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Abstract. The present paper aims to introduce the concepts of adding
a strong arc, cobondage set, cobondage number, t-cobondage set, and
t-cobondage number in the vague graphs, as well as expressing some of
the new segmentation of the additions of arc and reduce the effect of
adding a strong arc on domination parameters in vague graphs. Finally,
some of their applications are pinpointed.
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1 Introduction

Euler first introduced the concept of graph theory in 1736. In the history
of mathematics, the solution given by Euler regarding the well-known
Konigsberg bridge problem is considered to be the first theorem of graph

Received: November 2019; Accepted: July 2020
∗Corresponding Author

1



2 S. BANITALEBI AND R. A. BORZOOEI

theory,which has now become a subject considered as a branch of combi-
natorics. The theory of graph is regarded as an extremely useful tool for
solving combinatorial problems in different areas such as geometry, al-
gebra, number theory, topology, operations research, optimization, and
computer science. Cockayne and Hedetniemi [7] introduced the domi-
nation number and the independence number. In addition Zadeh [19]
first proposed the theory of fuzzy sets. Then, Rosenfeld [16] introduced
the concept of fuzzy graph theory as a generalization of Euler’s graph.
Gau and Buehrer [8] proposed the concept of vague set by replacing
the value of an element in a set with a subinterval of [0, 1]. Namely, a
true-membership function tv(x) and a false membership function fv(x)
are used to describe the bounderies of the membership degree. Fur-
ther, Janakiram and Kulli [9] suggested the concept of the cobondage
number in graphs. Accordingly, Ramakrishna [11] introduced the con-
cept of vague graphs, along with some of their properties. In another
study, Somasundram [18] proposed the concept of domination in fuzzy
graphs. Parvathi and Thamizhendhi [10] introduced domination in in-
tuitionistic fuzzy graphs. In addition, Nagoor Gani and Prasanna Devi
[10] suggested the reduction in the domination number of fuzzy graph.
Borzooei and Rashmanlou studied different types of dominating set in
vague graphs [3, 4, 5, 6, 13, 14, 15]. By considering the above-mentioned
studies, the present paper seek to introduce the concepts of editions of an
arc, cobondage sets, and cobondage numbers in vague graphs. Further,
the new segmentation of the editions of arc is discussed in the vague
graphs.

2 Preliminaries

In this section, we review some definitions and results from [3, 4, 9, 12],
which we need in what follows.

A graph is an ordered pair G∗ = (V,E), where V is the set of vertices
and E is the set of edges. A subgraph of a graph G∗ = (V,E) is a graph
H∗ = (W,F ), where W ⊆ V and F ⊆ E. A fuzzy graph G = (σ, µ)
on simple graph G∗ = (V,E) is a pair of functions σ : V → [0, 1] and
µ : E → [0, 1] where, for any uv ∈ E, µ(uv) ≤ min{σ(u), σ(v)}. A vague
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set A on non-empty set X, is a pair (tA, fA), where tA : X → [0, 1] and
fA : X → [0, 1] are true and false membership functions, respectively,
such that for all x ∈ X, 0 ≤ tA(x) + fA(x) ≤ 1. Note that tA(x)
is considered as the lower bound for degree of membership of x in A
and fA(x) is the lower bound for degree of non-membership of x in A.
So, the degree of membership of x in the vague set A, is characterized
by the interval [tA(x), 1 − fA(x)]. Hence, a vague set is a special case
of interval-valued sets studied by many mathematicians and applied in
many branches of mathematics.

It is worth to mention here that interval-valued fuzzy sets are not
vague sets. In interval-valued fuzzy sets, an interval-valued membership
value is assigned to each element of the universe considering the evidence
for x only, without considering evidence against x. In vague sets both
are independently proposed by the decision making. This makes a major
difference in the judgment about the grade of membership.

A vague graph on simple graph G∗ = (V,E), is defined to be a pair
G = (A,B), where A = (tA, fA) is a vague set on V and B = (tB, fB) is
a vague set on E such that for any edge xy ∈ E,

tB(xy) ≤ min{tA(x), tA(y)} , fB(xy) ≥ max{fA(x), fA(y)}.

Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then,
(i) the vertex cardinality of G is defined by,

|V | =
∑
vi∈V

tA(vi) + (1− fA(vi))

2
,

(ii) the edge cardinality of G is defined by,

|E| =
∑

vivj∈E

( tB(vivj) + (1− fB(vivj))

2

)
,

(iii) the cardinality of G is defined by,

|G| = |V |+ |E|

(iv) for any U ⊂ V, the vertex cardinality of U is denoted by O(U) and
defined by,

O(U) =
∑
vi∈U

(1 + tA(vi)− fA(vi)

2

)
,
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(v) for any F ⊂ E, the edge cardinality of F is denoted by S(F ) and
defined by,

S(F ) =
∑

vivj∈F

(1 + tB(vivj)− fB(vivj)

2

)
.

Let G = (A,B) be a vague graph on simple graph G∗ = (V,E) and
u, v ∈ V . Then,
(i) t-strength of connectedness between u and v is

t∞B (uv) = sup{tkB(uv)
∣∣k = 1, 2, · · · , n},

and

tkB(uv) = min{ tB(ux1), tB(x1x2), · · · , tB(xk−1v)
∣∣

u, x1, · · · , xk−1, v ∈ V, k = 1, 2, · · · , n}.

(ii) f-strength of connectedness between u and v is

f∞B (uv) = inf{fkB(uv)
∣∣k = 1, 2, · · · , n},

and

fkB(uv) = max{ fB(ux1), fB(x1x2), · · · , fB(xk−1v)
∣∣

u, x1, · · · , xk−1, v ∈ V, k = 1, 2, · · · , n}.

Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). An edge
uv ∈ E is said to be strong edge if

tB(uv) ≥ t∞B (uv) and fB(uv) ≤ f∞B (uv),

A path (or u− v path) P in G is a sequence of distinct vertices u =
v1, v2, · · · , vn ∈ V = v such that either one of the following conditions
is satisfied:
(i) tB(vivj) > 0 and fB(vivj) = 0, for some 1 ≤ i, j ≤ n,
(ii) tB(vivj) = 0 and fB(vivj) > 0, for some 1 ≤ i, j ≤ n,
(iii) tB(vivj) > 0 and fB(vivj) > 0, for some 1 ≤ i, j ≤ n.

Let P be a u−v path in a vague graph G. Then P is called a strongest
u− v path in G, if t-strength of P is a maximum and f-strength of P is
a minimum among all paths between u and v.
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An edge e in a vague graph G is called
(i) t-bridge, if deleting e reduce the t-strength of connectedness between
some pair of vertices.
(ii) f-bridge, if deleting e increases the f-strength of connectedness be-
tween some pair of vertices.
(i) vague bridge, if it is a t-bridge and f-bridge.
Let G = (A,B) be a vague graph on simple graph G∗ = (V,E) and
u, v ∈ V . Then,
(i) we say that u dominate v in G, if there exists a strong edge between
u and v.
(ii) S ⊂ V is called a dominating set in G, if for any v ∈ V − S, there
exists u ∈ S such that u dominates v.
(iii) a dominating set S in G is called minimal dominating set if no
proper subset of S is a dominating set.
(iv) minimum vertex cardinality among all minimal dominating sets of
G is called lower domination number of G and is denoted by dV (G).
(v) maximum vertex cardinality among all minimal dominating sets of
G is called upper domination number of G and is denoted by DV (G).

Let G = (A,B) be a vague graph on simple graph G∗ = (V,E)
without isolated vertices. Then,
(i) S ⊂ V is called a total dominating set in G, if for any v ∈ V , there
exists u ∈ S such that u 6= v and u dominates v.
(ii) a total dominating set S of G is called a minimal total dominating
set if no proper subset of S is a total dominating set of G.
(iii) minimum vertex cardinality among all minimal total dominating
sets of G is called lower total domination number of G and is denoted
by tV (G).
(iv) maximum vertex cardinality among all minimal total dominating
sets of G is called upper total domination number of G and is denoted
by TV (G).

