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Abstract. This work is concerned with the initial boundary value
problem for a nonlinear viscoelastic Petrovsky wave equation

utt + ∆2u−
∫ t

0

g(t− τ)∆2u(τ)dτ −∆ut −∆utt + ut|ut|m−1 = u|u|p−1.

Under suitable conditions on the relaxation function g, the global ex-
istence of solutions is obtained without any relation between m and p.
The uniform decay of solutions is proved by adapting the perturbed
energy method. For p > m and sufficient conditions on g, an unbound-
edness result of solutions is also obtained.
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1 Introduction

In this paper, we investigate the problem

utt + ∆2u−
∫ t

0
g(t− τ)∆2u(τ)dτ −∆ut

−∆utt + ut|ut|m−1 = u|u|p−1, x ∈ Ω, t ≥ 0,

(1)
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2 A. PEYRAVI

u(x, t) = ∂νu(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (2)

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω, (3)

where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary
∂Ω, m, p > 1, ν is the unit outer normal on ∂Ω and g is a non-negative
function that represents the kernel of memory term.

In the absence of viscoelastic term (g = 0), the dispersive term ∆utt
and the strong damping dissipation ∆ut, problem (1)-(3) has been ex-
tensively studied and several results concerning existence, decay and
nonexistence of solutions have been established. Generally, problems of
the form

utt + ∆2u+ h(ut) = f(u), x ∈ Ω, t > 0, (4)

with the boundary and initial conditions (2) and (3), have been widely
investigated by many authors. For f = −q(x)u(x, t), equation (4) has
been considered by Guesmia [5] where q : Ω→ R+ is a positive function
in L∞(Ω) and h is a continuous and increasing function which satisfies
h(0) = 0. Using the semigroup approach, the author proved global ex-
istence, uniqueness and decay results under suitable growth conditions
on h. When h(ut) = aut|ut|m−2 and f(u) = bu|u|p−2 where a, b > 0 and
p,m > 2, Messaoudi [10] established an existence result when m ≥ p
with an arbitrary initial data while the solution blows up if m < p and
the initial energy is negative. The main point of the contribution is
the method initiated by Gorgiev and Todorva [4] based on fixed point
theorem. Related to this problem, Wu and Tsai [14] showed that the
solution decays algebraically without the relation between m and p while
it blows up in finite time if p > m and the initial energy is nonnegative.
In [2], Amroun and Benaissa obtained the global solvability of (4) sub-
ject to the same boundary and initial conditions as (2) and (3) where
f(u) = bu|u|p−2 and h satisfies

c1|s| ≤ |h(s)| ≤ c2|s|r, |s| ≥ 1, c1, c2 > 0,

under some appropriate restrictions on p and r. The key point to their
proof is the use of stable set method combined with the Fadeo-Galerkin
procedure.
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Recently, in the presence of the strong damping, G. Li et al. [9]
considered the following Petrovsky equation:

utt + ∆2u−∆ut + ut|ut|m−1 = u|u|p−1, x ∈ Ω, t ≥ 0, (5)

with the boundary and initial conditions (2) and (3). The authors ob-
tained the global existence and uniform decay of solutions if the initial
data are in some stable set without any interaction between the damp-
ing mechanism ut|ut|m−1 and the source term u|u|p−1. Moreover, they
established the blow up properties of local solution in the case p > m
and the initial energy is less than the potential well depth. In [18], for a
wave equation (∆u instead of ∆2u in (5), S. Yu by using the stable set
method showed that the solutions exist globally in time if m ≥ p and
blow up in finite time if m < p < 2(m+1)

n + 1.
There is a substantial number of papers concerning the study of

nonlinear viscoelastic wave equations with the dispersive term ∆utt. In
the study of plates, Rivera et al. [13] considered the following viscoelastic
equation

utt − γ∆utt + ∆2u−
∫ t

0
g(t− τ)∆2u(τ)dτ = 0.

They proved that the first and second order energy, associated with the
solutions, decay exponentially provided the kernel of the memory also
decays exponentially. For a related study, we may recall the work by
Lagnese [8], who showed that the energy decays to zero as time goes to
infinity by introducing a dissipative mechanism on the boundary of the
system. In [3], Cavalvcanti et al. studied the global existence result and
the uniform exponential decay of energy for the following equation:

|ut|ρutt −∆u−∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ − γ∆ut = 0 (6)

