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1 Introduction and Preliminaries

Banach contraction principle [4] was introduced by Banach in 1922, and
later it is called the fixed point theorem. The fixed point theorem is a
strong tool for solving existence problems in many branches of mathe-
matics and physics.
Bakhtin [3] introduced b-metric spaces as a generalization of metric
spaces and proved analogue of the Banach contraction principle in b-
metric spaces. In the paper [6], Branciari introduced the concept of
v-generalized metric spaces. Radenović and Mitrović [12] introduced
the concept bv(s)-metric spaces as a generalization of metric spaces, b-
metric spaces, and v-generalized metric spaces. On the other hand, Ma
et al. [11] presented the concept of C∗-algebra-valued metric spaces.
Later, this line of research was continued in [1, 5, 8, 9, 10, 14, 15, 16],
where several other fixed point results were obtained in the framework of
C∗-algebra-valued metric, as well as (more general) C∗-algebra-valued
b-metric spaces. Now, in this paper, we introduce a new notion C∗-
algebra-valued bv(s)-metric spaces. Then, we prove the Banach contrac-
tion principle, expansion mapping theorem, and Jungck’s theorem [2]
for C∗-algebra-valued bv(s)-metric spaces. Also, we state a result for
an integral equation in a C∗-algebra-valued bv(s)-metric space, which
demonstrates an application of our main theorem. Finally, we propose
a numerical method for solving the integral equation and investigate
the convergence of this method. Moreover, to illustrate an application
and accuracy, we present a numerical example, which guarantees the
theoretical results.

We provide some auxiliary facts which will be used in the rest of the
paper. Throughout this paper, A always denotes a unital C∗-algebra
with a unit 1A. We call an element a ∈ A a positive element, denoted
a � 0A, if a ∈ Ah and σ(a) ⊆ R+ = [0,+∞), where Ah = {a ∈ A
: a∗ = a}. The set A+ indicates the positive elements of A. Also,
A′ = {a ∈ A : xa = ax, for all x ∈ A}.

Lemma 1.1. [13] Let A be a unital C∗-algebra with unit 1A.

(1) If a, b ∈ Ah with a � b and c ∈ A, then c∗ac � c∗bc.

(2) For all a, b ∈ Ah, if 0A � a � b, then ‖a‖ � ‖b‖.
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Lemma 1.2. [7, 13] Suppose that A is a unital C∗-algebra with unit 1A.

(1) For any x ∈ A+, it follows that x � 1A if and only if ‖x‖ � 1.

(2) If a ∈ A+ with ‖a‖ ≺ 1

2
, then 1A − a is invertible and ‖a(1A −

a)−1‖ ≺ 1.

(3) Suppose that a, b ∈ A+ with ab = ba; then ab � 0A.

(4) For a ∈ A′, if b � c � 0A and 1A−a ∈ A′+ is an invertible element,
then (1A − a)−1b � (1A − a)−1c.

2 Main results

Definition 2.1. Let X be a nonempty set and let A be a C∗-algebra.
The mapping d : X ×X → A+ is called C∗-algebra-valued bv(s)-metric,
if there exists s ∈ A′+ with ‖s‖ � 1 such that d satisfies

(1) d(x, y) = 0A if and only if x = y for all x, y ∈ X.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) d(x, y) � s[d(x, u1)+d(u1, u2)+ · · ·+d(uv−1, uv)+d(uv, y)], for all
x, y ∈ X and for all distinct elements u1, u2, . . . , uv ∈ X − {x, y}
in which v ∈ N.

Definition 2.2. Suppose that (X,A, d) is a C∗-algebra-valued bv(s)-
metric space. Then T : X → X is called a C∗-algebra-valued contractive
mapping, if there exists B ∈ A with ‖B‖ ≺ 1 such that

d(Tx, Ty) � B∗d(x, y)B for all x, y ∈ X. (1)

Example 2.3. Let X = `p = {x = {xn} ⊆ R :
∑∞

n=1 |xn|p ≺ +∞}, p ∈
(0, 1), and let A = M2×2(R).

