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A Family of Optimal Derivative Free Iterative
Methods with Eighth-Order Convergence for
Solving Nonlinear Equations
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Abstract. In this paper, modification of Steffensen’s method with
eight-order convergence is presented. We propose a family of optimal
three-step methods with eight-order convergence for solving the simple
roots of nonlinear equations by using the weight function and interpola-
tion methods. Per iteration this method requires four evaluations of the
function which implies that the efficiency index of the developed meth-
ods is 1.682. Some numerical examples illustrate that the algorithm is
more efficient and performs better than other methods.
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1. Introduction

The numerical solution of a nonlinear equation f(x) = 0 is a fundamental
task in scientific computation. The most famous approach is probably

Newton’s method (NM) : zp41 = azn—%(n =0,1,2,...) where xg is

an initial guess of the root. It uses two evaluations of f and f to achieve
second-order convergence. However, Steffensen’s method (SM) : xp41 =
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. — f(zn)?
n f@n+f(zn))—f(zn . i i . .
Newton’s method, because it maintains quadratic convergence without

any derivative. Ostrowski’s method[8], given by

j is well known as a noticeable improvement of

_ _ f(zn)
Yn = Tn = F (g, (1)
PRV {CY N (7
n+1 n f(ain)—Qf(yn) f/ (xn)’

is an improvement of Newton’s method. Chun and Ham developed a
family of variants of Ostrowski’s method with sixth-order methods by
weight function methods in [3], which is written as:

_ _ fzn)
T
0 =Y T F@n) 27 ) £ (an)’ )
Pt = 20— Hip) F2,

where i, = fg ; and H (t) represents a real-valued function with H(0) =

1, H(0) = 2 and |H"(0)] < co. Kou et al, presented a family of vari-
ants of Ostrowski’s method [5] with seventh-order convergence, which is

given by:
_ _ f(zn)
Yn = Tn 7 (1”8’
Zn = Yn — f(xn) f(yn)
n = Yn T F@n) =2 ) £ ()’ (3)

_ FGn) | (@) =fyn) \2 f(zn)
Tntl = Zn = 7o 5 (f( n)— 2f(yn)) + f(yn)af(Zn)}’

where « is constant. Bi et al, presented a new family of eighth-order
iterative methods [2], which is given by:

Yn = Tn 7 (@n)’ f( .
o f@a) (2 () f(zn)
Tnt1 = Zn F@n) 77 (zn)  Tenynl H enstn,@n](n—yn) ’
F(yn)

where v € R is constant, p, = 5 and H (t) represents a real-valued

111

function with H(0) =1, H (0) =2, H" (0) = 10 and |H"'(0)| < oco. Liu
and Wang in [7] presented the following family of optimal order eight
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f(zn)

f/ (1n ’

Zn = Yn — fgx") f(yn)
n o f(@n)=2f(yn) f(zn)’

_ _ f(zn) f(@n)—f(yn) f(zn) 4f(zn)
) (f(wn)—zf(yn)> T Fouren T FE B

Yn = Ty —

(5)
with g and 8 are in R. Sharma in [9] to produce optimal eighth-order
method in the following form

Yn = Tn 7 (1”8’
. f(zn) £ (yn)
n = Yn T @) —2fon)  (2n)’ (6)

o (n) | (1G] Flenynlf(n)
Tntl = Zn [1+f( )*( @ )) } Flenznl Ty an]

Recently, there are several optimal eighth-order methods proposed in
[1,4,6].

1.1 Preliminaries and Notation

Definition 1.1.1 The efficiency index is defined as p% , where p is the
order of the method and m is the number of functional evaluations per
iteration required by the method [10)].

Definition 1.1.2 The computational order of convergence (COC) is
computed by using [10]

log (|| Xn+1 — Xnlloo/ | Xn — Xn—1llc0) (7)
lOg(HXn - Xn—1”0<>/HXn—1 - Xn—QHOO)7

where Xni1, Xn, Xn—1 and X,,_o are iterations close to a zero of the

coC =

nonlinear system.

