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Abstract. In this paper, we study N (k)—contact metric manifolds en-
dowed with a torse-forming vector field and give some characterizations
for such manifolds. Then, we deal with N (k)—contact metric manifolds
admitting a Ricci soliton and find that the potential vector field V' of
the Ricci soliton is a constant multiple of £&. Also, we obtain a necessary
condition for a torse-forming vector field to be recurrent and Killing on
M.
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1 Introduction

The first study on N (k)—contact metric manifolds was given by Tanno
in [19]. In this study, Tanno obtained that if the structure vector field
& belongs to the k—nullity distribution on an Einstein compact Rie-
mannian manifold M of dimension 2n + 1 > 5, then £ = 1 and M
is Sasakian. Then, Blair et al. extended N(k)—contact metric man-
ifolds to the (k,u)—contact metric manifolds in 1995 [5]. After these
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works, N (k)—contact metric manifolds and (k, u)—contact metric man-
ifolds have been studied extensively by many mathematicians on many
context. For more details (see [11], [12] and [16]-[18]).

The notion of Ricci soliton in Riemannian geometry was introduced
by Hamilton as a natural generalization of Einstein metric in 1988 [14].
This notion corresponds to the self-similar solution of Hamilton’s Ricci

flow: —285, viewed as a dynamical system on the space of Rie-

8 .
o’ ~
mannian metrics modulo diffeomorphims and scaling. Also, it models
the formation of singularities in the Ricci flow. A Riemannian manifold
(M, g) is called a Ricci soliton if the following condition is satisfied for

arbitrary vector fields X,Y on M
(£vg)(X,Y) +25(X,Y) +2X0g(X,Y) =0, (1)

where £y g denotes the Lie-derivative of the metric tensor g along vector
field V, S is the Ricci tensor of M and A is a constant. If £yyg = 0
and £y g = pg, then potential vector field V is said to be Killing and
conformal Killing, respectively, where p is a function. Also, when V is
zero or Killing in (1), then Ricci soliton reduces to Einstein manifold.
In addition, a Ricci soliton is called gradient if the potential field V is
the gradient of a potential function —f (i.e., V= —Vf) and is called
shrinking, steady or expanding depending on A < 0,A = 0 or A > 0,
respectively.

On the other hand, vector fields have been used for studying differ-
ential geometry of manifolds since they determine most geometric prop-
erties of the related object. One of these vector fields is torse-forming
vector fields. They appear in many areas of diferential geometry and
physics. Torse-forming vector fields were firstly defined and studied by
Yano [20]. In recent years, they were studied by different authors such
as Chen [3], Blaga et al. [1], Mihai et al. [15] and Crasmareanu [9], [10].
According to Yano, a vector field v on a Riemannian manifold (M, g) is
called torse-forming if it satisfies the following condition

Vxv=fX+a(X)v, (2)

where V is the Levi-Civita connection on M, « is a 1—form and f is a
smooth function on M, for any X € I'(T'M). If the 1—form « vanishes
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identically in (2), the vector field v is called concircular [7]. If & = 0 and
f=1in (2), then v is called a concurrent vector field [6], [21]. Also, the
vector field v is called recurrent if it satisfies (2) with f = 0.

The present paper is organized as follows:

Section 1 is concerned with introduction.

In section 2, we give some basic notions about almost contact metric
manifolds and N (k)—contact metric manifolds.

In section 3, we investigate N (k)—contact metric manifolds endowed
with a torse-forming vector field and analyze these manifolds admitting
a Ricci soliton. We obtain some important characterizations for such
manifolds.

2 Preliminaries

In this section, we recall some fundamental notations and formulas of
almost contact metric manifolds from [2] and [3].

A differentiable manifold M of dimension (2n + 1) is said to be an
almost contact metric manifold if it admits an almost contact metric
structure (¢, &,n,¢g) and the Riemannian metric g satisfies the following
relations:

P’X =X +n(X)E n€) =1, p¢ =0, nop =0, n(X) =g(X,£) (3)

and

9(eX,9Y) = g(X,Y) —n(X)n(Y), 9(¢X,Y)=—g(X,9Y)  (4)

for any X,Y € I'(T'M), where ¢ is a vector field of type (0, 1), (which
is so-called the characteristic vector field), 1— form 7 is the g—dual of
of type (1,0) and ¢ is a tensor field of type (1,1) on M.