Define d(x, y) = diag
(

(
∑∞

n=1 |xn − yn|p)
1
p , (
∑∞

n=1 |xn−yn|p)
1
p

)
in which

“diag” denotes a diagonal matrix and x, y ∈ X. It is easy to verify that
d(., .) is a C∗-algebra-valued bv(s)-metric. For proving (3) of Definition
2.1 with v = 2, we only need to use the following inequality:
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( ∞∑
n=1

|xn − yn|p
) 1

p

� 2
(
2

p
)
[( +∞∑

n=1

|xn − un|p
) 1

p
+
( +∞∑

n=1

|un − zn|p
) 1

p
+
( ∞∑

n=1

|zn − yn|p
) 1

p

]
,

which implies that d(x, y) � s
[
d(x, u) + d(u, z) + d(z, y)

]
, where s =

2
(
2

p
)

I ∈ A′+, for all x, y ∈ X and for all distinct elements u, z ∈ X −
{x, y}.

Lemma 2.4. Let (X,A, d) be a C∗-algebra-valued bv(s)-metric space
and let s ∈ A′+. Then (X,A, d) is a C∗-algebra-valued b2v(s

2)-metric
space.

Proof. Let (X,A, d) be a C∗-algebra-valued bv(s)-metric space. Let

d(x, y) � s
[
d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)

]
for all x, y ∈ X and for all distinct elements u1, u2, . . . , uv ∈ X −{x, y}.
Then, for different s1, s2, . . . , sv ∈ X − {x, y, u1, u2, . . . , uv}, we have

d(uv, y) � s
[
d(uv, s1) + d(s1, s2) + · · ·+ d(sv, y)

]
.

On the other hand, for every C∗-algebra, if a and b are positive elements
with a � b, and in addition s ∈ A′+, then sa � sb.
Now, by the above inequality, we have

sd(uv, y) � s
[
s[d(uv, s1) + · · ·+ d(sv, y)]

]
.

Furthermore, if a, b � 0A, then a+ b � 0A. Hence we can write

d(x, y)

� s
[
d(x, u1) + d(u1, u2) + · · ·+ d(uv−1, uv) + s[d(uv, s1) + · · ·+ d(sv, y)]

]
.

Since I � s and s ∈ A′+, so s � s2 and sb � s2b for all positive element
b ∈ A. Hence, for all positive elements a, b, c ∈ A, if a � sb + s2c, then
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a � s2b+ s2c. Thus, we get

d(x, y)

� s2
[
d(x, u1) + d(u1, u2) + · · ·+ d(uv, s1) + d(s1, s2) + · · ·+ d(sv, y)

]
,

which implies that (X,A, d) is a C∗-algebra-valued b2v(s
2)-metric space.

�

Lemma 2.5. Let (X,A, d) be a C∗-algebra-valued bv(s)-metric space,
let T : X → X, and let {xn} be a sequence in X defined by x0 ∈ X and
xn+1 = Txn such that xn 6= xn+1 (n � 0). If T is a C∗-algebra-valued
contractive mapping, then xn 6= xm for all distinct numbers m,n ∈ N.

Proof. Suppose, to the contrary, that xn = xn+p for some n � 0 and
p � 1.
Since T is a C∗-algebra-valued contractive mapping, there exists B ∈ A
with ‖B‖ ≺ 1 such that

d(Tx, Ty) � B∗d(x, y)B, for all x, y ∈ X.

On the other hand, we have Txn = Txn+p, and the assumptions imply
xn+1 = xn+p+1.
Now, we get

d(xn+1, xn) = d(xn+p+1, xn+p) � B∗d(xn+p, xn+p−1)B.

Similarly,

d(xn+p, xn+p−1) � B∗d(xn+p−1, xn+p−2)B.

Now, using Lemma 1.1, we conclude

0A � d(xn+1, xn) = d(xn+p+1, xn+p) � B∗d(xn+p, xn+p−1)B

� (B∗)2d(xn+p−1, xn+p−2)B
2

...

