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Abstract. In this paper we suggest a procedure for testing reversibil-
ity of time series. Our approach is based on a necessary and sufficient
condition for time reversibility of linear models. An attractive feature
of the procedure is that in converse with other approaches it doesn’t
require important assumptions, especially existence of moments of or-
der higher than two. Our simulation confirms the procedure and some
empirical examples are given.
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1. Introduction

Time reversibility of a stochastic process means that each part of the pro-
cess has the same probabilistic properties as its time reversal. In other
words, a stochastic process {X;, t € R} is called time reversible if for
cach to, ty,...,tn and 7 in R, (X;,, X, . X, ) and (Xr—y, Xty Xo_y)
have the same joint probability distribution. We denote this by

d
(Xtou Xth...,th) - (XT—t()) XT—tl) ceey XT—tn) .
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There are many examples of commonly used statistical models for dis-
crete time stochastic processes that are time reversible, including se-
quence of independent identical distributed random variables or even
stationary process of independent random variables and stationary Gaus-
sian processes. On the other hand, a linear, non Gaussian process is time
irreversible in general, except when its coefficients satisfy a very restric-
tive condition. Therefore with a knowledge about time reversibility, for
finding best fitted model, we can seek in a much smaller class and it
is not surprising that testing for reversibility is important for model
building in the time series analysis. Due to time reversibility is a neces-
sary condition for an independent and identically distributed sequence,
several tests for time reversibility have been suggested to be applied as
tests for model misspecification. A test for time reversibility could be
used before the assumption of a linear Gaussian model can be made,
or before a point transformation to a linear Gaussian model can be at-
tempted. Moreover, if a stationary linear model autoregressive moving
average (ARMA) is assumed, then mostly a test for time reversibility is
equivalent to a test for Gaussianity.

Ramsey and Rothman (1996) survey much of this literature. They pro-
vided a connection between aspects of asymmetry and concepts of time
reversibility and irreversibility. They used it to introduce a statistical
tool for identifying time irreversible stochastic processes that was named
the symmetric-bicovariance function. In Ramsey-Rothman test (RRT),
one has to calculate a complicated and asymptotic estimator for variance
of test statistic by fitting the data to an ARMA model, which is a dark
point, then obtaining an estimate of the innovations variance and sim-
ulating a time series using the estimated ARMA coefficient values and
generating a Gaussian distribution with zero mean and variance equal
to that estimated value. This test examines the behavior of estimated
third order moments to check for departures from time reversibility and
it is applicable only if the one dimensional marginal law of the process
has a finite sixth moment. Such a condition may be too restrictive and
rules out time series.

Also Ramsey and Rothman have used this point that a time series can
be reversible only if the model is nonlinear time reversible or autore-
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gressive moving average (ARMA) with Gaussian innovation, which is
not completely true. Although the other situation happens rarely.
Hinich and Rothman(1998) introduced a frequency-domain test of time
reversibility based on the bispectrum and called it the Reverse test.
This test exploits a property of higher-order spectra for time reversible
processes, i.e., the imaginary part of all polyspectra is zero for time re-
versible stochastic processes. In particular, it checks whether the break-
down of Gaussianity is due to time reversibility or not.

Both Reverse test and RRT examine the behavior of estimated third
order moments to check for departures from time reversibility and they
are applicable only if the one dimensional marginal law of the data has
a finite sixth moment. This requirement eliminates many economic and
financial time series, since it is often argued that, although the uncondi-
tional variance of such time series exists, their higher order unconditional
moments may not be finite.

Cheng (1999) proved a basic theorem which gave a necessary and suf-
ficient condition for time reversibility of stationary linear processes and
did not require existence of moments of order higher than two.

Chen et al. (2000) proposed a class of tests for time reversibility, based
on a necessary condition for time reversibility that did not have any
moment restriction. The proposed test was based on the implication
that the differences of the series being tested have symmetric marginal
distributions. By contrast, RRT focused only on the third moment of
this distributions. They proposed a class of tests for time reversibility
based on characteristic functions and suggested different ways to use it.
Franch and Contreras (2004) have compared the power of RRT and Chen
et al. (2000) test (CCKT) for their own purpose, but surprisingly in all
considered cases, RRT is more powerful than CCKT. Therefore, if we
estimate maximum moment exponent of the residuals and this estimate
is larger than five, RRT seems the correct choice, otherwise, which in
financial data happens usually, CCKT is preferable.