In the case γ = 0, Messaoudi and Tatar [11] showed that the solution
goes to zero with an exponential or polynomial rate under some restric-
tions on g. Using the potential well method, the same authors in [12]
obtained global existence and an exponential decay result for an exten-
sion of (6) in the presence of nonlinear source term:

|ut|ρutt −∆u− γ∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ −∆ut = b|u|p−2u.
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Moreover, for sufficiently large values of the initial data and for a suitable
relation between p and the relaxation function, they proved an unbound-
edness result. In [15], S.T. Wu proved the general decay of solutions for
the nonlinear equation:

|ut|ρutt −∆u−∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ + |ut|mut = |u|pu. (7)

In [16], the author established the same result for equation (7) with the
weak damping term (m = 0) and p− 2 instead of p. Without nonlinear
source term, Han and Wang [6] obtained the general decay of solutions
for (7) in the case m = 0. When ρ = 0 with m − 2 instead of m and
in the absence of source term, they proved similar results in [7]. In the
presence of dispersive term and strong damping term, in a recent work,
R. Xu et al. [17] studied the global well-posedness for the wave equation

utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ −∆utt −∆ut + ut = |u|p−1u.

Defining a family of potential wells they proved existence and nonexis-
tence of global solutions under some conditions with low initial energy
while a blow up result is obtained with positive initial energy.

In the present work, our study will be devoted to the problem (1)-
(3). Motivated by the above works, by introducing a suitable perturbed
energy function, we study the asymptotic behavior of solution energy
and we obtain the uniform decay of the energy under some assumptions
on g without any interaction between source term and damping term.
Under an appropriate restriction on g, we also prove that the solution
exponentially grows when m > p and the initial energy is negative.

The plan of this paper is as follows. In section 2, we introduce
some notations and useful lemmas, and we state the local existence
result Theorem 2.3. In section 3, we present the global existence result
Lemma 3.2 and we show the exponential decay of the perturbed energy
in Theorem 3.4. Growth properties of the problem (1)-(3) are given in
Theorem 4.1.
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2 Preliminaries

To prove our main results, we shall give some lemmas, assumptions and
notations.

Lemma 2.1. [1] (Sobolev-Poincaré inequality) Let q be a number with
2 ≤ q < ∞ (n = 1, 2, 3, 4) or 2 ≤ q ≤ 2n

n−4(n ≥ 5), then for u ∈ H2
0 (Ω)

there is a constant C∗ = C(Ω, q) such that

‖u‖q ≤ C∗‖∆u‖2.

Assume that m and p satisfy

1 < p <∞ (n = 1, 2, 3, 4) or 1 < p ≤ n

n− 4
(n ≥ 5), (8)

1 < m <∞ (n = 1, 2, 3, 4) or 1 < m ≤ n+ 4

n− 4
(n ≥ 5). (9)

For the relaxation function we assume

(G1) g ∈ C1[0,∞) is a non-negative and non-increasing function satis-
fying

1−
∫ ∞

0
g(s)ds = l > 0, g(0) > 0. (10)

(G2) There exists a positive non-increasing differentiable function ξ such
that

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0, (11)

where
∫ +∞

0 ξ(t)dt = +∞.

Let us define the C1 functionals I, J , E : H2
0 (Ω)→ R by

I(t) = I(u(t)) =

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖22+(g◦∆u)(t)−‖u‖p+1

p+1,

(12)

J(t) = J(u(t)) =
1

2

(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖22

+
1

2
(g ◦∆u)(t)− 1

p+ 1
‖u‖p+1

p+1,

(13)
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E(t) = E(u(t)) =
1

2
‖ut‖22 +

1

2
‖∇ut‖22 + J(u), (14)

where

(g ◦ v)(t) =

∫ t

0
g(t− τ)

∫
Ω
|v(t)− v(τ)|2dxdτ,

and the stable set

W =
{
u ∈ H2

0 (Ω); I(u) > 0
}
∪ {0} .

Lemma 2.2 E(t) is a non-increasing function for t ≥ 0 and

E′(t) = −1

2
g(t)‖∆u‖22 − ‖∇ut‖22 +

1

2
(g′ ◦∆u)(t)− ‖ut‖m+1

m+1. (15)

Proof. Multiplying (1) by ut, integrating over Ω and using the boundary
conditions, we get

E(t)− E(0) =−
∫ t

0

(1

2
g(t)‖∆u‖22

+ ‖∇ut‖22 −
1

2
(g′ ◦∆u)(t) + ‖ut‖m+1

m+1

)
dt.

Thus, the proof is completed.

We state a local existence theorem that can be established by com-
bining the arguments of [10], [2] and [18].