� (B∗)pd(xn+1, xn)Bp.
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Finally, by applying Lemma 1.1 again, we obtain

‖d(xn+1, xn)‖ � ‖(B∗)pd(xn+1, xn)Bp‖
� ‖(B∗)p‖‖d(xn+1, xn‖‖Bp‖
� ‖B∗‖p‖d(xn+1, xn)‖‖B‖p

= ‖B‖2p‖d(xn+1, xn)‖
≺ ‖d(xn+1, xn)‖,

which is a contradiction. �

Definition 2.6. Let (X,A, d) be a C∗-algebra-valued bv(s)-metric space.
Suppose that {xn} ⊂ X and x ∈ X. If, for any ε � 0, there is a natural
number N such that ‖d(xn, x)‖ � ε for all n � N , then {xn} is said to
be convergent with respect to A, also {xn} converges to x, or x is the
limit of {xn}. We denote it by lim

n→+∞
xn = x.

For any ε � 0, if there is a natural number N such that ‖d(xn, xm)‖ � ε
for all n,m � N , then {xn} is called a Cauchy sequence with respect to
A.
We say (X,A, d) is a complete C∗-algebra-valued bv(s)-metric space if
every Cauchy sequence with respect to A is convergent.

Theorem 2.7. Suppose that (X,A, d) is a complete C∗-algebra-valued
bv(s)-metric space with coefficient s. Let T : X → X be a C∗-algebra-
valued contractive mapping with constant B. If there exists a natural
number n0 such that s(B∗)n0Bn0 ≺ 1A and Bn0 ∈ A′, then T has a
unique fixed point in X.

Proof. It is clear that if B = 0A, then T maps X into a single point.
Thus without loss of generality, one can suppose that B 6= 0A.
Choose x0 ∈ X, and set {xn} by xn+1 = Txn = Tn+1x0, n = 0, 1, 2, . . ..
If xn = xn+1 for some n � 0, then T has a unique fixed point in X.
Otherwise, we consider xn 6= xn+1 (n � 0). Using Lemma 2.5 implies
that xn 6= xm for all distinct numbers n,m ∈ N. On the other hand,
notice that s[d(x, u1) + d(u1, u2) + · · ·+ d(uv−1, uv) + d(uv, y)], s ∈ A′+,
is also a positive element. Now, by Lemma 1.1 and the condition (1) on
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T , it follows that

d(xn+1, xn) = d(Txn, Txn−1) � B∗d(xn, xn−1)B

� (B∗)2d(xn−1, xn−2)B
2

...

� (B∗)nd(x1, x0)B
n.

We consider the following two cases:

(1) v � 2

(2) v = 1.

Let v � 2 . Also, suppose that m � n; then the triangle inequality for
the bv(s)-metric d implies that

d(xn, xm) � s
[
d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+v−3, xn+v−2)

+d(xn+v−2, xn+n0) + d(xn+n0 , xm+no) + d(xm+no , xm)
]

� s
[
(B∗)nd(x0, x1)B

n + (B∗)n+1d(x0, x1)B
n+1 + · · ·

+(B∗)n+v−3d(x0, x1)B
n+v−3 + (B∗)nd(xv−2, xn0)Bn

+(B∗)n0d(xn, xm)Bn0 + (B∗)md(xn0 , x0)B
m
]
.

So,
d(xn, xm)− s(B∗)n0d(xn, xm)Bn0

� s(B∗)nd(x0, x1)B
n + s(B∗)n+1d(x0, x1)B

n+1

+ · · ·+ s(B∗)n+v−3d(x0, x1)B
n+v−3

+s(B∗)nd(xv−2, xn0)Bn

+s(B∗)md(xn0 , x0)B
m.

On the other hand, by Lemma 1.1, we have
d(xn, xm)(1A − s(B∗)n0Bn0)
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� ‖d(xn, xm)(1A − s(B∗)n0Bn0)‖1A

� ‖s(B∗)nd(x0, x1)Bn + s(B∗)n+1d(x0, x1)Bn+1 + · · ·
+s(B∗)n+v−3d(x0, x1)Bn+v−3 + s(B∗)nd(xv−2, xn0)Bn

+s(B∗)md(xn0 , x0)Bm‖1A

� ‖s(B∗)nd(x0, x1)Bn‖1A + ‖s(B∗)n+1d(x0, x1)Bn+1‖1A + · · ·
+‖s(B∗)n+v−3d(x0, x1)Bn+v−3‖1A + ‖s(B∗)nd(xv−2, xn0)Bn‖1A