Definition 1.1.3 Suppose {X,,}7° is a sequence that converges to x*
with X, # « for all n. If positive constants ¢ and r exist with
Xpy1 —a*
o X =)

L (8)
noe [Xo — 2l
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then { X}, converges to of order r, with asymptotic error constant c.
Now after furnishing the outlines of the present work and a short study
on the available high order developments of the classical Newton’s method,
we will provide our contribution in the next section. In the section 2 gives
a general class of efficient three-step eight-order methods including four
evaluations of the function per cycle. In the section 3,where the numer-
ical comparisons are made to manifest the accuracy of the new methods
from our class. Finally, the conclusion of the paper will be drawn in
section 4.

2. Development of Method and Convergence
Analysis

To develop the new method, let us consider the iteration scheme in the
form

_ f(xn)2
Yn = Tn — T ) ) —F(@n)’
{ f(@n+f(zn))—f(zn) (9)

zn = Yn — K(tn) 5 rtem) —Fam)

where p, = ;:((zzg and K (t) represents a real-valued function, we have

the following convergence result

Theorem 2.1. Assume that f € C*(D). Suppose z* € D, f(z*) =0
and fl(ac*) #£ 0. If the initial point xq is sufficiently close to x*, then the
sequence {x,} generated of the iteration scheme (9) converges to x*. If
K is any function with {K(0) = 1, K (0) = 3, |K"(0)] < oo}, then the
convergence order of any method of the family (9) arrives to four.

Proof. Since f is sufficiently differentiable, by expanding f(z,) and
f(zn + f(xy,)) about x*, one obtains

4
flan) = f (@) (en+ Y cich + O(eh)), (10)
i=2
and

(@ + f(x0)) = ['(°)(2en + 5ezep, + (93 + 43)ep + Oley)), (1)
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1 f® @)
D)
software and by writing the Taylor’s expansion for z, about z* we can
get:

where ¢, = for k = 2,3, ... Furthermore, with using the Maple

Zn = ¥ —2co(—1+ K(0))e2 +6(1 — K(0))cs
+ (=5 +11K(0) — 4K (0))c3e>
+ O(eh). (12)

n
Solving system of the equations {1 — K (0) = 0, =5+ 11K (0) — 4K (0) =
0} we find that {K(0) = 1,K (0) = 3}, thereby we obtain K(t) =
%oth + %t + 1, where t = f(y”),a € R.

= f(zn)
Now, we consider an iteration scheme of the form,
— f(@n)?
Yn = Tn Tt f(@n))=[ @)’ 13)
_ |1 f(yn) 3 flyn) f(zn) f(yn)
L P (f(:rn)> t o T 1] TG+ T @)~ FEn)”

and satisfies the following error equation :
zn— 2" = (196 — degcs — 4K (0)B)el +0(e3). O (14)

Remark 2.2. The order of convergence of the iterative method (13)
1s 4. This method requires three evaluations of the function, namely,
f(zn), f(zn+ f(xn)) and f(yn). If we suppose that all the evaluations
have the same cost, we have that the efficiency index of the method (13)
is /4 =~ 1.5874.

Now we construct a three-step iterative method:

)
_ 1 (f)\? L 3 flum) F(@n) f(yn)
n = Yn 20 (f(xn)> + 2 f(zn) T 1:| f(@ntf(@n))—f(zn)’ (15)
_ f(zn)?
Tntl = 2n = Tt fzn))—J (zn) "

We can easily prove that scheme (15) is eight-order convergent and it re-

quires five evaluations of the function, which satisfies the error equation
ent1 = (2(des —19c2 +4acs)?c3)ed . Scheme (15) has an efficiency index
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of 8% ~ 1.5157. We construct an optimal efficiency index with an eight-
order convergence for solving the simple roots of nonlinear equations by
interpolation methods. We can express f(zn + f(zn)) as follows: by us-
ing the interpolation on five points (P., f(P,)), (zn, f(2n)), (Un, f(yn)),
(Py, f(Py)) and (xy, f(xn)), where P, = zp+ f(2n) and Py = xp+ f(24).
We can approzimate f(z, + f(2n)) if we solve the equations (16).

