Fixed Point Theorems in C^{*}-Algebra-Valued $b_{v}(s)$-Metric Spaces with Application and Numerical Methods

M.H. Saboori
Mashhad Branch, Islamic Azad University
M. Hassani
Mashhad Branch, Islamic Azad University
R. Allahyari*
Mashhad Branch, Islamic Azad University
M. Mehrabinezhad
Mashhad Branch, Islamic Azad University

Abstract

We first introduce a novel notion named C^{*}-algebra-valued $b_{v}(s)$-metric spaces. Then, we give proofs of the Banach contraction principle, the expansion mapping theorem, and Jungck's theorem in C^{*} -algebra-valued $b_{v}(s)$-metric spaces. As an application of our results, we establish a result for an integral equation in a C^{*}-algebra-valued $b_{v}(s)$ metric space. Finally, a numerical method is presented to solve the proposed integral equation, and the convergence of this method is also studied. Moreover, a numerical example is given to show applicability and accuracy of the numerical method and guarantee the theoretical results.

AMS Subject Classification: 47H10; 46L07
Keywords and Phrases: C^{*}-algebra, $b_{v}(s)$-metric space, Fixed point theorem, Integral equation, Contractive mapping

[^0]
1 Introduction and Preliminaries

Banach contraction principle [4] was introduced by Banach in 1922, and later it is called the fixed point theorem. The fixed point theorem is a strong tool for solving existence problems in many branches of mathematics and physics.
Bakhtin [3] introduced b-metric spaces as a generalization of metric spaces and proved analogue of the Banach contraction principle in b metric spaces. In the paper [6], Branciari introduced the concept of v-generalized metric spaces. Radenović and Mitrović [12] introduced the concept $b_{v}(s)$-metric spaces as a generalization of metric spaces, b metric spaces, and v-generalized metric spaces. On the other hand, Ma et al. [11] presented the concept of C^{*}-algebra-valued metric spaces. Later, this line of research was continued in $[1,5,8,9,10,14,15,16]$, where several other fixed point results were obtained in the framework of C^{*}-algebra-valued metric, as well as (more general) C^{*}-algebra-valued b-metric spaces. Now, in this paper, we introduce a new notion C^{*} -algebra-valued $b_{v}(s)$-metric spaces. Then, we prove the Banach contraction principle, expansion mapping theorem, and Jungck's theorem [2] for C^{*}-algebra-valued $b_{v}(s)$-metric spaces. Also, we state a result for an integral equation in a C^{*}-algebra-valued $b_{v}(s)$-metric space, which demonstrates an application of our main theorem. Finally, we propose a numerical method for solving the integral equation and investigate the convergence of this method. Moreover, to illustrate an application and accuracy, we present a numerical example, which guarantees the theoretical results.

We provide some auxiliary facts which will be used in the rest of the paper. Throughout this paper, \mathbb{A} always denotes a unital C^{*}-algebra with a unit $1_{\mathbb{A}}$. We call an element $a \in \mathbb{A}$ a positive element, denoted $a \succeq 0_{\mathbb{A}}$, if $a \in \mathbb{A}_{h}$ and $\sigma(a) \subseteq \mathbb{R}_{+}=[0,+\infty)$, where $\mathbb{A}_{h}=\{a \in \mathbb{A}$: $\left.a^{*}=a\right\}$. The set \mathbb{A}_{+}indicates the positive elements of \mathbb{A}. Also, $\mathbb{A}^{\prime}=\{a \in \mathbb{A}: x a=a x$, for all $x \in \mathbb{A}\}$.

Lemma 1.1. [13] Let \mathbb{A} be a unital C^{*}-algebra with unit $1_{\mathbb{A}}$.
(1) If $a, b \in \mathbb{A}_{h}$ with $a \preceq b$ and $c \in \mathbb{A}$, then $c^{*} a c \preceq c^{*} b c$.
(2) For all $a, b \in \mathbb{A}_{h}$, if $0_{\mathbb{A}} \preceq a \preceq b$, then $\|a\| \preceq\|b\|$.

Lemma 1.2. $[7,13]$ Suppose that \mathbb{A} is a unital C^{*}-algebra with unit $1_{\mathbb{A}}$.
(1) For any $x \in \mathbb{A}_{+}$, it follows that $x \preceq 1_{\mathbb{A}}$ if and only if $\|x\| \preceq 1$.
(2) If $a \in \mathbb{A}_{+}$with $\|a\| \prec \frac{1}{2}$, then $1_{\mathbb{A}}-a$ is invertible and $\| a\left(1_{\mathbb{A}}-\right.$ $a)^{-1} \| \prec 1$.
(3) Suppose that $a, b \in \mathbb{A}_{+}$with $a b=b a$; then $a b \succeq 0_{\mathbb{A}}$.
(4) For $a \in \mathbb{A}^{\prime}$, if $b \succeq c \succeq 0_{\mathbb{A}}$ and $1_{\mathbb{A}}-a \in \mathbb{A}_{+}^{\prime}$ is an invertible element, then $\left(1_{\mathbb{A}}-a\right)^{-1} b \succeq\left(1_{\mathbb{A}}-a\right)^{-1} c$.

2 Main results

Definition 2.1. Let X be a nonempty set and let \mathbb{A} be a C^{*}-algebra. The mapping $d: X \times X \rightarrow \mathbb{A}_{+}$is called C^{*}-algebra-valued $b_{v}(s)$-metric, if there exists $s \in \mathbb{A}_{+}^{\prime}$ with $\|s\| \succeq 1$ such that d satisfies
(1) $d(x, y)=0_{\mathbb{A}}$ if and only if $x=y \quad$ for all $x, y \in X$.
(2) $d(x, y)=d(y, x) \quad$ for all $x, y \in X$.
(3) $d(x, y) \preceq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v-1}, u_{v}\right)+d\left(u_{v}, y\right)\right]$, for all $x, y \in X$ and for all distinct elements $u_{1}, u_{2}, \ldots, u_{v} \in X-\{x, y\}$ in which $v \in \mathbb{N}$.