Theorem 2.3 Suppose that (2.1), (2.2) and (G1) hold and u0,∈
H2

0 (Ω), u1 ∈ H1
0 (Ω). Then there exists a unique weak solution u(t) such

that

u ∈ C
(
[0, T ];H2

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
,

ut ∈ L2
(
[0, T ];H1

0 (Ω)
)
∩ Lm+1(Ω× (0, T )),

for some positive constant T .
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3 Global existence and energy decay

In this section we are going to establish a decay result for solutions of
(1)-(3). For this purpose we use the Lyapunov functional method with
suitable choice of a perturbed energy function. First, we present some
lemmas that will be needed later.

Lemma 3.1 Suppose that (2.1) and (G1) hold. For any u0 ∈W if

β =
Cp+1
∗
l

[
2(p+ 1)

l(p− 1)
E(0)

] p−1
2

< 1, (16)

then u(t) ∈W for all t ≥ 0.

Proof. Since I(u0) > 0, then by continuity, there exists T∗ ≤ T such
that I(u(t)) ≥ 0 for all t ∈ [0, T∗). From (2.3), (2.5) ,(2.6) and the fact
that 1−

∫ t
0 g(τ)dτ > 1−

∫∞
0 g(τ)dτ , for all t ∈ [0, T∗) we have

J(t) =
p− 1

2(p+ 1)

{(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖22 + (g ◦∆u)(t)

}
+

1

p+ 1
I(t)

≥ p− 1

2(p+ 1)

{(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖22 + (g ◦∆u)(t)

}
≥ l(p− 1)

2(p+ 1)
‖∆u‖22. (17)

Using (14), (17) and the lemma 2.2 we find

‖∆u‖22 ≤
2(p+ 1)

l(p− 1)
J(t) ≤ 2(p+ 1)

l(p− 1)
E(t) ≤ 2(p+ 1)

l(p− 1)
E(0), (18)

for all t ∈ [0, T∗). Then, by (16), (18) and the lemma 2.1 we obtain

‖u‖p+1
p+1 ≤ C

p+1
∗ ‖∆u‖p+1

2 ≤ Cp+1
∗

[
2(p+ 1)

l(p− 1)
E(0)

] p−1
2

‖∆u‖22

= βl‖∆u‖22 ≤
(

1−
∫ t

0
g(τ)dτ

)
‖∆u‖22,
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which implies I(u(t)) > 0 and so u(t) ∈W for all t ∈ [0, T∗). By repeat-
ing this procedure, T∗ can be extended to T .

Lemma 3.2 Suppose that (8), (9), (G1) and (16) hold. If u0 ∈ W,
then the solution of (1)-(3) is global and bounded.

Proof. We use (12)-(14) and the lemma 2.2 to get

E(0) ≥ E(t) =
1

2
‖ut‖22 +

1

2
‖∇ut‖22 + J(t)

=
1

2
‖ut‖22 +

1

2
‖∇ut‖22 +

1

p+ 1
I(t)

+
p− 1

2(p+ 1)

{(
1−

∫ t

0
g(τ)dτ

)
‖∆u‖22 + (g ◦∆u)(t)

}
.

By the lemma 3.1, I(t) ≥ 0. Using the assumption G1 we deduce

‖ut‖22 + ‖∇ut‖22 + ‖∆u‖22 ≤ CE(t) ≤ CE(0), ∀t ≥ 0,

where C = 2(p+1)
l(p−1) . This shows that ‖ut‖22 +‖∇ut‖22 +‖∆u‖22 is uniformly

bounded and independent of t for all t ∈ [0, T ). Therefore the solution
of (1)-(3) is bounded and global in time.

By a suitable modification of the energy, we define

G(t) = ME(t) + εΨ(t) + χ(t), (19)

where M and ε are positive constants and

Ψ(t) =

∫
Ω

(uut +∇u.∇ut)dx+
1

2
‖∇u‖22,

χ(t) =

∫
Ω

(∆u+ ∆ut − ut)
∫ t

0
g(t− τ) (u(t)− u(τ)) dτdx. (20)

Lemma 3.3 Suppose u0 ∈W and (16) holds. Then for any solution of
(1)-(3) there exists two positive constants α1 and α2 such that

α1E(t) ≤ G(t) ≤ α2E(t), (21)
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for suitable choice of M and ε.

Proof. Using the Young’s inequality, Lemma 2.1 and the Poincaré in-
equality, we find

Ψ(t) ≤ 1

2
‖ut‖22 +

1

2
‖∇ut‖22 +

1

2
(C2
∗ + 2λ−1)‖∆u‖22, (22)

where λ is the Poincaré constant. By the Green’s formula we have

χ(t) =

∫
Ω

(∆u− ut)
∫ t

0
g(t− τ) (u(t)− u(τ)) dτdx

−
∫

Ω
∇ut.

∫ t

0
g(t− τ) (∇u(t)−∇u(τ)) dτdx.