Similar to CCKT, Psaradakis (2008) in his article exploits the fact that
time reversibility of stochastic processes implies symmetry of the one
dimensional marginal law of differences of the process. His procedure
are based on the necessary condition for time reversibility that is an
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index of the deviation from zero of the median of the one dimensional
marginal law of differences of data. He has considered using subsampling
and resampling methods to construct confidence intervals and hypothesis
tests for time reversibility.

In this paper, a new procedure for testing time reversibility of a time
series is given. This procedure is based on fitting a linear model to data
and is according to a necessary and sufficient condition for reversibility
of stationary linear processes introduced by Cheng (1999).

The paper proceeds as follow. In Section 2 we introduce some notations
and give some preliminary results. In Section 3 the new procedure for
testing time reversibility is introduced. Simulation results are presented
in Section 4. In Section 5 the time reversibility procedure is used for in-
ternational real data. At the end, we will provide concluding discussion.

2. Stationary and Linearity

It is not hard to show that each time reversible process is stationary, but
the converse is not true. To show time reversibility of a discrete time
stationary stochastic process {X,, : n € Z} it is enough to show that for
every positive integer n,

d
(X07X17 7X7L) = (Xn7Xn—17 "'7X0) .

Where Z is the set of all integers. In this paper here and everywhere
else, we assume that the stochastic process involved is discrete time and
stationary.

A stochastic process {X,, : n € Z} is called linear process if it has the
following representation

Xn =Y biZn i, (2.1)
€L

where {Z,, : n € Z} is a sequence of nondegenerate independent and
identically distributed random variables with E (Z,) =0, 0 < E (Z2) =

0? < co and {b;} is a sequence of constants such that 0 < > b? < oo.
1€EZL
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Note that the concept of time reversibility is distinct from linearity and
from the concept of being stationary.

It is obvious that the Gaussian ARMA processes are time reversible.
Therefore a statistical test for time reversibility seems to be needed in
the analysis of time series. Such a test is required before the assumption
of a linear Gaussian model can be made. Moreover, if a stationary linear
model ARMA is assumed, then a test for time reversibility is mostley
equivalent to a test for the assumption of Gaussianity. Weiss(1975)
has shown that time reversibility is mostly unique property of Gaussian
processes for ARMA processes and only time reversible non Gaussian
ARMA processes are pure moving average (MA) processes, with a re-
strictive condition on its coefficients, which is usually not the case.

The next theorem extends the result of Weiss and gives a necessary and
sufficient condition for time reversibility without requiring the existence
of moments higher than second order and is a restatment of Cheng
(1999), Theorem 2.

Theorem 2.1. Let {X,, : n € Z} be a stationary linear process as X,, =
> biZn—i. {Xn: n €L} is time reversible if and only if it is a Gaussian
1EZ

process.or for a constant integer ng and a = +1 or —1, the following
conditions hold.

i) by, = abpy—n.

ii) Z, and aZ,, have the same distributions.

Remark 2.2. Note that if b, = 0 for n < 0, from (i) we have b, =
abpy—pn for 0 < n < ng and vanishes otherwise. Then in this case
{X, :n €Z} is a special moving average model with finite order not

ng
greater than ng as X, = Y bjZ,_;, we know this model as M A(ng).
i=0

A consequence of Theorem 2.1 is that the time reversible non Gaussian
ARMA processes are small subclasses of moving average non Gaussian
processes.

In the next section using Theorem (2.1), we introduce a procedure for
testing time reversibility of a given time series.
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3. A Procedure for Testing Time Reversibility

In this procedure, we substitute a MA representation as a local ap-
proximation to the unknown model for a realization of the stationary
stochastic process {X,, : n € Z} that is {xo, z1, ..., v} and estimate the
coefficients. By estimating the MA model and obtaining the residu-
als and estimated coefficients from it, we can test the time reversibility
according to necessary and sufficient condition for time reversibility of
stationary linear processes.

no

The estimated model X,, = >  b;Z,—; has only one of the following
i=0

situations:

1. The process is Gaussian process.

I1. 1t is non Gaussian process, {Z, : n € Z} has symmetrical distri-
bution around zero and b, = —bp,_p.

I1I. 3- The process is non-Gaussian process and {Z,, : n € Z} has
non symmetrical distribution around zero and b, = by,—n.

IV. The model is not time reversible.

Remark 3.1. If the process is linear, this procedure will give an ex-
act test for time reversibility, otherwise, the procedure starts with sub-
stitution a MA representation as a local approrimation to the unknown
stationary model and then tests the reversibility of approximation model.