Definition 2.2. Suppose that (X, \mathbb{A}, d) is a C^{*}-algebra-valued $b_{v}(s)$ metric space. Then $T: X \rightarrow X$ is called a C^{*}-algebra-valued contractive mapping, if there exists $B \in \mathbb{A}$ with $\|B\| \prec 1$ such that

$$
\begin{equation*}
d(T x, T y) \preceq B^{*} d(x, y) B \quad \text { for all } x, y \in X . \tag{1}
\end{equation*}
$$

Example 2.3. Let $X=\ell^{p}=\left\{x=\left\{x_{n}\right\} \subseteq \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p} \prec+\infty\right\}, p \in$ $(0,1)$, and let $\mathbb{A}=\mathbb{M}_{2 \times 2}(\mathbb{R})$.
Define $d(x, y)=\operatorname{diag}\left(\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}},\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}\right)$ in which "diag" denotes a diagonal matrix and $x, y \in X$. It is easy to verify that $d(.,$.$) is a C^{*}$-algebra-valued $b_{v}(s)$-metric. For proving (3) of Definition 2.1 with $v=2$, we only need to use the following inequality:

$$
\begin{aligned}
& \left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}} \\
& \quad \preceq 2^{\left(\frac{2}{p}\right)}\left[\left(\sum_{n=1}^{+\infty}\left|x_{n}-u_{n}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{+\infty}\left|u_{n}-z_{n}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left|z_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}\right],
\end{aligned}
$$

which implies that $d(x, y) \preceq s[d(x, u)+d(u, z)+d(z, y)]$, where $s=$ $\left(\frac{2}{n}\right)$
$2^{p} I \in \mathbb{A}_{+}^{\prime}$, for all $x, y \in X$ and for all distinct elements $u, z \in X-$ $\{x, y\}$.

Lemma 2.4. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued $b_{v}(s)$-metric space and let $s \in \mathbb{A}_{+}^{\prime}$. Then (X, \mathbb{A}, d) is a C^{*}-algebra-valued $b_{2 v}\left(s^{2}\right)$-metric space.

Proof. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued $b_{v}(s)$-metric space. Let

$$
d(x, y) \preceq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v}, y\right)\right]
$$

for all $x, y \in X$ and for all distinct elements $u_{1}, u_{2}, \ldots, u_{v} \in X-\{x, y\}$. Then, for different $s_{1}, s_{2}, \ldots, s_{v} \in X-\left\{x, y, u_{1}, u_{2}, \ldots, u_{v}\right\}$, we have

$$
d\left(u_{v}, y\right) \preceq s\left[d\left(u_{v}, s_{1}\right)+d\left(s_{1}, s_{2}\right)+\cdots+d\left(s_{v}, y\right)\right] .
$$

On the other hand, for every C^{*}-algebra, if a and b are positive elements with $a \preceq b$, and in addition $s \in \mathbb{A}_{+}^{\prime}$, then $s a \preceq s b$.
Now, by the above inequality, we have

$$
s d\left(u_{v}, y\right) \preceq s\left[s\left[d\left(u_{v}, s_{1}\right)+\cdots+d\left(s_{v}, y\right)\right]\right] .
$$

Furthermore, if $a, b \succeq 0_{\mathbb{A}}$, then $a+b \succeq 0_{\mathbb{A}}$. Hence we can write

$$
d(x, y)
$$

$$
\preceq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v-1}, u_{v}\right)+s\left[d\left(u_{v}, s_{1}\right)+\cdots+d\left(s_{v}, y\right)\right]\right] .
$$

Since $I \preceq s$ and $s \in \mathbb{A}_{+}^{\prime}$, so $s \preceq s^{2}$ and $s b \preceq s^{2} b$ for all positive element $b \in \mathbb{A}$. Hence, for all positive elements $a, b, c \in \mathbb{A}$, if $a \preceq s b+s^{2} c$, then

FIXED POINT THEOREM IN C^{*}-ALGEBRA-VALUED $b_{v}(s)$-METRIC

 SPACES...$a \preceq s^{2} b+s^{2} c$. Thus, we get

$$
\begin{aligned}
& d(x, y) \\
& \preceq s^{2}\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v}, s_{1}\right)+d\left(s_{1}, s_{2}\right)+\cdots+d\left(s_{v}, y\right)\right],
\end{aligned}
$$

which implies that (X, \mathbb{A}, d) is a C^{*}-algebra-valued $b_{2 v}\left(s^{2}\right)$-metric space.

Lemma 2.5. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued $b_{v}(s)$-metric space, let $T: X \rightarrow X$, and let $\left\{x_{n}\right\}$ be a sequence in X defined by $x_{0} \in X$ and $x_{n+1}=T x_{n}$ such that $x_{n} \neq x_{n+1}(n \succeq 0)$. If T is a C^{*}-algebra-valued contractive mapping, then $x_{n} \neq x_{m}$ for all distinct numbers $m, n \in \mathbb{N}$.

Proof. Suppose, to the contrary, that $x_{n}=x_{n+p}$ for some $n \succeq 0$ and $p \succeq 1$.
Since T is a C^{*}-algebra-valued contractive mapping, there exists $B \in \mathbb{A}$ with $\|B\| \prec 1$ such that

$$
d(T x, T y) \preceq B^{*} d(x, y) B, \quad \text { for all } x, y \in X .
$$

On the other hand, we have $T x_{n}=T x_{n+p}$, and the assumptions imply $x_{n+1}=x_{n+p+1}$.
Now, we get

$$
d\left(x_{n+1}, x_{n}\right)=d\left(x_{n+p+1}, x_{n+p}\right) \preceq B^{*} d\left(x_{n+p}, x_{n+p-1}\right) B .
$$

Similarly,

$$
d\left(x_{n+p}, x_{n+p-1}\right) \preceq B^{*} d\left(x_{n+p-1}, x_{n+p-2}\right) B .
$$