We use the Young’s inequality to obtain

χ(t) ≤ 1

2
‖ut‖22 +

1

2
‖∇ut‖22 +

1

2
‖∆u‖22

+
1

2

∫
Ω

(∫ t

0
g(t− τ)(u(t)− u(τ))dτ

)2

dx

+
1

2

∫
Ω

(∫ t

0
g(t− τ)(∇u(t)−∇u(τ))dτ

)2

dx. (23)

From the Hölder’s inequality, lemma 2.1 and (10) we obtain∫
Ω

(∫ t

0
g(t− τ)(u(t)− u(τ))dτ

)2

dx

≤
∫

Ω

(∫ t

0
g(t− τ)dτ

)(∫ t

0
g(t− τ)|u(t)− u(τ)|2dτ

)
dx

≤ (1− l)C2
∗ (g ◦∆u)(t). (24)

Similarly, by the Poincaré inequality we have∫
Ω

(∫ t

0
g(t− τ)(∇u(t)−∇u(τ))dτ

)2

dx ≤ (1− l)λ−1(g ◦∆u)(t). (25)
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Inserting (24) and (25) into (23) and using (22), from (19) one can write

G(t) ≤ME(t) + κ1‖ut‖22 + κ2‖∇ut‖22 + κ3‖∆u‖22 + κ4(g ◦∆u)(t),

where κ1 = κ2 = 1
2(1 + ε), κ3 = 1

2

(
ε(C2

∗ + 2λ−1) + 1
)

and κ4 =
1
2(1 − l)(C2

∗ + λ−1). Then, by (14), the lemma 3.2 and choosing ε
small enough and M sufficiently large, there exists a positive constant
α1 such that G(t) ≤ α1E(t). By the same method, we can show that
G(t) ≥ α2E(t) for some positive constant α2. This completes the proof.

Now, we state our main result.

Theorem 3.4 Let u0 ∈W be given which satisfies (16). Suppose that
(8), (9), (G1) and (G2) hold. Then, for each t0 > 0, there exists positive
constants k and κ such that the global solution of (1)-(3) satisfies

E(t) ≤ Ke−κ
∫ t
t0
ξ(s)ds

, ∀t ≥ t0. (26)

To prove the theorem 3.4, we need to establish the following lemmas.

Lemma 3.5 Let u0 ∈ W be given and satisfying (16). Suppose
that G1 holds. If u is the solution of (1)-(3), then there exists positive
constants k1 and k2 such that

Ψ′(t) ≤ ‖ut‖22 + ‖∇ut‖22 −
l

3
‖∆u‖22

+k1(g ◦∆u)(t) + k2‖ut‖m+1
m+1 + ‖u‖p+1

p+1.

Proof. Taking the derivative of Ψ(t) and using (1), it follows that

Ψ′(t) = ‖ut‖22 + ‖∇ut‖22 − ‖∆u‖22 + ‖u‖p+1
p+1

+

∫
Ω

∫ t

0
g(t− τ)∆u(t)∆u(τ)dτdx−

∫
Ω
uut|ut|m−1dx. (27)

By the Young’s inequality and (10), for the fifth term of the right-hand
side of (27), for any η > 0 we obtain∣∣∣∣∫

Ω

∫ t

0
g(t− τ)∆u(t)∆u(τ)dτdx

∣∣∣∣
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≤
∫

Ω

(∫ t

0
g(t− τ)|∆u(τ)−∆u(t)||∆u(t)|dτ

)
dx+

∫ t

0
g(τ)dτ‖∆u‖22

≤ (1 + η)

∫ t

0
g(τ)dτ‖∆u‖22 +

1

4η
(g ◦∆u)(t)

≤ (1+η)(1− l)‖∆u‖22 +
1

4η
(g◦∆u)(t). (28)

For the last integral of the right-hand side of (27), we use Young’s in-
equality and lemmas 2.1 and 3.1 to get∣∣∣∣−∫

Ω
uut|ut|m−1dx

∣∣∣∣ ≤ η‖u‖m+1
m+1 + c(η)‖ut‖m+1

m+1

≤ ηc1‖∆u‖22 + c(η)‖ut‖m+1
m+1, (29)

where c1 = Cm+1
∗

(
2(p+1)
l(p−1)E(0)

)m−1
2

. Inserting (28) and (29) into (27),

we arrive at

Ψ′(t) ≤ ‖ut‖22 + ‖∇ut‖22 + (ηc1 + (1 + η)(1− l)− 1) ‖∆u‖22

+
1

4η
(g ◦∆u)(t) + c(η)‖ut‖m+1

m+1 + ‖u‖p+1
p+1.

Now taking η = 2l
3(c1+1−l) , we obtain the result.