On the other hand, in [2], D.E. Blair defined the fundamental 2—form
® of M as follows:

(I)(X> Y) = g(Xv QDY)

forany X,Y € I'(T'M). Furthermore, an almost contact metric manifold
M is called a contact metric manifold if it satisfies

d(X,Y) = dn(X,Y).
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The Nijenhuis tensor field of ¢ is defined by
No(X,Y) = [pX, Y]+ ¢*[X, Y] = o[ X, ¢Y] — 0[pX, Y]

for all X,Y € I'(T'M). If M is an almost contact metric manifold and
the Nijenhuis tensor of ¢ satisfies

N, +2dn@&=0

then, M is called a normal contact metric manifold. A normal contact
metric manifold M is called Sasakian. It is well known that an almost
contact metric manifold M is Sasakian if and only if

(Vxp)Y = g(X,Y){ —n(Y)X.
For a Sasakian manifold, we also have
VXS = _SDXa
R(X,Y)¢ = n(Y)X —n(X)Y,

where V and R are the Levi-Civita connection and the Riemannian
curvature tensor on M, respectively.

The (k, u)—nullity distribution on contact metric manifolds was in-
troduced by Blair et al. and defined by [7]

N(k,p):p— Nplk,pn) = {Ze€T,M|R(X,Y)Z
= (kI +ph)(g(Y,2)X —g(X,Z)Y)}, (5)

where (k, ;1) € R?, I is an identity map and h is the tensor field of type
1
(1,1) defined by h = ifgnp. This tensor field satisfy

hé =0, hp + ph =0, Vxé=—pX —phX (6)

and
g(hX,Y) = g(X,hY), (7)
n(hX) = o. (8)

A contact metric manifold M is called a (k, u)—contact metric mani-
fold, if £ belongs to (k, u)—nullity distribution N(k, p). If g vanishes
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identically in (5), then the (k, p)—nullity distribution N (k, ) reduces
to k—nullity distribution N (k) and is given by [19]

N(k):p— Ny(k) = {ZeT,M|R(X,Y)Z
= k(g(Y,2)X - g(X,2)Y)}.

Also, if £ € N(k), then a contact metric manifold M is called an
N (k)—contact metric manifold [19]. If k& = 1, then an N(k)—contact
metric manifold is Sasakian. If kK = 0, then the manifold is locally iso-
metric to the product E"*! x S for n > 1 and flat for n = 1 [4].

In a contact metric manifold, the (1,1) tensor field A is said to be
recurrent if it satisfies the condition

(Vxh)Y =n(Y)hX,

where 7 is the 1—form of contact metric manifold [13].
For an N(k)—contact metric manifold, the followings are satisfied

[4]:

W= (k= 1) (9)
(Vxe)Y = g(X +hX,Y){—n(Y)hX,
RX,Y)¢ = k(n(Y)X —n(X)Y),
R X)Y = k(g(X,Y)§ —n(Y)X), (10)
S(X,Y) = 2(n—1)g(X,Y)+2(n—1)g(hX,Y)
+[2nk —2(n — Dn(X)n(Y), n>1 (11)
S(X,8) = 2nkn(X), (12)
QRE = 2nk¢,

where S is the Ricci tensor and @ is the Ricci operator defined by

Example 2.1. [12] We consider the three-dimensional manifold
M = {(z,y.2) € R’ (z,y,2) # (0,0,0)},

where (z,y, ) are the Cartesian coordinates in R3. Let ey, e3 and eg be
the linearly independent vector fields in R? which satisfies

le1,e2] = (1 +a)e3, [e1,e3] = —(1 —a)ex and [ez,e3] = 2e,
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where a is a real number. Let g be the Riemannian metric defined by

glei,e) =
glei,ej) = 0 for i#j.

Also, let 1, ¢ be the 1— form and the (1,1)—tensor field, respectively
defined by

NZ)=g(Ze1), ¢lea) =e3, @(e3)=—ea, ¢(e1) =0
for any Z € I'(T'M). Furthermore,
he; =0, hes =aes, and hes = —aes.