Now, using Lemma 1.1, we conclude

$$
\begin{aligned}
0_{\mathbb{A}} \preceq d\left(x_{n+1}, x_{n}\right)=d\left(x_{n+p+1}, x_{n+p}\right) & \preceq B^{*} d\left(x_{n+p}, x_{n+p-1}\right) B \\
& \preceq\left(B^{*}\right)^{2} d\left(x_{n+p-1}, x_{n+p-2}\right) B^{2} \\
& \vdots \\
& \preceq\left(B^{*}\right)^{p} d\left(x_{n+1}, x_{n}\right) B^{p} .
\end{aligned}
$$

Finally, by applying Lemma 1.1 again, we obtain

$$
\begin{aligned}
\left\|d\left(x_{n+1}, x_{n}\right)\right\| & \preceq\left\|\left(B^{*}\right)^{p} d\left(x_{n+1}, x_{n}\right) B^{p}\right\| \\
& \preceq\left\|\left(B^{*}\right)^{p}\right\| \| d\left(x_{n+1}, x_{n}\| \| B^{p} \|\right. \\
& \preceq\left\|B^{*}\right\|^{p}\left\|d\left(x_{n+1}, x_{n}\right)\right\|\|B\|^{p} \\
& =\|B\|^{2 p}\left\|d\left(x_{n+1}, x_{n}\right)\right\| \\
& \prec\left\|d\left(x_{n+1}, x_{n}\right)\right\|,
\end{aligned}
$$

which is a contradiction.

Definition 2.6. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued $b_{v}(s)$-metric space. Suppose that $\left\{x_{n}\right\} \subset X$ and $x \in X$. If, for any $\varepsilon \succ 0$, there is a natural number N such that $\left\|d\left(x_{n}, x\right)\right\| \preceq \varepsilon$ for all $n \succ N$, then $\left\{x_{n}\right\}$ is said to be convergent with respect to \mathbb{A}, also $\left\{x_{n}\right\}$ converges to x, or x is the limit of $\left\{x_{n}\right\}$. We denote it by $\lim _{n \rightarrow+\infty} x_{n}=x$.
For any $\varepsilon \succ 0$, if there is a natural number N such that $\left\|d\left(x_{n}, x_{m}\right)\right\| \preceq \varepsilon$ for all $n, m \succ N$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence with respect to A.

We say (X, \mathbb{A}, d) is a complete C^{*}-algebra-valued $b_{v}(s)$-metric space if every Cauchy sequence with respect to \mathbb{A} is convergent.

Theorem 2.7. Suppose that (X, \mathbb{A}, d) is a complete C^{*}-algebra-valued $b_{v}(s)$-metric space with coefficient s. Let $T: X \rightarrow X$ be a C^{*}-algebravalued contractive mapping with constant B. If there exists a natural number n_{0} such that $s\left(B^{*}\right)^{n_{0}} B^{n_{0}} \prec 1_{\mathbb{A}}$ and $B^{n_{0}} \in \mathbb{A}^{\prime}$, then T has a unique fixed point in X.

Proof. It is clear that if $B=0_{\mathbb{A}}$, then T maps X into a single point. Thus without loss of generality, one can suppose that $B \neq 0_{\mathbb{A}}$. Choose $x_{0} \in X$, and set $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}=T^{n+1} x_{0}, n=0,1,2, \ldots$. If $x_{n}=x_{n+1}$ for some $n \succeq 0$, then T has a unique fixed point in X. Otherwise, we consider $x_{n} \neq x_{n+1}(n \succeq 0)$. Using Lemma 2.5 implies that $x_{n} \neq x_{m}$ for all distinct numbers $n, m \in \mathbb{N}$. On the other hand, notice that $s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v-1}, u_{v}\right)+d\left(u_{v}, y\right)\right], s \in \mathbb{A}_{+}^{\prime}$, is also a positive element. Now, by Lemma 1.1 and the condition (1) on

FIXED POINT THEOREM IN C^{*}-ALGEBRA-VALUED $b_{v}(s)$-METRIC

 SPACES...T, it follows that

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right)=d\left(T x_{n}, T x_{n-1}\right) & \preceq B^{*} d\left(x_{n}, x_{n-1}\right) B \\
& \preceq\left(B^{*}\right)^{2} d\left(x_{n-1}, x_{n-2}\right) B^{2} \\
& \vdots \\
& \preceq\left(B^{*}\right)^{n} d\left(x_{1}, x_{0}\right) B^{n}
\end{aligned}
$$

We consider the following two cases:
(1) $v \succeq 2$
(2) $v=1$.

Let $v \succeq 2$. Also, suppose that $m \succ n$; then the triangle inequality for the $b_{v}(s)$-metric d implies that

$$
\begin{aligned}
& d\left(x_{n}, x_{m}\right) \preceq s[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+v-3}, x_{n+v-2}\right) \\
&\left.+d\left(x_{n+v-2}, x_{n+n_{0}}\right)+d\left(x_{n+n_{0}}, x_{m+n_{o}}\right)+d\left(x_{m+n_{o}}, x_{m}\right)\right] \\
& \preceq s\left[\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}+\left(B^{*}\right)^{n+1} d\left(x_{0}, x_{1}\right) B^{n+1}+\cdots\right. \\
&+\left(B^{*}\right)^{n+v-3} d\left(x_{0}, x_{1}\right) B^{n+v-3}+\left(B^{*}\right)^{n} d\left(x_{v-2}, x_{n_{0}}\right) B^{n} \\
&\left.+\left(B^{*}\right)^{n_{0}} d\left(x_{n}, x_{m}\right) B^{n_{0}}+\left(B^{*}\right)^{m} d\left(x_{n_{0}}, x_{0}\right) B^{m}\right]
\end{aligned}
$$

So,
$d\left(x_{n}, x_{m}\right)-s\left(B^{*}\right)^{n_{0}} d\left(x_{n}, x_{m}\right) B^{n_{0}}$

$$
\begin{aligned}
\preceq & s\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}+s\left(B^{*}\right)^{n+1} d\left(x_{0}, x_{1}\right) B^{n+1} \\
& +\cdots+s\left(B^{*}\right)^{n+v-3} d\left(x_{0}, x_{1}\right) B^{n+v-3} \\
& +s\left(B^{*}\right)^{n} d\left(x_{v-2}, x_{n_{0}}\right) B^{n} \\
& +s\left(B^{*}\right)^{m} d\left(x_{n_{0}}, x_{0}\right) B^{m} .
\end{aligned}
$$