Lemma 3.6 Let u0 ∈ W be given and satisfying (16). Suppose that
G1 holds. If u is the solution of (1)-(3), then there exists positive con-
stants k3, k4, k5 and k6 such that for all γ > 0 we have

χ′(t) ≤
(
γ −

∫ t

0
g(τ)dτ

)
‖ut‖22 +

(
k3

γ
+ γ −

∫ t

0
g(τ)dτ

)
‖∇ut‖22

+γk4‖∆u‖22 +ϕ(γ)(g ◦∆u)(t)− k5

γ
(g′ ◦∆u)(t)+γk6‖ut‖m+1

m+1, (30)

where ϕ is a positive function of γ that will be given in the proof.

Proof. Differentiate (20) with respect to t and using (1), we get

χ′(t) =

∫
Ω

∆u

∫ t

0
g(t−τ)(∆u(t)−∆u(τ))dτdx
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−
∫

Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)(∫ t

0
g(t− τ)(∆u(t)−∆u(τ))dτ

)
dx

+

∫
Ω
ut|ut|m−1

∫ t

0
g(t− τ)(u(t)− u(τ))dτdx

−
∫

Ω
u|u|p−1

∫ t

0
g(t− τ)(u(t)− u(τ))dτdx

+

∫
Ω

∆u

∫ t

0
g′(t− τ)(u(t)−u(τ))dτdx

−
∫

Ω
ut

∫ t

0
g′(t− τ)(u(t)− u(τ))dτdx

−
∫

Ω
∇ut

∫ t

0
g′(t− τ)(∇u(t)−∇u(τ))dτdx

+

(∫
Ω
ut∆udx− ‖∇ut‖22 − ‖ut‖22

)∫ t

0
g(τ)dτ.

(31)
Next, we will estimate terms on the right-hand side of (31).
For the first term we have∫

Ω
∆u

∫ t

0
g(t−τ)(∆u(t)−∆u(τ))dτdx

≤ γ‖∆u‖22 +
1

4γ

∫
Ω

(∫ t

0
g(t− τ)(∆u(t)−∆u(τ))dτ

)2

dx

≤ γ‖∆u‖22 +
1

4γ
(1− l)(g ◦∆u)(t), (32)

where γ is an arbitrary positive constant. For the second term we obtain∣∣∣∣−∫
Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)(∫ t

0
g(t− τ)(∆u(t)−∆u(τ))dτ

)
dx

∣∣∣∣
≤ γ

∫
Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)2
dx

+
1

4γ

∫
Ω

(∫ t

0
g(t− τ)(∆u(t)−∆u(τ))dτ

)2
dx
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≤ γ
∫

Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)2

dx+
1

4γ
(1−l)(g◦∆u)(t).

(33)
The first integral in the right hand-side of (33) can be estimated in the
form∫

Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)2

dx

≤
∫

Ω

(∫ t

0
g(t− τ)(|∆u(τ)−∆u(t)|+ |∆u(t)|)dτ

)2

dx

≤ 2

∫
Ω

(∫ t

0
g(t− τ)|∆u(τ)−∆u(t)|dτ

)2
dx

+ 2

∫
Ω

(∫ t

0
g(t− τ)|∆u(t)|dτ

)2
dx

≤ 2(1−l)(g◦∆u)(t)+2(1−l)2‖∆u‖22.
(34)

By (34), for the inequality (33) we have∣∣∣∣−∫
Ω

(∫ t

0
g(t− τ)∆u(τ)dτ

)(∫ t

0
g(t− τ)(∆u(t)−∆u(τ))dτ

)
dx

∣∣∣∣
≤ (2γ +

1

4γ
)(1− l)(g ◦∆u)(t) + 2γ(1− l)2‖∆u‖22, (35)

We use Young’s inequality, lemmas 2.1 and 3.2 to estimate the third
term as∫

Ω
ut|ut|m−1

∫ t

0
g(t−τ)(u(t)−u(τ))dτdx

≤
∫ t

0
g(t− τ)

(
γ‖ut‖m+1

m+1 + c(γ)‖u(t)− u(τ)‖m+1
m+1

)
dτ

≤ γ(1− l)‖ut‖m+1
m+1 + c(γ)Cm+1

∗

∫ t

0
g(t− τ)‖∆u(t)−∆u(τ)‖m+1

2 dτ

≤ γ(1− l)‖ut‖m+1
m+1 +c(γ)c2(g ◦∆u)(t), (36)
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where c2 = Cm+1
∗

(
2(p+1)
l(p−1)E(0)