Let G = (A,B) be a vague graph on simple graph G∗ = (V,E).
Then,
(i) two vertices u, v ∈ V are called independent if there is no any strong
edge between them.
(ii) S ⊂ V is called a independent set in G, if for any u, v ∈ S,

tB(uv) < (tB)∞(uv) and fB(uv) > (fB)∞(uv).
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(iii) an independent set S in G is said called maximal independent set
if for any vertex v ∈ V − S, the set S ∪ {v} is not independent.
(iv) minimum vertex cardinality among all maximal independent set is
called lower independent number of G and is denoted by iV (G).
(v) maximum vertex cardinality among all maximal independent set is
called upper independent number of G and is denoted by IV (G).

A connected vague graph G on simple graph G∗ is said to be firm if

max{tB(uv) | uv ∈ E} ≤ min{tA(u) | u ∈ V }

and

min {fB(uv) | uv ∈ E} ≥ max {fA(u) | u ∈ V }.

The cobondage set of a fuzzy graph G is the set C of additional strong
arcs to G, that reduce the domination number of G and the cobondage
number of fuzzy graph G is the smallest number of arcs in any cobondage
set of G.

Notation. From now one, in this paper we let G = (A,B) be a
vague graph on simple graph G∗ = (V,E).

3 Study of domination by addition of strong
arcs

In this section we discuss about domination of vague graph by adding a
strong arc to this vague graph.

If in graph G∗ = (V,E), we add an arc e to E, then we denote
it by Ee = E ∪ {e} and G∗e = (V,Ee) and we say it is an additional
arc. Moreover, if vague graph G = (A,B) on G∗ extend to G∗e, then we
denoted it by Ge = (Ae, Be).

Example 3.1. Consider a vague graph G = (A,B) on simple graph
G∗ = (V,E), where V = {a, b, c, d, k} and E = {e1, e2, e3, e4, e5}, as
in Figure 1. If we add an arc e6 to G∗ and define tB(e6) = 0.4 and
fB(e6) = 0.5, then Ge6 = (Ae6 , Be6) is a vague graph on simple graph
G∗e6 = (Ve6 , Ee6) and e6 is an strong arc.
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Figure 1: Vague graph G on G∗

Note 3.2. Arc e in vague graph Ge = (Ae, Be) is the strong arc if and
only if there exists u, v ∈ V such that u − v path of Ge that includes
e = xy is a strongest path between two nodes u and v.

Note 3.3. If arc e in vague graph Ge is a vague bridge, then e is a
strong arc.

Notation. If arc e in vague graph Ge is an strong arc, then we
denote Gs

e = (As
e, B

s
e) instead of Ge = (Ae, Be).

Sometimes, by adding an edge to the vague graph G, only the upper
domination number is changed and the lower domination number still
remains constant and sometimes vic versa. Now, since the main purpose
of this paper is to investigate the effect of adding edge on the domination
of the vague graph, we define the domination number of vague graph as
follows.

Definition 3.4. Let G = (A,B) be a vague graph. The domination
number of G is denoted by ∆V (G) and is defined as follows,

∆V (G) =
dV (G) +DV (G)

2
.

Example 3.5. Consider a vague graph G = (A,B) on simple graph
G∗ = (V,E), as in Figure 2.

Then, it is clear that dV (G2) = 0.75 and DV (G2) = 1.2 and so,

∆V (G2) =
0.75 + 1.2

2
= 0.975.
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Figure 2: Vague graph G on G∗

Theorem 3.6. Let e = uv be an additional strong arc in Gs
e. Then

(i) ∆V (Gs
e) ≤ ∆V (G).

(ii) 0 ≤ ∆V (G)−∆V (Gs
e) ≤ max{|{u}|, |{v}|}.

Proof. (i) Assume that S is a minimal dominating set of G and e = uv
be an additional strong arc in Gs

e. If u or v is an isolated node, then
S − {u} or S − {v} is a minimal dominating set in Gs

e. Otherwise,
S is a minimal dominating set in Gs

e. Hence, dV (Gs
e) ≤ dV (G) and

DV (Gs
e) ≤ DV (G). Therefore, ∆V (Gs

e) ≤ ∆V (G).
(ii) By the proof of (i), we have:

0 ≤ dV (G)− dV (Ge) ≤ max{|{u}|, |{v}|}

and
0 ≤ DV (G)−DV (Ge) ≤ max{|{u}|, |{v}|}.

Then
0 ≤ ∆V (G)−∆V (Gs

e) ≤ max{|{u}|, |{v}|}.
�

Definition 3.7. The independent number of G is denoted by I(G) and
is defined as follows,

I(G) =
iV (G) + IV (G)

2
.