On the other hand, using Koszul’s formula for the Riemannian metric
g, we have:

Ve €1 = Ve 62 = Ve 63 = Ve,e9 = Veez =0,
Vesea = —(1—a)er,  Veer =(1—a)es,
Ve,e1 =—(1+a)es, Veez=(1+a)e;.

Therefore, (M, p,&,n,9) is a 3—dimensional contact metric manifold.
Using the above equations, one has

) 0, R(e1,e3)e2 = 0, R(ez2,e3)e1 = 0,
€1, 62)62 = (1 — a2)61, R(el, 62)61 (1 —a )62,
Jes = (1 —a®)er, R(er,e3)er = —(1 —a?)es,
(

eg,e3)es = —(1 — a2)eg, R(eg,e3)ea = (1 —a )

Hence, in view of the expressions of curvature tensors, the manifold M
is a 3—dimensional N (1 — a?)—contact metric manifold.

3 Main Results

In this section, we deal with an N (k)—contact metric manifold endowed

with a torse-forming vector field and admitting a Ricci soliton. Also, we

give some important characterizations which classify such a manifold.
Now, we begin to this section with the following:
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Theorem 3.1. Let M be an N(k)—contact metric manifold. If the
tensor field h is recurrent, then the manifold M is Sasakian.

Proof. It follows from the equation (8), we have
g(hY,§) =0 (13)

for any Y € T'(T'M). Taking the covariant derivative of (13) along
arbitrary vector field X, one has

9(VxhY, &) + g(hY,Vx§) = 0. (14)
Using the equation (6) in (14) yields
g((Vxh)Y + h(VxY),§) = g(hY, pX) + g(hY, phX). (15)
Since the tensor field h is recurrent, the equation (15) becomes
gm(Y)hX + h(VxY),&) = g(hY, pX) + g(hY, phX). (16)
Also, making use of (6) and (7) in (16) we get
g(hY, o X) + g(hY, phX) = 0. (17)
Replacing Y by AY in (17) and using the equalities (3), (4), (9) one has
(k—=1)g(Y,pX)+ (k—1)g(Y,phX) = 0. (18)
Interchanging the roles of X and Y in (18) gives
(k—1)g(X,9Y)+ (k—1)g(X,phY) = 0. (19)
Adding (18) and (19) and using (4), (6), (7) we have
(k—1)g(hY,pX) = 0. (20)
Again, replacing Y by AY in (20) and then using (3), (4), (9) we write
(k= 1)%g(Y,9X) =0
and hence

(k—1)%dn(Y,X) = 0.
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Removing X and Y in the above equation we have
(k —1)%dn = 0.

In a contact metric manifold, since dn # 0, we get k = 1. This is the
required result. U

The next theorem provides a characterization for a torse-forming
vector field to be recurrent.

Theorem 3.2. Let M be an N(k)—contact metric manifold endowed
with a torse-forming vector field v. If the vector field v is orthogonal to
the characteristic vector field &, then v is a recurrent vector field on M.

Proof. Let the vector field v be a torse-forming on M. Then, from the
definition of Lie-derivative and from (2), we have
(£og)(X,Y) = £og(X,Y) = g(£,X,Y) —g(X, £,Y)
= Q(VUX, Y) + g(X7 V’UY) - g(vaa Y)
+g(vaa Y) - g(X7 VUY) + g(VY’U, X)
= g(VX'U,Y) + g(VY’U,X)
= 2f9(X,Y) + a(X)g(v,Y) + a(Y)g(v, X) (21)
for any X,Y € I'(T'M). Substituting X =Y = ¢ in (21) implies

(£09)(&,€) = 2f + 2a(&n(v). (22)

On the other hand, with the help of the equalities (2)-(4) and (6) one
has

(£09)(§,8) = —29(£.8,€)
= —29(Vo&,§) +29(Vev, §)
= —29(—pv — phv,§) +29(Vev,§)
= 29(Vev, §) (23)
Also, it is easy to see that V¢(g(v,&)) = g(Vev,§). Therefore, from (22)
and (23) we get
2f +2a(On(v) = (£u9)(§:)
= 29(Vev, §)
= 2Ve(g(v, ).
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If the vector field v is orthogonal to &, we have that f = 0. This
means that v becomes recurrent vector field on M. Thus, the proof is
completed. Il

As a consequence of the Theorem 3.2, we can state the following
corollary:

Corollary 3.3. Let M be an N(k)—contact metric manifold endowed
with a concircular vector field v. If the vector field v is orthogonal to the
characteristic vector field &, then v is Killing on M.