Note that, we fit the best MA representation by known criterion. Us-
ing the fact that under assumption of Theorem 2.1, the representation

Xy = > bjZy—j for non Gaussian stationary processes is unique, if we
JjEZ

conclude reversibility of MA representation of the process {X,, : n € Z},

the reversibility of the process won’t be rejected (Cheng, 1992).

The first step is fitting an invertible MA model to the data. If the time
series is Gaussian, then it is reversible and it is not necessary to check
the symmetrically distribution of residuals and relationship between co-
efficients. If the time series is non-Gaussian, the next step is testing
whether the distribution of the residuals is symmetric or not, and then
checking the relationship between coefficients by standard tests.
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3.1 Testing Gaussianity

There are several methods to test Gaussianity of time series. These
methods include histogram plot, kurtosis test and hypothesis testing
using cumulants and bispectrum of the available sequence and in base
of skewness and kurtosis.

Hinich (1982) has given a test for Gaussianity of a stationary time series
using cumulant and bispectrum of data. Hinich’s test examines whether
the imaginary part of the estimated bispectrum is equal to zero or not.
It should be pointed out that a zero bispectrum is not a proof of Gaus-
sianity. Because if a random process is symmetrically distributed, its
order cumulant is zero. So, other tests such as the kurtosis test should
be employed.

Also Bai and Ng (2005) introduced a test for Gaussianity for time series
based on skewness and kurtosis that data is stationary up to eighth
order. They test the Gaussianity test of real data and examples by
testing whether the bispectrum of the given data is non zero or not. If
the bispectrum is zero, then the stochastic process could be Gaussian but
not necessarily true. While the histogram provides a visual impression
of the shape of distribution of the measurements, the kurtosis measures
the degree of peakness or flatness of a distribution. Here, to check
Gaussianity of the data, we apply the kurtosis test.

Also Hinich and Rothman (1998) introduced a frequency domain test
of time reversibility for third order stationary time series based on the
bispectrum related to Hinich’s (1982) and Gaussianity test. In partic-
ular, it checks whether the breakdown of Gaussianity is due to time
irreversibility or not.

3.2 Checking Distributions and Coefficients

ng
When X, = > b;jZ,_;, testing the first part of the conditions (II) and
i=0

1=
(III) are well known. For testing the second parts which is the relation-

ship between coefficients, if ng is even we should test the hypotheses
(3.1) versus that the equations do not satisfy which is not hard to check.
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1 0 0 =+1 bo 0
0 1 +1 0 by 0
. . Sl = (3.1)
0 -~ 1 0 «£1 .-~ 0 by 0

When ng is odd, a similar equations should satisfy.

Many authors distinct the concept of time reversibility and being sta-
tionary and notions of linearity or nonlinearity, but note that we use
this fact that every stationary time series can be approximated by a
linear model. If the processes is linear, this procedure is an exact test
of reversibility. If the time series is nonlinear, then the procedure con-
tains approximating since we substitute an MA representation as a local
approximation to the unknown stationary model.

4. Simulation Study

In this Section, as an illustration, we investigate the finite sample per-
formance of the procedure by simulation.

First, we generate 1000 iteration of a known reversible or irreversible
time series with sample size 100 and fit a MA model to the simulated
data. The optimal value of the order of MA will be obtained by use of
the Akaike Information Criterion (AIC), or something similar, such as
the Schwartz Information Criterion (SIC). Then we test the Gaussianity
of time series. If the process is Gaussian, the time series is reversible,
otherwise, we will test the relationship between coefficients in according
to result of investigating for symmetric or non symmetric distributions
around zero of residuals. We report the mean of p-values in the tables.
In all examples, the results of the procedure confirm the theoretical
methods. The details of examples are available by authors.

Remark 4.1. In some of next examples and real data, the fitted models
for non-Gaussian time series {X,, :n € Z} will be X,, = Z,, + 0Z,_1.
If we consider the time reversibility condition for distribution and coef-
ficients of innovations, 0 must be —1 for symmetric distribution about
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zero and +1 for non symmetric distribution and we know that these MA
model are not invertible models. So the non-Gaussian MA(1) models
are irreversible and we don’t check the relationship between coefficients
in base of distribution of residuals.