Example 3.8. Consider the vague graph G as Figure 2. By routine
calculations, it is easy to see that, iV (G) = 0.9 and IV (G) = 1.15. Then,

I(G) =
0.9 + 1.15

2
= 1.025.
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Proposition 3.9. Let e be an additional strong arc in Gs
e. Then

I(Gs
e) ≤ I(G).

Proof. Straightforward. �

Now, we shall discuss about the types of addition of arcs in vague
graphs.

Definition 3.10. Let e = uv be an additional strong arc in Gs
e. Then

e = uv is called
(i) an α-strong arc in Ge if

tBe(uv) > t∞Be(uv) , fBe(uv) < f∞Be(uv).

(ii) a β-strong arc in Ge if

tBe(uv) = t∞Be(uv) , fBe(uv) = f∞Be(uv).

(iii) a δ-arc in Ge if

tBe(uv) < t∞Be(uv) , fBe(uv) > f∞Be(uv).

Example 3.11. Consider a vague graph G = (A,B) on simple graph
G∗ = (V,E), as Figure 3.

Figure 3: Vague graph G on G∗

Consider additional arcs e1, e2 and e3 in Figure 3. Then e1 is an
α-strong arc, e2 is a β-strong arc and e3 is a δ-arc.
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Theorem 3.12. If G is a firm and e is an additional β-strong arc or
δ-arc of G∗e, then Ge is a firm, too.

Proof. If G is a firm, then,

max {tB(uv) | (u, v) ∈ V × V } ≤ min {tA(u) | u ∈ V },

and

min {fB(uv) | (u, v) ∈ V × V } ≥ max {fA(u) | u ∈ V }.

Now, if e = xy is a β-strong arc of Ge, then

tB(e) = tB(xy) = t∞B (xy)

≤ max {tB(uv) | (u, v) ∈ V × V } ≤ min {tA(u) | u ∈ V },

and

fB(e) = fB(xy) = f∞B (xy)

≥ min {fB(uv) | (u, v) ∈ V × V } ≥ max {fA(u) | u ∈ V }.

Similarly, if e = xy is a δ-arc of Ge, then

tB(e) = tB(xy) < t∞B (xy)

≤ max {tB(uv) | (u, v) ∈ V × V } ≤ min {tA(u) | u ∈ V },

and

fB(e) = fB(xy) > f∞B (xy)

≥ min {fB(uv) | (u, v) ∈ V × V } ≥ max {fA(u) | u ∈ V }.

Hence, Ge is a firm. �
In the following example, we show that for any α-strong arc, Theorem

3.11 may not be true, in general.

Example 3.13. Vague graph G in Figure 4, is a firm and additional
arc e4 is an α-strong arc, but vague graph Ge in Figure 4 is not a firm,
since tB(e4) > 0.3 and fB(e4) < 0.4.
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Figure 4: Vague graphs G, Ge

Theorem 3.14. Let G be a vague graph and e be an additional arc in
G∗e. Then e is an α-strong arc if and only if there exists nodes u and v
such that u − v path of Ge that includes e is an unique strongest path
between two nodes u and v.

Proof. Let e = xy be an α-strong arc in Ge. Then,

tB(xy) > t∞B (xy) , fB(xy) < f∞B (xy)

If we let u = x and v = y, then the proof is clear.

Conversely, if there exists nodes u, v such that u − v path Pe of Ge

that includes e = xy is an unique strongest path between two nodes u
and v, then for any x− y path P without arc e = xy in G, we have:

tB(xy) > tP (xy) , fB(xy) < fP (xy)

Hence,

tB(xy) > t∞B (xy) , fB(xy) < f∞B (xy).

Therefore, e = xy is an α-strong arc in Ge. �

Note 3.15. Additional arc e = uv in G∗e is an α − strong arc if and
only if e = uv is a vague bridge in vague graph Ge.

Remark 3.16. Let e = uv be an additional α−strong arc in Ge. Then,
e is belong to the maximum spaning tree of Ge.
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4 Cobondage numbers of a vague graph.

In this section, we discuss about cobondage set and cobondage number
of a vague graph.