+‖s(B∗)md(xn0 , x0)Bm‖1A

� ‖s‖‖(B∗)n‖‖d(x0, x1)‖‖Bn‖1A + ‖s‖‖(B∗)n+1‖‖d(x0, x1)‖‖Bn+1‖1A

+‖s‖‖(B∗)n+v−3‖‖d(x0, x1)‖‖Bn+v−3‖1A

+‖s‖‖(B∗)n‖‖d(xv−2, xn0)‖‖Bn‖1A

+‖s‖‖(B∗)m‖‖d(xn0 , x0)‖‖Bm‖1A

� ‖s‖‖B∗‖n‖d(x0, x1)‖‖B‖n1A + ‖s‖‖B∗‖n+1‖d(x0, x1)‖‖B‖n+11A

+‖s‖‖B∗‖n+v−3‖d(x0, x1)‖‖B‖n+v−31A + ‖s‖‖B∗‖n‖d(xv−2, xn0)‖‖B‖n1A

+‖s‖‖B∗‖m‖d(xn0 , x0)‖‖B‖m1A.

Now, since (1A − s(B∗)n0Bn0) ∈ A′+ and it is invertible. Hence, by
Lemma 1.2, we have

d(xn, xm)

�
(
‖s‖‖B∗‖n‖d(x0, x1)‖‖B‖n + ‖s‖‖B∗‖n+1‖d(x0, x1)‖‖B‖n+1

+‖s‖‖B∗‖n+v−3‖d(x0, x1)‖‖B‖n+v−3 + ‖s‖‖B∗‖n‖d(xv−2, xn0)‖‖B‖n

+‖s‖‖B∗‖m‖d(xn0 , x0)‖‖B‖m
)

(1A − s(B∗)n0Bn0)−1

−→ 0A (as m, n→ +∞).

Therefore {xn} is a Cauchy sequence with respect to A. If v = 1, then
the proof follows from Lemma 2.4. By completeness of (X,A, d), there
exists x∗ ∈ X such that lim

n→+∞
xn = lim

n→+∞
Txn−1 = x∗. Since

d(Tx∗, x∗)

� s
[
d(Tx∗, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+v, x

∗)
]

= s
[
d(Tx∗, Txn) + d(Txn, Txn+1) + · · ·+ d(xn+v, x

∗)
]

� s
[
B∗d(x∗, xn)B + (B∗)nd(x0, x1)B

n + · · ·+ d(Txn+v−1, x
∗)
]
,

it follows that
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‖d(Tx∗, x∗)‖

� ‖s[B∗d(x∗, xn)B + (B∗)nd(x0, x1)B
n + · · ·+ d(Txn+v−1, x

∗)‖
� ‖s‖‖B∗‖‖d(x∗, xn)‖‖B‖+ ‖s‖‖(B∗)n‖‖d(x0, x1)‖‖Bn‖+ · · ·

+‖s‖‖(B∗)n+v−2‖‖d(x0, x1)‖‖Bn+v−2‖+ ‖d(xn+v, x
∗)‖

� ‖s‖‖B∗‖‖d(x∗, xn)‖‖B‖+ ‖s‖‖B∗‖n‖d(x0, x1)‖‖B‖n + · · ·
+‖s‖‖B∗‖n+v−2‖d(x0, x1)‖‖B‖n+v−2 + ‖d(xn+v, x

∗)‖
−→ 0 (as n→ +∞),

which shows that Tx∗ = x∗.
To prove that x∗ is the unique fixed point, we suppose that y∗( 6= x∗) is
another fixed point of T . Then by applying condition (1), we have

0A � d(x∗, y∗) = d(Tx∗, Ty∗) � B∗d(x∗, y∗)B.

Using the norm of A, we have

0 � ‖d(x∗, y∗)‖ = ‖d(Tx∗, T y∗)‖
� ‖B∗‖‖d(x∗, y∗)‖‖B‖
= ‖B‖2‖d(x∗, y∗)‖
≺ ‖d(x∗, y∗)‖,

which is impossible. So d(x∗, y∗) = 0A and x∗ = y∗, which implies that
the fixed point is unique. �

Definition 2.8. [11] let X be a nonempty set. We call a mapping T is
a C∗-algebra-valued expansion mapping on X, if T : X → X satisfies

(1) T (X) = X;

(2) d(Tx, Ty) � B∗d(x, y)B, for all x, y ∈ X,

where B ∈ A is an invertible element and ‖B−1‖ ≺ 1.