)m−1
2

. For the fourth term we have∫
Ω
u|u|p−1

∫ t

0
g(t−τ)(u(t)−u(τ))dτdx

≤ γ
∫

Ω
|u|2pdx+

1

4γ

∫
Ω

(∫ t

0
g(t− τ)(u(t)− u(τ))dτ

)2

dx

≤ γC2p
∗ ‖∆u‖

2p
2 +

1

4γ
C2
∗ (1−l)(g◦∆u)(t)

≤ γc3‖∆u‖22 +
1

4γ
C2
∗ (1− l)(g ◦∆u)(t),

(37)

where c3 = C2p
∗

(
2(p+1)
l(p−1)E(0)

)p−1
. Concerning the fifth and sixth terms,

we get∫
Ω

∆u

∫ t

0
g′(t− τ)(u(t)−u(τ))dτdx ≤ γ‖∆u‖22−

1

4γ
g(0)C2

∗ (g
′ ◦∆u)(t),

(38)∫
Ω
ut

∫ t

0
g′(t− τ)(u(t)− u(τ))dτdx ≤ γ‖ut‖22 −

1

4γ
g(0)C2

∗ (g
′ ◦∆u)(t).

(39)
We use the Young and Poincaré inequalities to obtain∣∣∣∣−∫

Ω
∇ut

∫ t

0
g′(t− τ)(∇u(t)−∇u(τ))dτdx

∣∣∣∣
≤ γ‖∇ut‖22 +

1

4γ

∫
Ω

(∫ t

0
g′(t− τ)(∇u(t)−∇u(τ))dτ

)2

dx

≤ γ‖∇ut‖22 −
g(0)

4γ

∫
Ω

∫ t

0
g′(t− τ)|∇u(t)−∇u(τ)|2dτdx

≤ γ‖∇ut‖22 −
g(0)

4γ
λ−1(g′ ◦∆u)(t), (40)

where λ is the Poincaré constant. Again applying Young and Poincaré
inequalities, for the last three terms in the right-hand side of (31) we
find(∫

Ω
ut∆udx− ‖∇ut‖22 − ‖ut‖22

)∫ t

0
g(τ)dτ
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≤
(

1− l
4γ
−
∫ t

0
g(τ)dτ

)
‖ut‖22+γ(1−l)‖∆u‖22−

∫ t

0
g(τ)dτ‖∇ut‖22

≤ −
∫ t

0
g(τ)dτ‖ut‖22+γ(1−l)‖∆u‖22+

(
1− l
4γ

λ−1 −
∫ t

0
g(τ)dτ

)
‖∇ut‖22.

(41)
Combining (32) and (35)-(41), the inequality (30) follows with k3 =
1−l
4 λ−1, k4 = 2l2 − 5l + 5 + c3, k5 = g(0)

2 (C2
∗ + λ−1

2 ), k6 = 1− l and

ϕ(γ) =
1

4γ

[
(1− l)(2 + 8γ2 + C2

∗ ) + 4γc(γ)c2

]
.

At this point, we are ready to prove Theorem 3.4.
Proof of Theorem 3.4. The assumption (G1) guarantees that for any
t0 > 0 we have ∫ t

0
g(τ)dτ ≥

∫ t0

0
g(τ)dτ = g0, (42)

for all t ≥ t0. Therefore, from (19), (15), (42) and the lemmas 3.5, 3.6
we obtain

G′(t) ≤ −(g0−ε−γ)‖ut‖22−
(
M + g0 − ε− γ −

k3

γ

)
‖∇ut‖22

−
(
εl

3
− γk4

)
‖∆u‖22 − (M − εk2 − γk6)‖ut‖m+1

m+1

+

(
M

2
− k5

γ

)
(g′ ◦∆u)(t) + (εk1 + ϕ(γ)) (g ◦∆u)(t) + ε‖u‖p+1

p+1. (43)

Now, we take ε < g0
2 and γ > 0 sufficiently small such that

γ < min

{
g0 − ε,

εl

3k4

}
.

Whence ε and γ are fixed, we choose M large enough that

M > max

{
γ +

k3

γ
, εk2 + γk6,

2k5

γ

}
.

Hence, (43) implies that there exist positive constants µ1 and µ2 such
that

G′(t) ≤ −µ1E(t) + µ2(g ◦∆u)(t), (44)
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for all t ≥ t0. Multiplying (44) by ξ(t), using (11) and (15), we get

ξ(t)G′(t) ≤ −µ1ξ(t)E(t) + µ2ξ(t)(g ◦∆u)(t)

≤ −µ1ξ(t)E(t)− µ2(g′ ◦∆u)(t)

≤ −µ1ξ(t)E(t)− 2µ2E
′(t).