On the other hand, by Lemma 1.1, we have $d\left(x_{n}, x_{m}\right)\left(1_{\mathbb{A}}-s\left(B^{*}\right)^{n_{0}} B^{n_{0}}\right)$

$$
\begin{aligned}
\preceq & \left\|d\left(x_{n}, x_{m}\right)\left(1_{\mathbb{A}}-s\left(B^{*}\right)^{n_{0}} B^{n_{0}}\right)\right\| 1_{\mathbb{A}} \\
\preceq & \| s\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}+s\left(B^{*}\right)^{n+1} d\left(x_{0}, x_{1}\right) B^{n+1}+\cdots \\
& +s\left(B^{*}\right)^{n+v-3} d\left(x_{0}, x_{1}\right) B^{n+v-3}+s\left(B^{*}\right)^{n} d\left(x_{v-2}, x_{n_{0}}\right) B^{n} \\
& +s\left(B^{*}\right)^{m} d\left(x_{n_{0}}, x_{0}\right) B^{m} \| 1_{\mathbb{A}} \\
\preceq & \left\|s\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}\right\| 1_{\mathbb{A}}+\left\|s\left(B^{*}\right)^{n+1} d\left(x_{0}, x_{1}\right) B^{n+1}\right\| 1_{\mathbb{A}}+\cdots \\
& +\left\|s\left(B^{*}\right)^{n+v-3} d\left(x_{0}, x_{1}\right) B^{n+v-3}\right\| 1_{\mathbb{A}}+\left\|s\left(B^{*}\right)^{n} d\left(x_{v-2}, x_{n_{0}}\right) B^{n}\right\| 1_{\mathbb{A}} \\
& +\left\|s\left(B^{*}\right)^{m} d\left(x_{n_{0}}, x_{0}\right) B^{m}\right\| 1_{\mathbb{A}} \\
\preceq & \|s\|\left\|\left(B^{*}\right)^{n}\right\|\left\|d\left(x_{0}, x_{1}\right)\right\|\left\|B^{n}\right\| 1_{\mathbb{A}}+\|s\|\left\|\left(B^{*}\right)^{n+1}\right\|\left\|d\left(x_{0}, x_{1}\right)\right\|\left\|B^{n+1}\right\| 1_{\mathbb{A}} \\
& +\|s\|\left\|\left(B^{*}\right)^{n+v-3}\right\|\left\|d\left(x_{0}, x_{1}\right)\right\|\left\|B^{n+v-3}\right\| 1_{\mathbb{A}} \\
& +\|s\|\left\|\left(B^{*}\right)^{n}\right\|\left\|d\left(x_{v-2}, x_{n_{0}}\right)\right\|\left\|B^{n}\right\| 1_{\mathbb{A}} \\
& +\|s\|\left\|\left(B^{*}\right)^{m}\right\|\left\|d\left(x_{n_{0}}, x_{0}\right)\right\|\left\|B^{m}\right\| 1_{\mathbb{A}} \\
\preceq \quad & \|s\|\left\|B^{*}\right\|^{n}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n} 1_{\mathbb{A}}+\|s\|\left\|B^{*}\right\|^{n+1}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n+1} 1_{\mathbb{A}} \\
& +\|s\|\left\|B^{*}\right\|^{n+v-3}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n+v-3} 1_{\mathbb{A}}+\|s\|\left\|B^{*}\right\|^{n}\left\|d\left(x_{v-2}, x_{n_{0}}\right)\right\|\|B\|^{n} 1_{\mathbb{A}} \\
& +\|s\|\left\|B^{*}\right\|^{m}\left\|d\left(x_{n_{0}}, x_{0}\right)\right\|\|B\|^{m} 1_{\mathbb{A}} .
\end{aligned}
$$

Now, since $\left(1_{\mathbb{A}}-s\left(B^{*}\right)^{n_{0}} B^{n_{0}}\right) \in \mathbb{A}_{+}^{\prime}$ and it is invertible. Hence, by Lemma 1.2, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{m}\right) \\
& \preceq\left(\|s\|\left\|B^{*}\right\|^{n}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n}+\|s\|\left\|B^{*}\right\|^{n+1}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n+1}\right. \\
&+\|s\|\left\|B^{*}\right\|^{n+v-3}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n+v-3}+\|s\|\left\|B^{*}\right\|^{n}\left\|d\left(x_{v-2}, x_{n_{0}}\right)\right\|\|B\|^{n} \\
&\left.+\|s\|\left\|B^{*}\right\|^{m}\left\|d\left(x_{n_{0}}, x_{0}\right)\right\|\|B\|^{m}\right)\left(1_{\mathbb{A}}-s\left(B^{*}\right)^{n_{0}} B^{n_{0}}\right)^{-1} \\
& 0_{\mathbb{A}}(\text { as } m, n \rightarrow+\infty)
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence with respect to \mathbb{A}. If $v=1$, then the proof follows from Lemma 2.4. By completeness of (X, \mathbb{A}, d), there exists $x^{*} \in X$ such that $\lim _{n \rightarrow+\infty} x_{n}=\lim _{n \rightarrow+\infty} T x_{n-1}=x^{*}$. Since