ap + a1 P, + a2 P? + azP3 = as f(P,)

ag + aizp + azz;i + CLSZg = ay f(zn)

ao + a1yn + azyp + asyp = asf(yn) (16)
ao + a1 Py + aaP? + agP2 = as f(Py)

ao + a1z, + axx? + azrd = asf(2y,)

for the coefficients a;, 0 < i< 4 and aqg = 1. If

1 P, Pz2 Pg _f(Pz)
I 2z Z?L Z?% _f(Zn)
M, = L yn y721 yg _f(yn)
1 Pa: P:L? Pa? _f(P:c)
1oz, 22 22 —f(z)

then the system (16) has a unique solution if and only if the Deter —
minant(M,) = 0. By expanding Determinant(M,) about fifth column
we obtain

(A) f(kz) = (B)f(zn) + (C) f(yn) — (D) f(kz) + (E) f(zn) =0, (17)

As, we have
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A=—f(zn)(@n = yn)(@n = 20)(Yn = 20)(f(T0) + 20 = yn)(f(20) + 20 = 20),
B = —f(zn)(@n = yn)(=yn + 20+ f(20))(f(20) + 20 = @) (f (@) + 20 = yn) (f(2n) = f(2n) = 20 + 20),
= _f(xn)f(zn)(x" - z”)(f(x") +on — Zﬂ)(f(zn) —In+ Zn)(f(mn) - f(zn) +Tn— Zn)7

D = —f(z)(®n = yn)(@n = 20) (Yn — 2)(f(2n) = T + 20)(f(20) = Y + 20),

E = f(z)(yn = 20)(f(z0) = yn £ 20) (=20 + fl@n) + 20) (@0 =y + F(20))(f(20) = F2n) = 20 + 20).
19

Substituting { A, B,C, D, E} of (19) in (18) and simplifying {%, %, %, %}

we have f(k.) = Vi(Tn, Yn, 2n)-

_ () =yntzn)(f(zn)tzn—an)(f(zn) = f(zn)—2n+zn) f(2n)
Vs (@n, Yn, 2n) = (@n—2n) Wn—2n) (—2n+1@n)+en)

_ Fn)(f(zn)tzn—zn)(f(xn)=f(zn)—2n+zn) f(Yn) + f(zn)(f(zn)tzn—2n) (f(2n) —yn+2zn) f(ka)
(2n—yn)(Yn—2n)(@n—yn+f(zn)) f(@n)(@n—yntf(zn))(—zn+f(zn)+zn)

+ Fen)(f(zn)=yntzn) (f(#n) = f(2n)—2n+2n) .

(@n—yn)(@n—2n)

(20)
Now we construct a three-step iterative method:

— f(zn)?
Yn = Tn T+ flzn) =)

_ |1 £ (yn) 3 fyn) f(xn)f(yn)
o= o~ |Jo (F) + 3 + 1] Fantfo -ty (2
T _ f(zn)2

ntl = 2

We prove the following convergence theorem for the method (21)

Theorem 2.3. Let z* € D be a simple zero of a sufficiently differen-
tiable function f : D — R for an open interval D. If xo is sufficiently
close to x*, then the three-step iterative method (21) has eight-order con-
vergence and satisfies the following error equation :
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Proof. Since f is sufficiently differentiable, by expanding f(z,) about
x*, one obtains

8
F(xn) = [ (@) (en+ Y ciel, + O(eh)), (22)
i=2
by expanding ¥, about x, , we obtain
Yn = 4+ 2c0€2 + (6c3 —Bcd)ed + -+ 0(e)), (23)
By expanding f(y,) about z,, we have

flyn) = f/(l’*)(QCQC?L + (6c3 — 50%)62 + (—26¢9c3 + 170%’ + 1404)ei
+ 4 0())). (24)

By Substituting (22), (23) and (24) into the second formula of (21),
using Taylor’s expansion, and simplifying, we have

Zn = a4 (—deacs + 1965 — dach)et + -+ (—=34178c%cs¢y
51093
— B%mé+ww@ﬁ+%m&@+—3—£+wwméwq