In other words, for all t ≥ t0 we have

(ξ(t)G(t) + 2µ2E(t))′ ≤ ξ′(t)G(t)− µ1ξ(t)E(t). (45)

Let us to define
E(t) = ξ(t)G(t) + 2µ2E(t). (46)

Using the fact that ξ is a positive non-increasing differentiable function,
we have ξ(t) < ξ(0) for all t ≥ t0. Then, by the lemma 3.3 it is not
difficult to see that E(t) is equivalence to E(t). Therefore, by (21), (45)
and (46) we find

E ′(t) ≤ α1ξ
′(t)E(t)− µ1ξ(t)E(t) ≤ −µ1ξ(t)E(t) ≤ −κξ(t)E(t), (47)

for some positive constant κ. Integrating (47) over (t0, t), gives the
estimate

E(t) ≤ E(0)e
−κ

∫ t
t0
ξ(s)ds

, ∀t ≥ t0. (48)

Consequently, by using (46) and (48), the estimate (26) follows.

4 Exponential Instability

In this section, we will prove that solutions for the problem (1)-(3) grows
exponentially. Our main result is summarized in the following theorem.

Theorem 4.1 Let that the assumptions of Theorem 2.3 be fulfilled. As-
sume further that p > m, E(0) < 0 and∫ ∞

0
g(τ)dτ <

p− 1

p− 1 + 1/(p+ 1)
. (49)

Then, the Lp norm of any solution u of problem (1)-(3) grows as an
exponential function.
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Proof. For any ε > 0, let us to define the function

L(t) = H(t) + εF (t), (50)

where
H(t) = −E(t), (51)

and

F (t) =

∫
Ω
uutdx+

∫
Ω
∇u.∇utdx+

1

2
‖∇u‖22. (52)

By (51),(14) and lemma 2.2, since E(0) < 0, we find

0 < H(0) ≤ H(t) ≤ 1

p+ 1
‖u‖p+1

p+1. (53)

Differentiate L(t) with respect to t and using (1) we get

L′(t) = H ′(t)+ε(‖ut‖22+‖∇ut‖22−‖∆u‖22)

+ε

∫
Ω

∫ t

0
g(t−τ)∆u(t)∆u(τ)dτdx−ε

∫
Ω
uut|ut|m−1dx+ε‖u‖p+1

p+1. (54)

Therefore, by (14), the equation (54) can be written in the form

L′(t) = H ′(t)+ε

(
1 +

p+ 1

2

)
(‖ut‖22+‖∇ut‖22)

+ε

(
p+ 1

2
− 1

)
(1−

∫ t

0
g(τ)dτ)‖∆u‖22 + ε

(
p+ 1

2

)
(g ◦∆u)(t)

−ε
∫

Ω
uut|ut|m−1dx− ε(p+ 1)E(t)

+ ε

∫
Ω

∫ t

0
g(t− τ)∆u(∆u(τ)−∆u(t))dτdx. (55)

To estimate the last integral in the right hand side of (55) we use Cauchy-
Schwarz inequality and Young’s inequality to obtain∫

Ω

∫ t

0
g(t− τ)∆u(∆u(τ)−∆u(t))dτdx
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≤
∫ t

0
g(t− τ)‖∆u(t)‖2‖∆u(τ)−∆u(t)‖2dτ

≤ γ(g ◦∆u)(t) +
1

4γ

∫ t

0
g(τ)dτ‖∆u‖22, γ > 0. (56)

Inserting (56) into (55) we get

L′(t) ≥ H ′(t)+ε
(

1 +
p+ 1

2

)
(‖ut‖22+‖∇ut‖22)

+ε

[(
p+ 1

2
− 1

)
−
(
p+ 1

2
− 1 +

1

4γ

)∫ t

0
g(τ)dτ

]
‖∆u‖22

+ ε

(
p+ 1

2
− γ
)

(g ◦∆u)(t)− ε
∫

Ω
uut|ut|m−1dx+ ε(p+ 1)H(t). (57)

Choosing 0 < γ < (p+ 1)/2 and using (49), the inequality (57) reduces
to

L′(t) ≥ H ′(t) + ε

(
1 +

p+ 1

2

)
(‖ut‖22 + ‖∇ut‖22) + εa1‖∆u‖22

+ εa2(g ◦∆u)(t)− ε
∫

Ω
uut|ut|m−1dx+ ε(p+ 1)H(t), (58)

where

a1 =

(
p+ 1

2
− 1

)
−
(
p+ 1

2
− 1 +

1

4γ

)∫ ∞
0

g(τ)τ,

a2 =
p+ 1

2
− γ.