$$
\begin{aligned}
& d\left(T x^{*}, x^{*}\right) \\
& \quad \preceq s\left[d\left(T x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+v}, x^{*}\right)\right] \\
& \quad=s\left[d\left(T x^{*}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)+\cdots+d\left(x_{n+v}, x^{*}\right)\right] \\
& \quad \preceq s\left[B^{*} d\left(x^{*}, x_{n}\right) B+\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}+\cdots+d\left(T x_{n+v-1}, x^{*}\right)\right]
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\| d\left(T x^{*},\right. & \left.x^{*}\right) \| \\
\preceq & \| s\left[B^{*} d\left(x^{*}, x_{n}\right) B+\left(B^{*}\right)^{n} d\left(x_{0}, x_{1}\right) B^{n}+\cdots+d\left(T x_{n+v-1}, x^{*}\right) \|\right. \\
\preceq & \|s\|\left\|B^{*}\right\|\left\|d\left(x^{*}, x_{n}\right)\right\|\|B\|+\|s\|\left\|\left(B^{*}\right)^{n}\right\|\left\|d\left(x_{0}, x_{1}\right)\right\|\left\|B^{n}\right\|+\cdots \\
& +\|s\|\left\|\left(B^{*}\right)^{n+v-2}\right\|\left\|d\left(x_{0}, x_{1}\right)\right\|\left\|B^{n+v-2}\right\|+\left\|d\left(x_{n+v}, x^{*}\right)\right\| \\
\preceq & \|s\|\left\|B^{*}\right\|\left\|d\left(x^{*}, x_{n}\right)\right\|\|B\|+\|s\|\left\|B^{*}\right\|^{n}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n}+\cdots \\
& +\|s\|\left\|B^{*}\right\|^{n+v-2}\left\|d\left(x_{0}, x_{1}\right)\right\|\|B\|^{n+v-2}+\left\|d\left(x_{n+v}, x^{*}\right)\right\| \\
\longrightarrow & 0 \quad(\text { as } n \rightarrow+\infty),
\end{aligned}
$$

which shows that $T x^{*}=x^{*}$.
To prove that x^{*} is the unique fixed point, we suppose that $y^{*}\left(\neq x^{*}\right)$ is another fixed point of T. Then by applying condition (1), we have

$$
0_{\mathbb{A}} \preceq d\left(x^{*}, y^{*}\right)=d\left(T x^{*}, T y^{*}\right) \preceq B^{*} d\left(x^{*}, y^{*}\right) B .
$$

Using the norm of \mathbb{A}, we have

$$
\begin{aligned}
0 & \preceq\left\|d\left(x^{*}, y^{*}\right)\right\|=\left\|d\left(T x^{*}, T y^{*}\right)\right\| \\
& \preceq\left\|B^{*}\right\|\left\|d\left(x^{*}, y^{*}\right)\right\|\|B\| \\
& =\|B\|^{2}\left\|d\left(x^{*}, y^{*}\right)\right\| \\
& \prec\left\|d\left(x^{*}, y^{*}\right)\right\|,
\end{aligned}
$$

which is impossible. So $d\left(x^{*}, y^{*}\right)=0_{\mathbb{A}}$ and $x^{*}=y^{*}$, which implies that the fixed point is unique.

Definition 2.8. [11] let X be a nonempty set. We call a mapping T is a C^{*}-algebra-valued expansion mapping on X, if $T: X \rightarrow X$ satisfies
(1) $T(X)=X$;
(2) $d(T x, T y) \succeq B^{*} d(x, y) B, \quad$ for all $x, y \in X$,
where $B \in \mathbb{A}$ is an invertible element and $\left\|B^{-1}\right\| \prec 1$.
Theorem 2.9. Consider a complete C^{*}-algebra-valued $b_{v}(s)$-metric space (X, \mathbb{A}, d) with coefficient s. Let $T: X \rightarrow X$ be a C^{*}-algebra-valued expansion mapping with constant B. If there exists a natural number n_{0} such that $\left(B^{-1}\right)^{n_{0}} \in \mathbb{A}^{\prime}$ and $s\left(\left(B^{-1}\right)^{*}\right)^{n_{0}}\left(B^{-1}\right)^{n_{0}} \prec 1_{\mathbb{A}}$, then T has a unique fixed point in X.

Proof. First, we show that T is invertible. Since by condition (1) of Definition 2.8, T is surjective, it is enough to show that T is injective. Indeed, for any $x, y \in X$ with $x \neq y$, if $T(x)=T(y)$, we have

$$
0_{\mathbb{A}}=d(T x, T y) \succeq B^{*} d(x, y) B
$$

Since $B^{*} d(x, y) B \in \mathbb{A}_{+}$, therefore $B^{*} d(x, y) B=0_{\mathbb{A}}$. On the other hand, B is invertible, then $d(x, y)=0_{\mathbb{A}}$, which is impossible. Thus T is injective.

Next, we will show that T has a unique fixed point in X. In fact, since T is invertible, for any $x, y \in X$, it follows that

$$
d(T x, T y) \succeq B^{*} d(x, y) B .
$$

In the above formula, we replace x and y by $T^{-1}(x)$ and $T^{-1}(y)$, respectively, and we get

$$
d(x, y) \succeq B^{*} d\left(T^{-1} x, T^{-1} y\right) B .
$$

Now by part (1) of Lemma 1.1, we have

$$
\begin{aligned}
\left(B^{-1}\right)^{*} d(x, y) B^{-1} & \succeq\left(B^{-1}\right)^{*} B^{*} d\left(T^{-1} x, T^{-1} y\right) B B^{-1} \\
& =\left(B^{*}\right)^{-1} B^{*} d\left(T^{-1} x, T^{-1} y\right) B B^{-1} \\
& =d\left(T^{-1} x, T^{-1} y\right) .
\end{aligned}
$$

Using Theorem 2.7, there exists unique $x^{*} \in X$ such that $T^{-1} x^{*}=$ x^{*}, which means that there is a unique fixed point $x^{*} \in X$ such that $T x^{*}=x^{*} . \quad \square$ In the following theorem, we prove Jungcks theorem in C^{*}-algebra-valued $b_{v}(s)$-metric spaces.
Theorem 2.10. Consider (X, \mathbb{A}, d) is a complete C^{*}-algebra-valued $b_{v}(s)$ metric space with coefficient s. Let T and I be commuting mappings of X into itself such that the range of I contains the range of T and I is continuous and satisfies the inequality

$$
\begin{equation*}
d(T x, T y) \preceq B^{*} d(I x, I y) B \quad \text { for all } x, y \in X, \tag{2}
\end{equation*}
$$

where $B \in \mathbb{A}$ with $\|B\| \prec 1$. If there exists a natural number n_{0} such that $s\left(B^{*}\right)^{n_{0}} B^{n_{0}} \prec 1_{\mathbb{A}}$ and $B^{n_{0}} \in \mathbb{A}^{\prime}$. Then T and I have a unique common fixed point.