Example 4.1. In a 1000 simulation of reversible MA model of size
100 as X,, = Z,, — Zyy_1 + Zp_o, where Z,’s are iid with known distri-
bution mentioned in the following table, we fit a MA model and test
the Gaussianity. For two cases Gamma(0.8,1) and Beta(0.5,5) that p-
values don’t accept the Gaussianity, we test the conditions (I) and (II)
of Theorem(2.1) in base of the distribution of residuals. The results are
given in Table 1.

Table 1: The result of Example 4.1

Distribution | ng | Mean of p-value(Gaussianity) | Mean of p-value(II,IIT)
Eap (2) 2 0.2288 -
Gamma (0.8,1) | 2 0.01887 > 0.995
T (3) 2 0.6312 -
2 (3) 2 0.1812 -
7(2,5) 2 0.1694 -
Beta (0.5,5) 2 0.01380 > 0.995

Following the mean of p-values in Table 1, the results confirm the re-
versibility of the model.

Example 4.2. Our simulation has been based on 1000 iteration of the
irreversible MA (1) with sample size 100 as X,, = Z,, — Z,,_1, where Z,’s
are iid with known distribution. The results are collected in Table 2.

Table 2: The result of Example 4.2

Distribution | ng | Mean of p-value(Gaussianity) | Mean of p-values (11, II1)
Ezxp(2) 3 0.01141 < 0.005
Gamma (2,3) | 5 0.01259 < 0.005
t(3) 2 3.7x 1071 < 0.005
5% (3) 1 2.478 x 1071 -
f(2,5) 1 2.2 x 10716 —

As we see from Table 2, the Gaussianity hypothesis is rejected for all
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innovation distributions. So as we noted in Remark 4.1, we don’t check
the conditions (I) and (II) for them and we conclude that they are irre-
versible. The last column tests the relationship between coefficients in
according to type of distributions of residuals in non-Gaussian time se-
ries. Therefore, for all of cases, we conclude irreversibility of this model.

Example 4.3. Consider the nonlinear time reversible random coefficient
as X,, = Z, + BpZ,_1, where Z, N (O, 02) and B,, “ Beta (o, B) are
independent. Since {B,} and {Z,} are iid and regarding the fact that
they are independent from each other, we have

Xrn 1 Brn 0 .. 0 0 Zr—n
XT*TL*I 0 1 Bﬂ'fnfl 0 0 Z—,—7n71
Xrn—k 0 0 0 1 Br nk Zrn—k-1

1 B, 0 .. 0 0 Zn
0 1  Bnti 0 0 Znt1
i . .
0 0 0 1 Bas it
Xn
Xn+1
i .
Xn+k

Therefore, this process is time reversible. We simulate this process with
replication 1000, n=100 and different «, 8 and k. The results are shown
in Table 3.

Table 3: The result of Example 4.3

a | 0? | k | nop | Mean of p-value(Gaussianity)
019 |10 1 0.5552
059 [10] 1 0.7766
094 10| 1 0.8577
0514 |5 |1 0.5388
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For all of the 1000 replications, this process has the same structure as
the usual Gaussian MA process, except that here the coefficient {B,,},
is a random variable rather than a constant.

Example 4.4. Bilinear processes are popular nonlinear models that
can capture a wide range of nonlinear behavior. In the bilinear case,
we specify the data generating process as X,, = aX,_1+ 8Xn_12p-1+
Zy, where {Z, :n € Z} is a sequence of independently and identically
distributed N (0,1) random variables. . This model was studied by
Ramsey and Rothman (1996) and they showed that this process is time
irreversible. We simulate 1000 realization of this model for different «
and 3 and for n = 100. We fit a MA model to the simulated data and
test the Gaussianity. Then we test the conditions (II) and (III) to see
whether the residuals are symmetric or not in non-Gaussian MA models.
The results are appeared in Table 4.

Table 4: The result of Example 4.4

@ 8 | no | Mean of p-value(Gaussianity) | Mean of p-value (I1,IIT)
02] 5 | 3 <22x 10716 < 0.005
0.2 2 15 <2.2x10716 < 0.005
2 (0513 <22x 10716 < 0.005
05]05 | 2 3.818 x 107 < 0.005

As we see, this process is non-Gaussian and the conditions (I) and (II) for
relationship between coefficients according to distribution of innovation
are not accepted. So the result of the procedure confirms the theoretical
subject.

