t))| = 0.$

Now in order to start the iterations for Example 3.2, we consider $x_0(t) =$

0 and do four iterations according to relation (6) to obtain $x_4(t)$. we have used Maple 2018 to plot

$$|x_4(t) - x_3(t)| = |H(x_3(t)) - x_3(t)|$$

in Figure 1, which shows small errors between $x_3(t)$ and $x_4(t)$, and it can be considered as a good approximation for the exact solution $\tilde{x}(t)$. In Figure 2, we have plotted $x_4(t)$ in the interval [0, 1].

Figure 1: graph of $|x_4(t) - x_3(t)|$

Figure 2: graph of $x_4(t)$

References

- S. Aleksić, Z. Kadelburg, Z.D. Mitrovic, and S. Radenovic, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst, 9 (2019), 93–121.
- [2] S. Aleksić, Z.D. Mitrović, and S. Radenović, A fixed point theorem of Jungck in $b_v(s)$ -metric spaces, *Period. Math. Hung*, 77 (2018), 224–231.
- [3] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst, 30 (1989), 26– 37.
- [4] S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrals, *Fundam. Math*, 3 (1922), 133– 181.
- [5] S. Batul, and T. Kamran, C*-Valued contractive type mapping, Fixed Point Theory Appl, 142 (2015), 9 pp.
- [6] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, *Publ. Math. Debrecen*, 57 (2000), 31–37.
- [7] R.G. Douglas, Banach Algebra Techniques in Operator Theory., Springer, Berlin (1998).
- [8] T. Kamran, M. Postolache, A. Ghiura, S. Batul, and R. Ali, The Banach contraction principle in C^{*}-algebra-valued b-metric spaces with application, *Fixed Point Theory Appl*, 10 (2016), 1–7.
- [9] C. Klin-eama, and P. Kaskasemay, Fixed point theorems for cyclic contractions in C*-algebra-valued b-metric spaces, J. Funct. Spaces, 2016, Article ID 7827040, (2016), 16 pp.

M.H. SABOORI et al.

- [10] Z. Ma, and L. Jiang, C*-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl, 222 (2015), 1–12.
- [11] Z. Ma, L. Jiang, and H. Sun, C*-Algebra-valued metric spaces and related fixed point Theorems, J. Fixed Point Theory Appl, 206 (2014), 1–11.
- [12] Z.D. Mitrovic, and S. Radenovic, The Banach and Reich contractions in $b_v(s)$ -metric spaces. J. Fixed Point Theory Appl, 19 (2017), 3087–3095.
- [13] G.J. Murphy, C*-Algebras and Operator Theory, Academic Press, London (1990).
- [14] S. Radenović, P. Vetro, A. Nastasi, and L.T. Quan, Coupled fixed point theorems in C^{*}-algebras-valued b-metric spaces. Scientific publications of the state University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech, 1 (2017), 81–90.
- [15] D. Shehwar, and T. Kamran, C*-valued G-contractions and fixed points, J. Inequal. Appl, 304 (2015), 1–8.
- [16] V. Todorćević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys, 3 (2019), 1211–1225.

Mohammad Hassan Saboori

Department of Mathematics Graduated PhD of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran. E-mail: mhs72859@gmail.com

Mahmoud Hassani

Department of Mathematics Associate Professor of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran. E-mail: hassani@mshdiau.ac.ir

Reza Allahyari

Department of Mathematics Assistant Professor of Mathematics

FIXED POINT THEOREM IN C*-ALGEBRA-VALUED $b_v(s)$ -METRIC SPACES... 19

Mashhad Branch, Islamic Azad University, Mashhad, Iran. E-mail: rezaallahyari@mshdiau.ac.ir

Mohammad Mehrabinezhad

Department of Mathematics Assistant Professor of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran. E-mail: mmehrabinezhad@gmail.com