— 11187acheys + 37353ach ez — 26902acscs — T56ackics + 4248acocy
—  588acyci + 69690cics — 14133cocs — 80957¢5c3
4+ 3961cscd)ed + O(2?) (25)

By expanding f(z,) about z,, we have

flzn) = f,(:n*)(—40203 +19¢3 — dacd)ed 4 -
51815
4+ (—34178c3c3cq — 138160ch + 2937coch 4 29428c4ch + ch
+ 10272ackcseq — 11187achey + 37385ac5¢s

— 26902ac3c3 — T56acicy + 4248acocs — 588acacs + 16a2c]
69706c5c3 — 14133coc3 — 81109c5¢3 + 3961c4c3)ed
+ O(e)). (26)

_I_
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By expanding V ¢(z, yn, 2n) & f’ (zn) about x,,, we have

Ut (T, Yny 2n) = £ (@*)((—8caes 4 38¢3 — 8acd)el - -
4+ (5140cac3¢4 — 168c2 — 15644c3¢3 — 8410c3¢y
4+ 27726c5¢3 + 1150¢3 — 11263¢5 — 1008acacscy
—  10294acices + 24640 ey + 4584acacd
4+ 4983acS — 216acd)el + O(ed) (27)

By Substituting (25), (26) and (27) into the third formula of (21), using

Taylor’s expansion, and simplifying, we have we have

Cni1 = Tni1—2" = 2¢2 (des — 19¢3 +4ac§)(719cg +4acs +4cacs — 264)62 + O(eg). d
(28)

Remark 2.4. The order of convergence of the iterative method (21) is

8. This method requires four evaluations of the function, namely, f(x,),
f(xn + f(zn)), f(yn) and f(z,). If we suppose that all the evaluations
have the same cost, we have that the efficiency index of the method (21)
is v/8 ~ 1.6821.

Table 1: Comparison of different methods in terms of orders and efficiencies.

Methods | Order | Total number of evaluations | Efficiency index
Newton 2 2 V2~ 1.414
Steffensen 2 2 /2~ 1.414
Ostrowski | 4 3 V4 ~ 1.587
(13) 4 3 /4 ~ 1.587
Chun 6 4 V6 ~ 1.565
Kou 7 4 V7~ 1.626
Bi 8 4 V/8 ~ 1.682
Liu 8 4 V/8 ~ 1.682
Sharma 8 4 V8 ~~ 1.682
(21) 8 4 V8 =~ 1.682

3. Numerical Examples

This section deals with comparison of some numerical examples and
obtaining the simple roots of the test problems. All the instances were
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done with Matlab 7.13 using 1000 digits, floating point (digits := 1000),
with VPA Command. Unlike Section 2, we here use Matlab to show the
readers that all of the iterative schemes can be implemented really well
in all of the available Software. In examples considered in this article,
the stopping criterion are the | zp41 — @ |< €, | f(@n41) |< €, where
€ = 1071990 The absolute value of the given test functions after some
full iterations are listed in Table 2. As Table 2 illustrates, the new
methods from the class gives reliable results in all cases, in contrast by
the well-known methods with the same Total Number of Evaluations per
cycle, i.e. Bi’s optimal eight-order method (BM), Liu’s optimal eight-
order method (LM) and Sharma’s optimal eight-order method (SM). We
present some numerical test results with the following functions:

fi(z) = 23 + 422 — 15, z* ~ 1.93198055660636,
f e’ — sin2(z) + 3cos(z) + 5, z* &~ —1.20764782713091,
=10z — 1, o* ~ 1.67963061042845,
~ 1.40449164821534,
~ 1.34742809896830,
~ 8.30943269423157,
= 3.00000000000000,
Tt ~ —2.52324523073255,
() =z —1-3 o* 2 9.63359556283269,
o* ~ 2.33196765588396.
(29)

l,*

x*

fo(z) =In(z) + x — 5, x*
:1:*

2
= e® +7x—30 __ 1’

(z)
(z)
(z)
(z)
(z) = 2° + 2* + 422 — 15,
(z)
(z)
()
)