Proof. Let $x_{0} \in X$ be arbitrary. Then $T x_{0}$ and $I x_{0}$ are well-defined. Since $T x_{0} \in I(X)$, there is $x_{1} \in X$ such that $I x_{1}=T x_{0}$. In general, if x_{n} is chosen, then we choose a point x_{n+1} in X such that $I x_{n+1}=T x_{n}$. Now, we show that $\left\{I x_{n}\right\}$ is Cauchy. From (2), for all $m, n \in \mathbb{N}$, we have

$$
\begin{equation*}
d\left(I x_{m}, I x_{n}\right)=d\left(T x_{m-1}, T x_{n-1}\right) \preceq B^{*} d\left(I x_{m-1}, I x_{n-1}\right) B . \tag{3}
\end{equation*}
$$

Now, we have the following two cases.
Case 1 If $I x_{n}=I x_{n+1}$ for some $n \succeq 0$, then $I x_{n}=I x_{n+1}=T x_{n}=\omega$. We show that ω is a unique common fixed point of T and I. Since T and I commute, thus $I \omega=I\left(T x_{n}\right)=T\left(I x_{n}\right)=T \omega$. Now, let $d(T \omega, \omega) \succ 0_{\mathbb{A}}$. Hence

$$
d(T \omega, \omega)=d\left(T \omega, T x_{n}\right) \preceq B^{*} d\left(I \omega, I x_{n}\right) B=B^{*} d(T \omega, \omega) B .
$$

Using the norm of \mathbb{A}, we have

$$
\|d(T \omega, \omega)\| \prec\|d(T \omega, \omega)\| .
$$

This is a contradiction. Thus $\|d(T \omega, \omega)\|=0, d(T \omega, \omega)=0_{\mathbb{A}}$, and $T \omega=\omega=I \omega$. By condition (2), ω is a unique common fixed point of T and I.
Case 2 Now suppose that $I x_{n} \neq I x_{n+1}$ for all $n \succeq 0$. From Lemma 2.5 and inequality (3), we have $I x_{n} \neq I x_{n+p}$ for all $n \succeq 0$ and $p \succeq 1$. With a similar argument used in the proof of Theorem 2.7, we can prove that the sequence $\left\{I x_{n}\right\}$ is Cauchy. Since the C^{*}-algebra-valued $b_{v}(s)$-metric space (X, \mathbb{A}, d) is complete, so $\left\{I x_{n}\right\}$ converges to $u \in X$ such that

$$
\lim _{n \rightarrow+\infty} I x_{n}=\lim _{n \rightarrow+\infty} T x_{n-1}=u
$$

Since I is continuous, inequality (2) implies that both I and T are continuous. Since T and I commute, we obtain

$$
\begin{aligned}
I u & =I\left(\lim _{n \rightarrow+\infty} T x_{n-1}\right)=I\left(\lim _{n \rightarrow+\infty} T x_{n}\right)=\lim _{n \rightarrow+\infty} I T x_{n} \\
& =\lim _{n \rightarrow+\infty} T I x_{n}=T\left(\lim _{n \rightarrow+\infty} I x_{n}\right)=T u .
\end{aligned}
$$

Let $T u=I u=\nu$. Thus $T \nu=T I u=I T u=I \nu$.
If $T u \neq T \nu$, then from (2), we get

$$
\begin{aligned}
\|d(T u, T \nu)\| & \preceq\left\|B^{*} d(I u, I \nu) B\right\|=\left\|B^{*} d(T u, T \nu) B\right\| \\
& \preceq\left\|B^{*}\right\|\|d(T u, T \nu)\|\|B\| \\
& \prec\|d(T u, T \nu)\| .
\end{aligned}
$$

This is a contradiction. So $\|d(T u, T \nu)\|=0, d(T u, T \nu)=0_{\mathbb{A}}$, and $T u=T \nu$. Thus, we obtain $T \nu=I \nu=\nu$.
Now, we claim ν is the unique common fixed point for T and I.
Let $\nu^{*}(\neq \nu)$ be another fixed point for T and I. By inequality (2), we have

$$
d\left(\nu, \nu^{*}\right)=d\left(T \nu, T \nu^{*}\right) \preceq B^{*} d\left(I \nu, I \nu^{*}\right) B .
$$

Now, by using the norm of \mathbb{A}, we have

$$
\begin{aligned}
\left\|d\left(\nu, \nu^{*}\right)\right\|=\left\|d\left(T \nu, T \nu^{*}\right)\right\| & \preceq\left\|B^{*} d\left(I \nu, I \nu^{*}\right) B\right\| \\
& \preceq\left\|B^{*}\right\| d\left(I \nu, I \nu^{*}\right)\|\|B\| \\
& \prec\left\|d\left(I \nu, I \nu^{*}\right)\right\|=\left\|d\left(\nu, \nu^{*}\right)\right\| .
\end{aligned}
$$

This is a contradiction, which implies that $\nu=\nu^{*}$.
Remark 2.11. In Theorem 2.10, if I is the identity map on X, then, Theorem 2.7 holds.