Theorem 3.4. Let M be an N(k)—contact metric manifold. Then, the
characteristic vector field £ is not torse-forming on M.

Proof. Let us assume that the structure vector field £ is torse-forming
on M. Then, we have

Vx§ = fX +a(X)¢ (24)
for any X € I'(T'M). From (6) and (24), we write
FX 4+ a(X)E = —pX — phX. (25)
Taking the inner product of (25) with vector field &, then we get
a(X) = —fn(X). (26)

Similarly, taking the inner product of (25) with vector field ¢Y and
using (3) one has

F9(X,90Y) = —g(X,Y) — g(phX, oY). (27)
Also, interchanging the roles of X and Y in (27) gives
f9(Y, 0X) = —g(0Y, pX) — g(phY, 0 X). (28)

Adding (27) and (28) and using (3), (4), (6)-(8) we obtain
9(eX,0Y) = —g(hX,Y). (29)
Replacing X by hX in (29) and then using (3), (4), (8) and (9) yields

g(hX,Y) = (k — 1)g(pX, pY). (30)
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From (29) and (30), we have
kg(hX,Y)=0. (31)
Again, replacing X by hX in (31) and making use of (4), (9) one has
k(k—1)g(eX,9Y) =0
equivalent to
k(k —1)dn(eX,Y) =0.

Since dn # 0, either k =0 or k = 1. If k = 1, then h = 0. From (29),

one write
dn(eX,Y) = g(eX,¢Y) = —g(hX,Y) = 0.

This is a contradiction. Therefore, we have k = 0.
On the other hand, if we use (4) and (29) in (27) we get

f9(X,0Y) = fdn(X,Y) =0

which implies that f = 0. So, from (26), we have o = 0. Then, from (6)
and (24) we find that

0= (£§g)(X7 Y) =2g(hX, ¢Y)

Since h # 0, This is a contradiction. Thus, the vector field £ is not
torse-forming on M and which completes the proof of the theorem. [

The next theorem presents a characterization for an N (k)—contact
metric manifold.

Theorem 3.5. Let M be an N (k)—contact metric manifold endowed
with a torse-forming vector field v. If the vector field v is orthogonal

to the characteristic vector field &, then M 1is locally isometric to the
product B x S* for n > 1 and flat for n = 1 provided a(&) # 0.

Proof. In a Riemannian manifold, we have

JRX, Y)Z, W)+ g(R(X, Y)W, Z)=0 (32)
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for any X, Y, Z, W € I'(TM). If we take the Lie-derivative of (32) with
respect to the vector field v, we write

(£Ug)(R(X7 Y)Zv W) + (£vg)(R(X7 Y)VV’ Z) =0. (33)

If we put X = Z =W = ¢ in (33) and use the equations (3), (10) we
find

(£vg)(k(n(Y)§ =Y),£) =0,

that is,
(£09)(kn(Y)E,€) = (£09) (kY £). (34)
For the left side of (34), from definition of Lie-derivative, one has
(£09)(kn(Y)€, &) = 2kn(X)g(Vev, ). (35)

Since the vector v is torse-forming on M, for the right side of (34), we
get,

(£09)(kY,E) = g(Viyv,§) + g(kY, Vo)
2fkn(Y) + ka(Y)n(v) + ka(§)g(Y,v)  (36)

By virtue of (34), (35) and (36), we have
2kn(X)g(Vev, €) = 2fkn(Y) + ka(Y)n(v) + ka(§)g(Y,v).  (37)
If the vector field v is orthogonal to £, then equation (37) becomes
2kn(X)g(Vev,§) = 2fkn(Y) + ka(§)g(Y, v).
Also, as a result of the Theorem 3.2, the above equation reduces
0= ka(§)g(Y,v).

Since g(Y,v) # 0 and «(§) # 0, we have k = 0. Thus, we get the
requested result. [l

The next theorem gives an important characterization for a Ricci
soliton to be shrinking.