5. Real Data

To use our procedure in real data sets , we investigate the time reversibil-
ity of Backus and Kehoe international data sets. We examine twenty
four series, four indicators for six different countries. The four indicators
chosen are real output, investment, price level and money supply that
were selected for Australia, Canada, Italy, Sweden, The United King-
dom (UK) and The United States (US). Definitions, data sources and
data from each series can be found in the appendix of Backus and Kehoe
(1992).
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For all of the twenty four series, we analyze the growth rates by fitting
a MA model to the data, testing the Gaussianity, obtaining the estima-
tion of the innovations and coefficients, and then testing wheater the
innovation distribution are symmetric and testing relationship between
coefficients in non-Gaussian MA models. The results of the procedure
are presented in Table 5 and the details of the results are available by
authors.

Table 5: The result of reversibility test for Backus and Kehoe

international data sets.
Country Series no | Mean of p-value(Gaussianity),(I1, I1T)
Australia | Real Output(1861 — 1985) | — 0.291 , —
Investment (1861 — 1985) 1 <22x 10716 | —
Price Level(1861 — 1985) 4 4.421 x 10~% , < 0.005
Money Supply (1870 — 1970) 1 1.498 x 10~% | —
Canada Real Output(1870 — 1983) — 0.0791, —
Investment (1870 — 1983) 1 3.7x 1072, —
Price Level (1870 — 1983) 3 3.51 x 10~% | < 0.005
Money Supply(1870 — 1975) — 0.3081 , —
Ttaly Real Output(1861 — 1985) 1 5.844 x 1013 | —
Investment (1861 — 1985) 1 2.006 x 10~ 13 | —
Price Level(1861 — 1985) 4 <2.2x 10710 "< 0.005
Money Supply(1870 — 1975) 8 1.076 x 10~9 , < 0.005
Sweden Real Output(1861 — 1986) 11 1.491 x 10~2 , < 0.005
Investment (1861 — 1986) 12 1.182 x 10~7 , < 0.005
Price Level(1861 — 1986) 3 4.05 x 10~% | < 0.005
Money Supply (1871 — 1975) 7 5.149 x 107 , < 0.005
UK Real Output (1870 — 1986) 4 7.483 x 105 | < 0.005
Investment (1870 — 1986) 1 4718 x 1016 | —
Price Level(1870 — 1986) 3 1.752 x 10-% | < 0.005
Money Supply (1871 — 1975) 3 3.754 x 10~8 , < 0.005
US Real Output(1869 — 1983) | — 02178, —
Investment (1889 — 1988) 5 8.231 x 10~ %, < 0.005
Price Level(1869 — 1983) 3 5.321 x 103 , < 0.005
Money Supply (1867 — 1975) 2 0.03256 , < 0.005

Ramsey and Rothman (1996) analyzed this data set and concluded as
below:

1- Fifteen of the twenty four series were nonlinear irreversible.

2- Four series are seemingly linear with non-Gaussian innovation.
These four series are Australian price level and money supply, Swedish
real output and US money supply.

3- Two series are anomalies, the Canadian and Italian money supply
series, in that they have acceptance with the raw data, but rejection
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with the ARMA residuals.

4- Three series of growth rates from the Backus and Kehoe data set
were time reversible of order 3 and degree 5: Australian and US real
output and Canadian investment. They also tested the derivatives of
each growth rate series for evidence of transversal asymmetry. Canadian
investment and US real output were rejected for transval symmetry at p-
values of 0.065 and 0.025, respectively. Only the Australian real output
growth real series and its derivative appeared to be time reversible.

We conclude as below:

1- Four of twenty four series are Gaussian and it is appeared that
they are time reversible. These four series, Canadian money supply,
Canadian real output, Australian real output and US real output are
Gaussian at significant level lower than 0.005 that two of them consistent
to the results of Ramsey and Rothman (1996).

2- Six of twenty four series are fitted by MA(1) and non-Gaussian
and their coefficients are not. So the reversibility hypothesis is rejected.
These six series are Australian, Canadian, Italian and UK Investment,
Australian money supply and Italian real output.

3- Fourteen of them are fitted by MA , and non-Gaussian, but the
coefficients and innovations don’t have the necessary and sufficient con-
ditions of reversible non-Gaussian linear model.

6. Summary

In this paper, we propose a simple procedure for analysis of time re-
versibility in base of a necessary and sufficient condition for time re-
versibility of linear models. In contrast, RRT, Hinich and Rothman
(1998), CCKT and Psaradakis (2008) are in base of a necessary condi-
tion for time reversibility. A useful feature of this procedure is that it
doesn’t require existence of moments of higher than two and we only fit
an approximate linear model MA to the stationary data.
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