3 Application

In this section, we give an existence theorem for a solution of the following integral equation.

$$
\begin{equation*}
x(t)=\int_{E} K(t, s, x(s)) d s+g(t), \quad t \in E \tag{4}
\end{equation*}
$$

where $K: E \times E \times \mathbb{R} \rightarrow \mathbb{R}$ and $g \in C_{\mathbb{R}}(E)$.
Let $X=C_{\mathbb{R}}(E)$ be the set of all real valued continuous functions on E , where E is a nonempty Lebesgue measurable compact set in \mathbb{R}_{+}. Also, $\mathbb{A}=L(H)$ is the set of all bounded linear operators on $H=L^{2}(E)$ with usual operator norm. We define $d^{\prime}: X \times X \rightarrow \mathbb{R}_{+}$by $d^{\prime}(x, y)=$ $\sup _{t \in E}(x(t)-y(t))^{2}$ for all $x, y \in X$. Then, $\left(X, d^{\prime}\right)$ is a complete $b_{2}(3)$ metric space. Moreover, $\Pi_{\gamma}: H \rightarrow H$ is defined by $\Pi_{\gamma}(h)=\gamma . h$ for all $\gamma \in \mathbb{C}$ and $h \in H$. Now, define $d: X \times X \rightarrow \mathbb{A}_{+}$by $d(x, y)=\Pi_{d^{\prime}(x, y)}$. It is clear that (X, \mathbb{A}, d) is a complete C^{*}-algebra-valued $b_{v}(s)$-metric space with $v=2$ and $s=3 I$. We assume that the following conditions

FIXED POINT THEOREM IN C^{*}-ALGEBRA-VALUED $b_{v}(s)$-METRIC

 SPACES...are satisfied:
(i) There exists a continuous function $f: E \times E \rightarrow \mathbb{R}$ such that

$$
|K(t, s, u)-K(t, s, v)| \preceq \alpha|f(t, s)(u-v)|,
$$

for $t, s \in E, \alpha \in(0,1)$ and $u, v \in \mathbb{R}$.
(ii) It follows that $\sup _{t \in E} \int_{E}|f(t, s)| d s \preceq 1 \quad$ for any $t, s \in E$.

Theorem 3.1. Under the assumptions (i) and (ii) equation (4) has a unique solution in X

Proof. Let $T: X \rightarrow X$ be defined by $T x(t)=\int_{E} K(t, s, x(s)) d s+g(t)$, $t \in E$. Then

$$
\begin{aligned}
& \|d(T x, T y)\| \\
& =\left\|\Pi_{d^{\prime}(T x, T y) \|}\right\| \sup _{\|h\|=1}\left\langle\Pi_{d^{\prime}(T x, T y)}(h), h\right\rangle ; h \in H \\
& =\sup _{\|h\|=1} \int_{E} d^{\prime}(T x, T y) h(u) \bar{h}(u) d(u) ; u \in E \\
& =\sup _{\|h\|=1} \int_{E} \sup _{t \in E}[T x(t)-T y(t)]^{2} h(u) \bar{h}(u) d(u) ; u \in E \\
& =\sup _{\|h\|=1} \int_{E} \sup _{t \in E}\left[\int_{E}[K(t, s, x(s))-K(t, s, y(s))] d s\right]^{2}|h(u)|^{2} d u ; u \in E \\
& \preceq \sup _{\|h\|=1} \int_{E} \sup _{t \in E}\left[\int_{E} \alpha|f(t, s)|(x(s)-y(s)) d s\right]^{2}|h(u)|^{2} d u ; u \in E \\
& =\alpha^{2} d^{\prime}(x, y) \sup _{\|h\|=1} \int_{E} \sup _{t \in E}\left[\int_{E}|f(t, s)| d s\right]^{2}|h(u)|^{2} d u ; u \in E \\
& \preceq \alpha^{2} d^{\prime}(x, y) \sup _{\|h\|=1} \int_{E}|h(u)|^{2} d u ; u \in E \\
& =\alpha^{2} \sup _{\|h\|=1} \int_{E} d^{\prime}(x, y)|h(u)|^{2} d u ; u \in E \\
& =\alpha^{2}\|d(x, y)\| .
\end{aligned}
$$

By take $B=\alpha 1_{\mathbb{A}}$, then $\|B\| \prec 1$. Using Theorem 2.7, the integral equation (4) has a unique solution in X.

Example 3.2. Consider the following functional integral equation:

$$
\begin{equation*}
x(t)=\int_{0}^{1} \frac{4 e^{-(t+1) s}}{3\left((t+1)^{2}+2\right)} \frac{|x(s)|}{1+|x(s)|} d s+t \tag{5}
\end{equation*}
$$

for $t \in E=[0,1]$. Observe that this equation is a special case of (4) with

$$
\begin{aligned}
& K(t, s, x(s))=\frac{4 e^{-(t+1) s}}{3\left((t+1)^{2}+2\right)} \frac{|x(s)|}{1+|x(s)|}, \\
& f(t, s)=\frac{4 e^{-(t+1) s}}{(t+1)^{2}+2} \\
& g(t)=t
\end{aligned}
$$

Notice that, for arbitrary fixed numbers $u, v \in \mathbb{R}$ and $t, s \in E=[0,1]$, we have

$$
\begin{aligned}
\mid K(t, s, u) & -K(t, s, v) \mid \\
& =\left|\frac{4 e^{-(t+1) s}}{3\left((t+1)^{2}+2\right)} \frac{|u|}{1+|u|}-\frac{4 e^{-(t+1) s}}{3\left((t+1)^{2}+2\right)} \frac{|v|}{1+|v|}\right| \\
& \preceq \frac{1}{3}\left|\frac{4 e^{-(t+1) s}}{(t+1)^{2}+2}\right||u-v| .
\end{aligned}
$$

Thus the function K satisfies the assumption (i) with $\alpha=\frac{1}{3}$.
Also, we have
$\sup _{0 \leq t \leq 1} \int_{0}^{1}|f(t, s)| d s=\sup _{0 \leq t \leq 1} \int_{0}^{1}\left|\frac{4 e^{-(t+1) s}}{(t+1)^{2}+2}\right| d s=\sup _{0 \leq t \leq 1} \frac{4}{(t+1)^{2}+2} \int_{0}^{1} e^{-(t+1) s} d s \prec$ 1. This shows that the assumption (ii) holds. Consequently, all the conditions of Theorem 3.1 are satisfied. Hence the integral equation (3.2) has a unique solution in $C_{\mathbb{R}}(E)$.