Definition 4.1. (i) The cobondage set of a vague graph G is the set C
of additional strong arcs to G, that reduces the domination number, i.e,

∆V (GC) < ∆V (G).

(ii) A cobondage set C of G is said to be minimal cobondage set if no
proper subset of C is a cobondage set.
(iii) Minimum edge cardinality among all minimal cobondage sets of G
is called lower cobondage number of G and denoted by bE(G).
(iv) Maximum edge cardinality among all minimal cobondage sets of G
is called upper cobondage number of G and denoted by BE(G).

Example 4.2. Consider the vague graph G in Figure 5. It is clear

Figure 5: Vague graph G

that D∗1 = {a, d} and D∗2 = {b, c} are the minimal dominaiting sets
of vague graph G (dV (G) = 1.05, DV (G) = 1.50 and ∆V (G) = 1.275
). In this case, by adding e4 = (0.5, 0.5), the set D1 = {c, d} is a
minimal dominaiting set with the cardinality of 1. Then, by adding
e5 as bd = (0.3, 0.6), the set D2 = {d} is a minimal dominaiting set
with the cardinality of 0.35, so x2 = {e5} is a minimal cobondage set,
and by adding e6 as ac = (0.6, 0.3), the set D3 = {a} is a minimal
dominaiting set with the cardinality of 0/70. Thus, x3 = {e6} is a
minimal cobondage set and so bE(G) and BE(G) are 0.35 and 0.65,
respectively.
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Theorem 4.3. If a vague graph G has an isolated node v, then

bE(G) ≤ |{v}|.

Proof. Let v be an isolated node of G. Then v belongs to every minimal
dominating set D of G. If u ∈ D − {v} and e is an additional strong
arc between v and u, then, D − {v} is a minimal dominating set of Ge

and dV (Ge) < dV (G). Thus, ∆V (Ge) < ∆V (G). Hence, by definition
of additional arc, we have, tB(e) ≤ tA(v) and fB(e) ≥ fA(v). Hence,

S(e) ≤ 1 + tA(v)− fA(v)

2
and so

bE(G) ≤ 1 + tA(v)− fA(v)

2
= |{v}|.

�

Theorem 4.4. If G has not isolated node and e = uv is an isolated
edge, then

bE(G) ≤ |{u}|+ |{v}|.

Proof. If e = uv is an isolated edge in G, then one of u or v belongs
to every minimal dominating set D of G. Let u ∈ D and w ∈ D − {u}.
By adding the strong arcs e1 = (uw) and e2 = (vw), the set D − {u}
is a minimal dominating set of Ge. Moreover, if C = {e1, e2}, then
∆V (GC) < ∆V (G). Thus,

bE(G) = S(C) ≤ 1 + tA(u)− fA(u)

2
+

1 + tA(v)− fA(v)

2
= |{u}|+ |{v}|.

�

Definition 4.5. The t-domination number of G is denoted by ∆t
V (G)

and is defined as follows,

∆t
V (G) =

tV (G) + TV (G)

2
.

Definition 4.6. (i) The t-cobondage set of a vague graph G is the set
Ct of additional strong arcs to G that reduces the t-domination number,
i.e, ∆t

V (GCt) < ∆t
V (G).
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(ii) A t-cobondage set Ct of G is called a minimal t-cobondage set if no
proper subset of Ct is a t-cobondage set.

(iii) Minimum edge cardinality among all minimal t-cobondage sets of
G is called a lower t-cobondage number of G and denoted by btE(G).

(iv) Maximum edge cardinality among all minimal t-cobondage sets of
G is called an upper t-cobondage number of G and denoted by Bt

E(G).

Example 4.7. In Figure 2, the set {u1, u2} is a total dominating set
and ∆t

V (G) = 0.75. By adding the strong arc u1u3 = (0.2, 0.6), the set
{u1, u3} is a total dominating set and ∆t

V (G) = 0.7. Thus {u1u3} is a
t-cobondage set.

Remark 4.8. Consider the next example show that t-cobondage set
and cobondage set are not necessarily equivalent.

Example 4.9. Consider the vague graph G in Figure 6. In Figure 6,

Figure 6: Vague graph G

D1 = {u1, u2}, D2 = {u1, u5} and D3 = {u2, u3} are minimal dominat-
ing sets, then C1 = {u1u2, u2u3} and C2 = {u1u2, u1u5} are cobondage
sets. Also, Dt = {u1, u2, u4} is a total dominating set, then Ct = {u2u3}
is a t-cobondage set in G.