Theorem 2.9. Consider a complete C∗-algebra-valued bv(s)-metric space
(X,A, d) with coefficient s. Let T : X → X be a C∗-algebra-valued ex-
pansion mapping with constant B. If there exists a natural number n0
such that (B−1)n0 ∈ A′ and s((B−1)∗)n0(B−1)n0 ≺ 1A, then T has a
unique fixed point in X.
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Proof. First, we show that T is invertible. Since by condition (1) of
Definition 2.8, T is surjective, it is enough to show that T is injective.
Indeed, for any x, y ∈ X with x 6= y, if T (x) = T (y), we have

0A = d(Tx, Ty) � B∗d(x, y)B.

Since B∗d(x, y)B ∈ A+, therefore B∗d(x, y)B = 0A. On the other hand,
B is invertible, then d(x, y) = 0A, which is impossible. Thus T is injec-
tive.

Next, we will show that T has a unique fixed point in X. In fact,
since T is invertible, for any x, y ∈ X, it follows that

d(Tx, Ty) � B∗d(x, y)B.

In the above formula, we replace x and y by T−1(x) and T−1(y), respec-
tively, and we get

d(x, y) � B∗d(T−1x, T−1y)B.

Now by part (1) of Lemma 1.1, we have

(B−1)∗d(x, y)B−1 � (B−1)∗B∗d(T−1x, T−1y)BB−1

= (B∗)−1B∗d(T−1x, T−1y)BB−1

= d(T−1x, T−1y).

Using Theorem 2.7, there exists unique x∗ ∈ X such that T−1x∗ =
x∗, which means that there is a unique fixed point x∗ ∈ X such that
Tx∗ = x∗. � In the following theorem, we prove Jungcks theorem in
C∗-algebra-valued bv(s)-metric spaces.

Theorem 2.10. Consider (X,A, d) is a complete C∗-algebra-valued bv(s)-
metric space with coefficient s. Let T and I be commuting mappings of
X into itself such that the range of I contains the range of T and I is
continuous and satisfies the inequality

d(Tx, Ty) � B∗d(Ix, Iy)B for all x, y ∈ X, (2)

where B ∈ A with ‖B‖ ≺ 1. If there exists a natural number n0 such that
s(B∗)n0Bn0 ≺ 1A and Bn0 ∈ A′. Then T and I have a unique common
fixed point.
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Proof. Let x0 ∈ X be arbitrary. Then Tx0 and Ix0 are well-defined.
Since Tx0 ∈ I(X), there is x1 ∈ X such that Ix1 = Tx0. In general, if
xn is chosen, then we choose a point xn+1 in X such that Ixn+1 = Txn.
Now, we show that {Ixn} is Cauchy. From (2), for all m,n ∈ N, we have

d(Ixm, Ixn) = d(Txm−1, Txn−1) � B∗d(Ixm−1, Ixn−1)B. (3)

Now, we have the following two cases.
Case 1 If Ixn = Ixn+1 for some n � 0, then Ixn = Ixn+1 = Txn = ω.
We show that ω is a unique common fixed point of T and I. Since T
and I commute, thus Iω = I(Txn) = T (Ixn) = Tω.
Now, let d(Tω, ω) � 0A. Hence

d(Tω, ω) = d(Tω, Txn) � B∗d(Iω, Ixn)B = B∗d(Tω, ω)B.

Using the norm of A, we have

‖d(Tω, ω)‖ ≺ ‖d(Tω, ω)‖.

This is a contradiction. Thus ‖d(Tω, ω)‖ = 0, d(Tω, ω) = 0A, and
Tω = ω = Iω. By condition (2), ω is a unique common fixed point of T
and I.
Case 2 Now suppose that Ixn 6= Ixn+1 for all n � 0. From Lemma 2.5
and inequality (3), we have Ixn 6= Ixn+p for all n � 0 and p � 1. With
a similar argument used in the proof of Theorem 2.7, we can prove that
the sequence {Ixn} is Cauchy. Since the C∗-algebra-valued bv(s)-metric
space (X,A, d) is complete, so {Ixn} converges to u ∈ X such that

lim
n→+∞

Ixn = lim
n→+∞

Txn−1 = u.