4 Iterative method for solving integral equation

Theorem 4.1. Consider the integral equation (4). The following iteration process leads to the fixed point (function) solution of (4)

$$
\begin{equation*}
x_{n+1}(t)=\int_{E} K\left(t, s, x_{n}(s)\right) d s+g(t), \quad t \in E \tag{6}
\end{equation*}
$$

FIXED POINT THEOREM IN C^{*}-ALGEBRA-VALUED $b_{v}(s)$-METRIC SPACES...

where the initial guess $x_{0}(t)$ can be any arbitrary function such as 0,1 , or t.

Proof. Assume that the exact solution of (4) is $\tilde{x}(t)$.
We have

$$
\begin{aligned}
\left|x_{1}(t)-\tilde{x}(t)\right| & =\mid \int_{E}\left(K \left(t, s, x_{0}(s)-K(t, s, \tilde{x}(s)) d s \mid\right.\right. \\
& \preceq \int_{E} \alpha|f(t, s)|\left|x_{0}(s)-\tilde{x}(s)\right| d s \\
& \preceq \alpha M,
\end{aligned}
$$

where $M=\max \left|x_{0}(s)-\tilde{x}(t)\right|, t \in E$. One can show similarly that

$$
\begin{aligned}
\left|x_{2}(t)-\tilde{x}(t)\right| & \preceq \alpha \int_{E}|f(t, s)|\left|x_{1}(s)-\tilde{x}(s)\right| d s \\
& \preceq \alpha^{2} M \int_{E}|f(t, s)| d s \\
& \preceq \alpha^{2} M .
\end{aligned}
$$

Finally,

$$
\left|x_{n+1}(t)-\tilde{x}(t)\right| \preceq \alpha^{n+1} M .
$$

It is clear that when n tends to infinity, $x_{n+1}(t)$ tends to the exact solution $\tilde{x}(t) . \quad \square$ Consider the integral equation (6), we set

$$
H\left(x_{n}(t)\right)=\int_{E} K\left(t, s, x_{n}(s)\right) d s+g(t),
$$

so the integral equation (6) can be rewritten as follows:

$$
x_{n+1}(t)=H\left(x_{n}(t)\right) .
$$

It is clear that the exact solution $\tilde{x}(t)$ satisfies

$$
\tilde{x}(t)=H(\tilde{x}(t))
$$

and $|\tilde{x}(t)-H(\tilde{x}(t))|=0$.
Now in order to start the iterations for Example 3.2, we consider $x_{0}(t)=$

0 and do four iterations according to relation (6) to obtain $x_{4}(t)$. we have used Maple 2018 to plot

$$
\left|x_{4}(t)-x_{3}(t)\right|=\left|H\left(x_{3}(t)\right)-x_{3}(t)\right|
$$

in Figure 1, which shows small errors between $x_{3}(t)$ and $x_{4}(t)$, and it can be considered as a good approximation for the exact solution $\tilde{x}(t)$. In Figure 2, we have plotted $x_{4}(t)$ in the interval $[0,1]$.

Figure 1: graph of $\left|x_{4}(t)-x_{3}(t)\right|$

Figure 2: graph of $x_{4}(t)$

References

[1] S. Aleksić, Z. Kadelburg, Z.D. Mitrovic, and S. Radenovic, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst, 9 (2019), 93-121.
[2] S. Aleksić, Z.D. Mitrović, and S. Radenović, A fixed point theorem of Jungck in $b_{v}(\mathrm{~s})$-metric spaces, Period. Math. Hung, 77 (2018), 224-231.
[3] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst, 30 (1989), 2637.
[4] S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrals, Fundam. Math, 3 (1922), 133181.
[5] S. Batul, and T. Kamran, C^{*}-Valued contractive type mapping, Fixed Point Theory Appl, 142 (2015), 9 pp.
[6] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37.
[7] R.G. Douglas, Banach Algebra Techniques in Operator Theory., Springer, Berlin (1998).
[8] T. Kamran, M. Postolache, A. Ghiura, S. Batul, and R. Ali, The Banach contraction principle in C^{*}-algebra-valued b-metric spaces with application, Fixed Point Theory Appl, 10 (2016), 1-7.
[9] C. Klin-eama, and P. Kaskasemay, Fixed point theorems for cyclic contractions in C^{*}-algebra-valued b-metric spaces, J. Funct. Spaces, 2016, Article ID 7827040, (2016), 16 pp .
[10] Z. Ma, and L. Jiang, C^{*}-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl, 222 (2015), 1-12.
[11] Z. Ma, L. Jiang, and H. Sun, C^{*}-Algebra-valued metric spaces and related fixed point Theorems, J. Fixed Point Theory Appl, 206 (2014), 1-11.
[12] Z.D. Mitrovic, and S. Radenovic, The Banach and Reich contractions in $b_{v}(\mathrm{~s})$-metric spaces. J. Fixed Point Theory Appl, 19 (2017), 3087-3095.
[13] G.J. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, London (1990).
[14] S. Radenović, P. Vetro, A. Nastasi, and L.T. Quan, Coupled fixed point theorems in C^{*}-algebras-valued b-metric spaces. Scientific publications of the state University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech, 1 (2017), 81-90.
[15] D. Shehwar, and T. Kamran, C^{*}-valued G-contractions and fixed points, J. Inequal. Appl, 304 (2015), 1-8.
[16] V. Todorćević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys, 3 (2019), 1211-1225.

Mohammad Hassan Saboori

Department of Mathematics
Graduated PhD of Mathematics
Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail: mhs72859@gmail.com

Mahmoud Hassani

Department of Mathematics
Associate Professor of Mathematics
Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail: hassani@mshdiau.ac.ir

Reza Allahyari

Department of Mathematics
Assistant Professor of Mathematics

FIXED POINT THEOREM IN C^{*}-ALGEBRA-VALUED $b_{v}(s)$-METRIC SPACES...

Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail: rezaallahyari@mshdiau.ac.ir
Mohammad Mehrabinezhad
Department of Mathematics
Assistant Professor of Mathematics
Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail: mmehrabinezhad@gmail.com

[^0]: Received: October 2019 ; Accepted: August 2020

 * Corresponding Author