Theorem 4.10. If G has an isolated edge e = uv, then

btE(G) ≤ max
{
|{u}|, |{v}|

}
.

Proof. Let e = uv be an isolated edge in G. Then both vertices u and
v belong to every minimal total dominating set Dt of G. Now by adding



DOMINATION OF VAGUE GRAPHS BY USING OF... 15

strong arc e′ with end node u or v, Dt − {u} or Dt − {v} is a minimal
total dominating set of Ge′ . Thus, if Ct = {e′}, then

∆t
V (GCt) < ∆t

V (G).

Hence, Ct is a t-cobondage set and we have

S(Ct) = S(e′) ≤ max
{1 + tA(u)− fA(u)

2
,
1 + tA(v)− fA(v)

2

}
= max

{
|{u}|, |{v}|

}
and

btE(G) ≤ max
{
|{u}|, |{v}|

}
.

�

Theorem 4.11. btE(G) ≤ bE(G) and Bt
E(G) ≤ BE(G).

Proof. Every total dominating set is a dominating set, then

∆(G) ≤ ∆t(G)

since, Ct ⊆ C, where C is a minimal cobondage set and Ct is a minimal
t-cobondage set, we have btE(G) ≤ bE(G) and Bt

E(G) ≤ BE(G). �

5 Application

Domination in graphs has many applications in different areas, espe-
cially in operations research, neural networks, electrical networks and
monitoring communication. Therefore, it is important to minimize the
dominating sets and reduce the associated parameters. By considering
the application of the dominating sets as controlling or guiding sections
in the above mentioned fields, examining the addition of strong arcs and
reducing effects on domination parameters in vague graphs indicate that
the velocity or accuracy can be increased by adding a string or a link in
the above circuits, while some of domination parameters can decrease
instead of being increased.
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5.1 Fire stations

Consider the vague graph of Figure 6. Suppose the graph G represents
the map of a city, in which the vertices representing the regions and
edges represent their communication paths in the city. In this case,
D∗1 = {A,E, F} set represents the fire stations located all around the
city. It is worth noting that D∗1 is the minimal dominating set of the

Figure 7: Vague graph G

graph G with vertex cardinality of 0.8. We define the f -strength and
t-strength values in each vertex and edge(path) as follows. For each
v ∈ V and e ∈ E, we have:
tA(v): The minimum assurance of non-incidentalism in region v.
fA(v): The minimum assurance of incidentalism in region v.
tB(e): The minimum assurance of the timely presence at the incident
scene through the e path.
fB(e): The minimum assurance of the timely absence at the incident
scene through the e path.

Thus, the size of each vertex stands is |v| = 1 + tA(v)− fA(v)

2
, for each

v ∈ V, which represents the optimal level of assurance of the non-
incidentalism of that region. In addition, the optimum value in the
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vertices A,E, F has the lowest value which justifies the location of fire
stations in these areas. It is worth noting that some factors such as
urban texture, type of industry and presence of high-risk industries in
one area can contribute to the estimation of the incidentalism or non-
incidentalism in that area. Also, for any e ∈ E, the size of each edge in

the graph G stands is |e| = 1 + tB(e)− fB(e)

2
which indicated the opti-

mal amount of assurance of timely presence in the incident scene through
that edge(path). We see that the AB,AC,CE,FD edges have the most
assurance of timely presence and the least assurance of timely absence
on the incident scene relative to other interurban routes. In other words,
the strong edges are graph G. It should be noted that some factors such
as the volume of traffic, number of traffic lights, squares, overpasses
and pedestrian underpasses, as well as maximum and minimum speed
of vehicles per path, etc., are affected by the route in estimating the
assurance of timely presence or absence. In addition, by considering the
interpretation of t-strength and f -strength, it is also logical to have:

tB(xy) ≤ min(tA(x), tA(y)) , fB(xy) ≥ max(fA(x), fA(y)).