A

The computational results presented in Table 2 shows that in almost
all of cases, the presented method converge more rapidly than other
methods. As shown in Tables 2, the proposed method (21) is preferable
to Bi’s method, Liu’s methods and sharma’s method with optimal eight-
order convergence.
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Table 2: Comparison of iterative methods.
Function | Methods | iteration | |z — zx_1] |f (k)] coc
fi(z), (21) 4 0.000000e4-00 | 0.000000e+-00 | 8.000000
Tg =2 BM 4 1.600405e-330 | 0.000000e+-00 | 7.000000
LM 4 1.880395e-387 | 0.000000e+-00 | 8.000000
SM 4 4.565243e-428 | 0.000000e+00 | 8.000000
fa(z), (21) 4 2.280003e-143 | 1.966920e-848 | 7.999974
xrg = —1.5 BM 4 4.425546e-66 | 2.443099e-455 | 7.001710
LM 4 1.630467e-234 | 1.200000e-998 | 8.000010
SM 4 2.342471e-280 | 1.100000e-998 | 8.000005
f3(x), (21) 4 1.074982e-90 | 6.620299e-539 | 7.999477
zg=1.5 BM 4 1.250541e-46 | 2.401965e-323 | 7.117036
LM 4 3.716627e-45 | 7.005386e-355 | 7.890752
SM 4 1.378981e-50 | 4.941091e-399 | 7.923618
fa(z), (21) 4 5.767842e-30 | 2.667055e-275 | 7.999999
To =2 BM 4 4.384097e-29 | 1.459166e-200 | 6.999961
LM 4 2.790447e-25 | 1.401650e-196 | 7.999899
SM 4 4.310256e-29 | 9.953621e-228 | 7.999973
f5(x), (21) 4 3.827346e-112 | 2.819039e-660 | 7.999722
rog=14 BM 4 8.621099e-62 | 2.391218e-426 | 7.000000
LM 4 8.575358e-79 | 3.508366e-623 | 8.000000
SM 4 5.463271e-85 | 1.808119e-673 | 8.000000
fe(x), (21) 4 4.181664e-424 | 0.000000e+00 | 8.000000
Tg =8 BM 4 1.023748e-82 | 2.311776e-582 | 7.000000
LM 4 1.850555e-113 | 4.581926e-912 | 8.000000
SM 4 1.417600e-124 | 0.000000e+00 | 8.003890
fr(x), (21) 5 1.299147e-55 | 7.597901e-320 | 8.000000
To = 3.5 BM 5 4.455908e-08 1.253740e-52 | 7.000000
LM 5 2.233053e-24 | 4.987826e-183 | 7.728782
SM 5 3.060757e-39 | 1.124354e-302 | 7.940283
fs(x), (21) 3 7.481338e-109 | 0.000000e+-00 | 8.005681
rg = —2.4 BM 3 2.982942e-107 | 1.506077e-753 | 6.976066
LM 3 8.857841e-134 | 0.000000e+00 | 7.980231
SM 3 4.669022¢-134 | 0.000000e+00 | 7.982322
fo(x), (21) 3 1.699554e-110 | 3.183989e-668 | 8.000903
zo=9 BM 3 2.071706e-72 | 4.020242e-511 | 7.012641
LM 3 7.375387e-99 | 3.856457e-796 | 8.010044
SM 3 1.030470e-121 | 1.941528e-981 | 8.001482
fio(z), (21) 3 2.889024e-83 | 1.184087e-499 | 8.000000
Tg =2 BM 3 2.073513e-57 | 1.521116e-400 | 6.882628
LM 3 3.187186e-77 | 2.045299e-616 | 7.869719
SM 3 1.116946e-85 | 6.055121e-685 | 7.876306
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Conclusions

In this work we presented an approach which can be used to construct-
ing of eight-order convergence iterative methods that do not require the
computation of first and second or higher derivatives. Numerical exam-
ples also show that the numerical results of our new three-step methods,
in equal iterations, improve the results of other existing three-step meth-
ods with eight-order convergence. Finally, it is hoped that this study
makes a contribution to nonlinear equation solving.
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