Since I is continuous, inequality (2) implies that both I and T are con-
tinuous. Since T and I commute, we obtain

Iu = I( lim
n→+∞

Txn−1) = I( lim
n→+∞

Txn) = lim
n→+∞

ITxn

= lim
n→+∞

TIxn = T ( lim
n→+∞

Ixn) = Tu.

Let Tu = Iu = ν. Thus Tν = TIu = ITu = Iν.
If Tu 6= Tν, then from (2), we get

‖d(Tu, Tν)‖ � ‖B∗d(Iu, Iν)B‖ = ‖B∗d(Tu, Tν)B‖
� ‖B∗‖‖d(Tu, Tν)‖‖B‖
≺ ‖d(Tu, Tν)‖.
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This is a contradiction. So ‖d(Tu, Tν)‖ = 0, d(Tu, Tν) = 0A, and
Tu = Tν. Thus, we obtain Tν = Iν = ν.
Now, we claim ν is the unique common fixed point for T and I.
Let ν∗(6= ν) be another fixed point for T and I. By inequality (2), we
have

d(ν, ν∗) = d(Tν, Tν∗) � B∗d(Iν, Iν∗)B.

Now, by using the norm of A, we have

‖d(ν, ν∗)‖ = ‖d(Tν, Tν∗)‖ � ‖B∗d(Iν, Iν∗)B‖
� ‖B∗‖ d(Iν, Iν∗)‖‖B‖
≺ ‖d(Iν, Iν∗)‖ = ‖d(ν, ν∗)‖.

This is a contradiction, which implies that ν = ν∗. �

Remark 2.11. In Theorem 2.10, if I is the identity map on X, then,
Theorem 2.7 holds.

3 Application

In this section, we give an existence theorem for a solution of the fol-
lowing integral equation.

x(t) =

∫
E
K(t, s, x(s))ds+ g(t), t ∈ E, (4)

where K : E × E × R→ R and g ∈ CR(E).
Let X = CR(E) be the set of all real valued continuous functions on E,
where E is a nonempty Lebesgue measurable compact set in R+. Also,
A = L(H) is the set of all bounded linear operators on H = L2(E)
with usual operator norm. We define d′ : X × X → R+ by d′(x, y) =
sup
t∈E

(x(t) − y(t))2 for all x, y ∈ X. Then, (X, d′) is a complete b2(3)-

metric space. Moreover, Πγ : H → H is defined by Πγ(h) = γ.h for all
γ ∈ C and h ∈ H. Now, define d : X ×X → A+ by d(x, y) = Πd′(x,y).
It is clear that (X,A, d) is a complete C∗-algebra-valued bv(s)-metric
space with v = 2 and s = 3I. We assume that the following conditions
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are satisfied:
(i) There exists a continuous function f : E × E → R such that

|K(t, s, u)−K(t, s, v)| � α|f(t, s)(u− v)|,

for t, s ∈ E, α ∈ (0, 1) and u, v ∈ R.

(ii) It follows that sup
t∈E

∫
E
|f(t, s)|ds � 1 for any t, s ∈ E.

Theorem 3.1. Under the assumptions (i) and (ii) equation (4) has a
unique solution in X

Proof. Let T : X → X be defined by Tx(t) =
∫
EK(t, s, x(s))ds+ g(t),

t ∈ E. Then

‖d(Tx, Ty)‖

= ‖Πd′(Tx,Ty)‖ = sup
‖h‖=1

〈
Πd′(Tx,Ty)(h), h

〉
;h ∈ H

= sup
‖h‖=1

∫
E
d′(Tx, Ty)h(u)h(u)d(u);u ∈ E

= sup
‖h‖=1

∫
E

sup
t∈E

[
Tx(t)− Ty(t)

]2
h(u)h(u)d(u);u ∈ E

= sup
‖h‖=1

∫
E

sup
t∈E

[ ∫
E

[
K
(
t, s, x(s)

)
−K

(
t, s, y(s)

)]
ds
]2
|h(u)|2du;u ∈ E

� sup
‖h‖=1

∫
E

sup
t∈E

[ ∫
E
α|f(t, s)|

(
x(s)− y(s)

)
ds
]2
|h(u)|2du;u ∈ E

= α2d′(x, y) sup
‖h‖=1

∫
E

sup
t∈E

[ ∫
E
|f(t, s)|ds

]2
|h(u)|2du;u ∈ E

� α2d′(x, y) sup
‖h‖=1

∫
E
|h(u)|2du;u ∈ E

= α2 sup
‖h‖=1

∫
E
d′(x, y)|h(u)|2du;u ∈ E

= α2‖d(x, y)‖.