Purpose: How can we increase the optimum amount of assurance in
timely presence in each of the incident scenes, but reduce the number of
fire stations in the city simultaneously?
Answer: If a new path with coordinates (0.1, 0.7) between E and F areas
is re-opened (which is in fact an addition of strong arc), the D∗1 set of
fire stations can be D∗2 = {A,F} set of fire stations with vertex value
of 0.65, while increasing the optimum level of assurance in the timely
presence in the city by 0.2 simultaneously.

5.2 Mastering and evaluating performance in an organi-
zation

Controlling and ensuring compliance of the organization with its pro-
gram, as well as comparing actual performance with predetermined stan-
dards, are considered one of the issues which plays an important role in
enhancing the effectiveness and efficiency of the organization, and is
regarded as one of the main activities of managers and leaders of an
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organization. The main elements for measuring and evaluating system
performance are related to goals or standards, indices and data collec-
tion systems. A set of indices of a goal can be considered as a vague
graph. We define the f -strength and t-strength values in each vertex
and edge(path) as follows. For each x, y ∈ V and xy ∈ E, we have:
tA(x): The weight of the effectiveness of index x on goal achievement.
fA(x): The weight of ineffectiveness of index x on goal achievement.
tB(xy): The weight of the effective affiliation of xy on goal achievement.
fB(xy): The weight of the ineffective affiliation of xy on goal achieve-
ment.
In this case, the following relations seem logical:

tB(xy) ≤ min(tA(x), tA(y))

fB(xy) ≥ max(fA(x), fA(y))

The relationship between two indices is effective (strong edge) when the
effective dependence weight between two indices is higher than that of
all communication paths and the ineffective dependence weight between
the two indices is less than of all communication pathways. Therefore,
the dominating set in this graph consists of the indices that all other in-
dices have relationships with at least one of the elements (indices) of this
set. In fact, the dominating set provides an opportunity for managers
and leaders of the organization to focus only on observing and control-
ling the enumeration of indices, rather than observing and controlling
a large number of indices for realizing the goals. This issue helps man-
agers in the crisis in the organization to make quick decisions in a short
time. In addition, it is possible for managers and leaders to be relatively
sure about the realization of other indicators and goal achievement by
realizing the domination set indicators due to the effective relationship
between the indicators of the domination set with other indicators. For
example, Fig. 7, displays the graph of goal indices, in which the set of
{A,D,E} is an domination set. In other words, instead of controlling
the six indices, only indices E,D,A can be controlled and observed and
be relatively sure about goal achievement. It is worth noting that some
factors such as common variables in calculating indices, dependent cal-
culation formula, and relationship between the variables of calculating
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the indices of the factors play significant role in creating an effective re-
lation between the indices. The size of any effective relationship (strong

edge), i.e |e| =
1 + tB(e)− fB(e)

2
for each e ∈ E, represents the opti-

mal effective weight of that relationship (edge) on the goal achievement,
and the total optimal effective weight of all effective relations (total of
all the strong edges) represents the optimal effective weight of the in-
dex graph on goal achievement. For example, Figure 8, illustrates the
optimal effective weight of the index graph is 1.05 on goal achievement.
Now, if possible, the optimal effective weight of the indices graph on goal
achievement can be increased by reinforcing the constructive factors of
an effective relationship, which results in increasing the accuracy and
confidence in performance measurement and evaluation and decreasing
the vertex cardinality of the dominating set. For example, as shown n
Figure 8, the domination set of indices decreases to the set {A,D} when
establishing an effective relationship is possible between e and d indices
with coordinates (0.1, 0.6), while the optimal effective weight of graph
upgrades to 1.30.

Figure 8: Vague graph G

6 Conclusion

The theory of vague graphs has many applications in new sciences and
technologies. Now days, the concepts of domination and dominating set
and numbers are considered as fundamental concepts in the theory of
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vague graphs. In this paper, we introduced of the concepts of editions
of edge, cobondage set, cobondage number, as well as their effects on
reducing the domination parameters in vague graphs. Specially, a new
segmention of the the editions of arc and their results in vague graphs
was pinpointed. Also, it is proven that in firm vague graph G by adding
strong arc or arc e, is a firm and for any strong arc, it may not be true, in
general. And then we expressed the relationship between the additional
strong arc and the notion of strongest path between the two vertices
in vague graph . Finally, by considering some special conditions, we
obtained results for the upper bound of the cobondage numbers.
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