For any δ > 0, we use the Young’s inequality to get∣∣∣∣∫
Ω
uut|ut|m−1dx

∣∣∣∣ ≤ δm+1

m+ 1
‖u‖m+1

m+1 +
m

m+ 1
δ−(m+1)/m‖ut‖m+1

m+1. (59)

Taking k = δ−(m+1)/m, using (59) and the fact that H ′(t) ≥ ‖ut‖m+1
m+1,

the estimate (58) takes the form

L′(t) ≥
(

1− εkm

m+ 1

)
‖ut‖m+1

m+1+ε

(
1 +

p+ 1

2

)
(‖ut‖22+‖∇ut‖22)
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+ εa1‖∆u‖22 + εa2(g ◦∆u)(t)− ε k
−m

m+ 1
‖u‖m+1

m+1 + ε(p+ 1)H(t). (60)

Since p > m, by the imbedding Lp+1(Ω) ↪→ Lm+1(Ω) we obtain

‖u‖m+1
m+1 ≤ C‖u‖

m+1
p+1 , (61)

for some positive constant C. Using the algebraic inequality

zν ≤ (1 + z) ≤
(

1 +
1

a

)
(z + a), ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0,

we find (
‖u‖p+1

p+1

)m+1
p+1 ≤ d

(
‖u‖p+1

p+1 +H(0)
)
, (62)

where d = 1 + 1/H(0). Considering the inequalities (53), (61), (62) and
inserting the result into (60) we obtain

L′(t) ≥
(

1− εkm

m+ 1

)
‖ut‖m+1

m+1+ε

(
1 +

p+ 1

2

)
(‖ut‖22+‖∇ut‖22)

+εa1‖∆u‖22 + εa2(g ◦∆u)(t)− ε k
−m

m+ 1
Cd

(
1 +

1

p+ 1

)
‖u‖p+1

p+1

+ ε(p+ 1)H(t). (63)

For the last term in the right hand side of (63), from the definition of
H(t) we have

H(t) ≥ −1

2

[
‖ut‖22 + ‖∇ut‖22 + ‖∆u‖22 + (g ◦∆u)(t)

]
+

1

p+ 1
‖u‖p+1

p+1.

(64)
Consequently, choosing a3 < min {(p+ 1)/2, a1, a2} and using (64), the
estimate (63) can be rewritten in the form

L′(t) ≥
(

1− εkm

m+ 1

)
‖ut‖m+1

m+1+ε

(
1 +

p+ 1

2
− a3

)
(‖ut‖22+‖∇ut‖22)

+ε(a1 − a3)‖∆u‖22 + ε(a2 − a3)(g ◦∆u)(t)

+ε

[
2a3

p+ 1
− k−m

m+ 1
Cd

(
1 +

1

p+ 1

)]
‖u‖p+1

p+1 + ε(p+ 1− 2a3)H(t).
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Now, we select k so large such that

2a3

p+ 1
− k−m

m+ 1
Cd

(
1 +

1

p+ 1

)
> 0.

Whence k is fixed, we choose ε so small enough such that ε < m+1
km .

Therefore, there exists σ1 > 0 so that

L′(t) ≥ εσ1

(
‖ut‖22 + ‖∇ut‖22 + ‖∆u‖22 + (g ◦∆u)(t) + ‖u‖p+1

p+1 +H(t)
)
.

(65)
Hence

L(t) ≥ L(0) > 0, ∀t ≥ 0,

where

L(0) = H(0) + ε

[∫
Ω
u0u1dx+

∫
Ω
∇u0.∇u1dx+

1

2
‖∇u0‖22

]
.

On the other hand, Young’s inequality and Poincaré inequality imply
that ∫

Ω
uutdx ≤

1

2
‖u‖22 +

1

2
‖ut‖22 ≤

λ−2

2
‖∆u‖22 +

1

2
‖ut‖22, (66)∫

Ω
∇u.∇utdx ≤

1

2
‖∇u‖22 +

1

2
‖∇ut‖22 ≤

λ−1

2
‖∆u‖22 +

1

2
‖∇ut‖22, (67)

where λ is the Poincaré constant. Therefore, using (50), (52) and the
estimates (66) and (67) we have

L(t) ≤ σ2

(
H(t) + ‖ut‖22 + ‖∇ut‖22 + ‖∆u‖22 + (g ◦∆u)(t) + ‖u‖p+1

p+1

)
,

(68)
where σ2 is a positive constant. By the estimates (65) and (68) we
deduce

L′(t) ≥ εσ1

σ2
L(t).

Therefore,

L(t) ≥ L(0) exp

(
ε
σ1

σ2
t

)
. (69)

Considering the definition of L(t) we have L(t) ≤ 1/(p + 1)‖u‖p+1
p+1 (for

sufficient small ε > 0) and hence the desired result can be obtained from
(69).
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