By take B = α1A, then ‖B‖ ≺ 1. Using Theorem 2.7, the integral
equation (4) has a unique solution in X. �



14 M.H. SABOORI et al.

Example 3.2. Consider the following functional integral equation:

x(t) =

∫ 1

0

4e−(t+1)s

3((t+ 1)2 + 2)

|x(s)|
1 + |x(s)|

ds+ t (5)

for t ∈ E = [0, 1]. Observe that this equation is a special case of (4)
with

K(t, s, x(s)) = 4e−(t+1)s

3((t+1)2+2)
|x(s)|

1+|x(s)| ,

f(t, s) = 4e−(t+1)s

(t+1)2+2
,

g(t) = t.

Notice that, for arbitrary fixed numbers u, v ∈ R and t, s ∈ E = [0, 1],
we have

|K(t, s, u)−K(t, s, v)|

=
∣∣ 4e−(t+1)s

3((t+ 1)2 + 2)

|u|
1 + |u|

− 4e−(t+1)s

3((t+ 1)2 + 2)

|v|
1 + |v|

∣∣
� 1

3
| 4e−(t+1)s

(t+ 1)2 + 2
||u− v|.

Thus the function K satisfies the assumption (i) with α =
1

3
.

Also, we have

sup
0�t≤1

∫ 1

0

|f(t, s)|ds = sup
0�t�1

∫ 1

0

| 4e−(t+1)s

(t + 1)2 + 2
|ds = sup

0�t�1

4

(t + 1)2 + 2

∫ 1

0

e−(t+1)sds ≺

1. This shows that the assumption (ii) holds. Consequently, all the
conditions of Theorem 3.1 are satisfied. Hence the integral equation
(3.2) has a unique solution in CR(E).

4 Iterative method for solving integral equation

Theorem 4.1. Consider the integral equation (4). The following itera-
tion process leads to the fixed point (function) solution of (4)

xn+1(t) =

∫
E
K(t, s, xn(s))ds+ g(t), t ∈ E, (6)
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where the initial guess x0(t) can be any arbitrary function such as 0, 1,
or t.

Proof. Assume that the exact solution of (4) is x̃(t).
We have

|x1(t)− x̃(t)| = |
∫
E

(
K(t, s, x0(s)−K(t, s, x̃(s)

)
ds|

�
∫
E
α|f(t, s)||x0(s)− x̃(s)|ds

� αM,

where M = max |x0(s)− x̃(t)|, t ∈ E. One can show similarly that

|x2(t)− x̃(t)| � α

∫
E
|f(t, s)||x1(s)− x̃(s)|ds

� α2M

∫
E
|f(t, s)|ds

� α2M.

Finally,

|xn+1(t)− x̃(t)| � αn+1M.

It is clear that when n tends to infinity, xn+1(t) tends to the exact
solution x̃(t). � Consider the integral equation (6), we set

H(xn(t)) =

∫
E
K
(
t, s, xn(s)

)
ds+ g(t),

so the integral equation (6) can be rewritten as follows:

xn+1(t) = H(xn(t)).

It is clear that the exact solution x̃(t) satisfies

x̃(t) = H(x̃(t))

and |x̃(t)−H(x̃(t))| = 0.
Now in order to start the iterations for Example 3.2, we consider x0(t) =
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0 and do four iterations according to relation (6) to obtain x4(t). we
have used Maple 2018 to plot

|x4(t)− x3(t)| = |H(x3(t))− x3(t)|

in Figure 1, which shows small errors between x3(t) and x4(t), and it
can be considered as a good approximation for the exact solution x̃(t).
In Figure 2, we have plotted x4(t) in the interval [0, 1].
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Figure 1: graph of |x4(t)− x3(t)|

Figure 2: graph of x4(t)
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