12

H. I. YOLDAS

Theorem 3.6. Let M be an N (k)—contact metric manifold admitting
a Ricci soliton whose the non-zero potential vector field V' is pointwise
collinear with the structure vector field €. Then, the followings are sat-

isfied:
i) The vector field V is constant multiple of §.
it) The Ricci soliton (M, g,V, \) is shrinking.

Proof. Suppose that the vector field v be a pointwise collinear with the
structure vector field £&. That is, V = b€, where b is a smooth function
on M. Then, from (1) we have

9(VxbE,Y) + g(Vybg, X) +25(X,Y) +209(X,Y) = 0
for any X, Y € T'(T'M). From (3), (4), (6) and (7), one has
XOmY)+Y(0)n(X) +20g(hX,Y) +25(X,Y) +2)\g(X,Y) = 0.(38)
Putting X =Y = ¢ in (38) and using (3), (6), (12), we get
£(b) = —(A 4+ 2nk). (39)
Replacing Y by ¢ in (38) and making use of (3), (6), (12), (39) gives
X (b) = —(A+2nk)n(X)
and hence
db(X) = —(A + 2nk)n(X). (40)
Removing X in equation (40) implies
db = —(X + 2nk)n. (41)
Applying d to the both sides of the equation (41), we get
0= —(X+2nk)dn.
Since dn # 0, we have

A= —2nk. (42)
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Using (42) in (41) yields
db(X)=X(b) =0 (43)

which means that the function b is a constant.
On the other hand, from (38) and (43) we have

—bg(hX,9Y)—Ag(X,Y) =S(X,Y). (44)
Replacing X by hX in (44) and then using (8), (9), (11) we derive
—b(k—1)g(X,9Y) = Ag(hX,Y) = 2(n—1){g(hX,Y)
—(k=1)g(eX,¢Y)}. (45)
Interchanging the roles of X and Y in (45) one has

=b(k = 1)g(Y,¢X) = Ag(hY, X) = 2(n—1){g(hY, X)
—(k = 1)g(eY,¢X)}. (46)

Subtracting (46) from (45) and using (4), (7) we find
b(k = 1)g(X, pY) = 0,

namely,
(k — 1)dn(X,Y) = 0.

which shows that k = 1. Using the fact that £k = 1 and from (42), we
have that the Ricci soliton is shrinking. This is the desired result. O

Theorem 3.7. Let M be an N (k)—contact metric manifold admitting
a Ricci soliton whose the potential vector field V' is orthogonal to €.
Then, the Ricci soliton (M, g,V,\) is steady if and only if M is locally
isometric to the product E™t1 x S* for n > 1 and flat for n = 1.

Proof. It follows from the definition of Lie-derivative and from V¢§ = 0,
we have

(£vg)(§:€) = 29(VeV, &) = 2Ve(g(V,€)) = 0. (47)
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Since M is a Ricci soliton and from equation (1) we write
(Lvg)(X,Y)+25(X,Y)+20(X,Y) =0 (48)

for any X,Y € I'(TM). Also, putting X =Y = ¢ in (48) and using
(12), (47), we get

A= —2nk. (49)

This result ends the proof of the theorem. O
Using the equality (49), we can state the following.

Corollary 3.8. Let M be an N(k)—contact metric manifold admitting
a Ricci soliton whose the potential vector field V' is orthogonal to £. If
M is Sasakian, then the Ricci soliton (M, g,V, \) is shrinking.

Example 3.9. From example 2.1, we know that the manifold M is a
3—dimensional N(1 — a?)—contact metric manifold. Using the expres-
sions of the curvature tensors, we find the values of the Ricci tensors as
follows:

S(er,e1) =2(1 — a2), S(ea,e2) =0, S(es,e3) =0, S(esej) =0

for all i,7 = 1,2,3 (i # j). In this case, M admits a Ricci soliton
(9, V = e2, \) which satisfies the equation (1) for A = 0. Similarly, M
admits a Ricci soliton (g, V = e3, ) which satisfies the equation (1) for
A = 0. From A = 0, the manifold M becomes N (0)—contact metric
manifold. This verifies our Theorem 3.7.
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