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Abstract. In this paper, we study N(k)−contact metric manifolds en-
dowed with a torse-forming vector field and give some characterizations
for such manifolds. Then, we deal with N(k)−contact metric manifolds
admitting a Ricci soliton and find that the potential vector field V of
the Ricci soliton is a constant multiple of ξ. Also, we obtain a necessary
condition for a torse-forming vector field to be recurrent and Killing on
M .
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1 Introduction

The first study on N(k)−contact metric manifolds was given by Tanno
in [19]. In this study, Tanno obtained that if the structure vector field
ξ belongs to the k−nullity distribution on an Einstein compact Rie-
mannian manifold M of dimension 2n + 1 ≥ 5, then k = 1 and M
is Sasakian. Then, Blair et al. extended N(k)−contact metric man-
ifolds to the (k, µ)−contact metric manifolds in 1995 [5]. After these
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works, N(k)−contact metric manifolds and (k, µ)−contact metric man-
ifolds have been studied extensively by many mathematicians on many
context. For more details (see [11], [12] and [16]-[18]).

The notion of Ricci soliton in Riemannian geometry was introduced
by Hamilton as a natural generalization of Einstein metric in 1988 [14].
This notion corresponds to the self-similar solution of Hamilton’s Ricci

flow:
∂

∂t
g = −2S, viewed as a dynamical system on the space of Rie-

mannian metrics modulo diffeomorphims and scaling. Also, it models
the formation of singularities in the Ricci flow. A Riemannian manifold
(M, g) is called a Ricci soliton if the following condition is satisfied for
arbitrary vector fields X,Y on M

(£V g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (1)

where £V g denotes the Lie-derivative of the metric tensor g along vector
field V , S is the Ricci tensor of M and λ is a constant. If £V g = 0
and £V g = ρg, then potential vector field V is said to be Killing and
conformal Killing, respectively, where ρ is a function. Also, when V is
zero or Killing in (1), then Ricci soliton reduces to Einstein manifold.
In addition, a Ricci soliton is called gradient if the potential field V is
the gradient of a potential function −f (i.e., V = −∇f) and is called
shrinking, steady or expanding depending on λ < 0, λ = 0 or λ > 0,
respectively.

On the other hand, vector fields have been used for studying differ-
ential geometry of manifolds since they determine most geometric prop-
erties of the related object. One of these vector fields is torse-forming
vector fields. They appear in many areas of diferential geometry and
physics. Torse-forming vector fields were firstly defined and studied by
Yano [20]. In recent years, they were studied by different authors such
as Chen [8], Blaga et al. [1], Mihai et al. [15] and Crasmareanu [9], [10].
According to Yano, a vector field v on a Riemannian manifold (M, g) is
called torse-forming if it satisfies the following condition

∇Xv = fX + α(X)v, (2)

where ∇ is the Levi-Civita connection on M , α is a 1−form and f is a
smooth function on M , for any X ∈ Γ(TM). If the 1−form α vanishes
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identically in (2), the vector field v is called concircular [7]. If α = 0 and
f = 1 in (2), then v is called a concurrent vector field [6], [21]. Also, the
vector field v is called recurrent if it satisfies (2) with f = 0.

The present paper is organized as follows:
Section 1 is concerned with introduction.
In section 2, we give some basic notions about almost contact metric

manifolds and N(k)−contact metric manifolds.
In section 3, we investigate N(k)−contact metric manifolds endowed

with a torse-forming vector field and analyze these manifolds admitting
a Ricci soliton. We obtain some important characterizations for such
manifolds.

2 Preliminaries

In this section, we recall some fundamental notations and formulas of
almost contact metric manifolds from [2] and [3].

A differentiable manifold M of dimension (2n + 1) is said to be an
almost contact metric manifold if it admits an almost contact metric
structure (ϕ, ξ, η, g) and the Riemannian metric g satisfies the following
relations:

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ) (3)

and

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ) (4)

for any X,Y ∈ Γ(TM), where ξ is a vector field of type (0, 1), (which
is so-called the characteristic vector field), 1− form η is the g−dual of ξ
of type (1, 0) and ϕ is a tensor field of type (1, 1) on M .

On the other hand, in [2], D.E. Blair defined the fundamental 2−form
Φ of M as follows:

Φ(X,Y ) = g(X,ϕY )

for any X,Y ∈ Γ(TM). Furthermore, an almost contact metric manifold
M is called a contact metric manifold if it satisfies

Φ(X,Y ) = dη(X,Y ).
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The Nijenhuis tensor field of ϕ is defined by

Nϕ(X,Y ) = [ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ]

for all X,Y ∈ Γ(TM). If M is an almost contact metric manifold and
the Nijenhuis tensor of ϕ satisfies

Nϕ + 2dη ⊗ ξ = 0

then, M is called a normal contact metric manifold. A normal contact
metric manifold M is called Sasakian. It is well known that an almost
contact metric manifold M is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

For a Sasakian manifold, we also have

∇Xξ = −ϕX,
R(X,Y )ξ = η(Y )X − η(X)Y,

where ∇ and R are the Levi-Civita connection and the Riemannian
curvature tensor on M , respectively.

The (k, µ)−nullity distribution on contact metric manifolds was in-
troduced by Blair et al. and defined by [5]

N(k, µ) : p→ Np(k, µ) = {Z ∈ TpM |R(X,Y )Z

= (kI + µh)(g(Y, Z)X − g(X,Z)Y )}, (5)

where (k, µ) ∈ R2, I is an identity map and h is the tensor field of type

(1, 1) defined by h =
1

2
£ξϕ. This tensor field satisfy

hξ = 0, hϕ+ ϕh = 0, ∇Xξ = −ϕX − ϕhX (6)

and

g(hX, Y ) = g(X,hY ), (7)

η(hX) = 0. (8)

A contact metric manifold M is called a (k, µ)−contact metric mani-
fold, if ξ belongs to (k, µ)−nullity distribution N(k, µ). If µ vanishes
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identically in (5), then the (k, µ)−nullity distribution N(k, µ) reduces
to k−nullity distribution N(k) and is given by [19]

N(k) : p→ Np(k) = {Z ∈ TpM |R(X,Y )Z

= k(g(Y, Z)X − g(X,Z)Y )}.

Also, if ξ ∈ N(k), then a contact metric manifold M is called an
N(k)−contact metric manifold [19]. If k = 1, then an N(k)−contact
metric manifold is Sasakian. If k = 0, then the manifold is locally iso-
metric to the product En+1 × S4 for n > 1 and flat for n = 1 [4].

In a contact metric manifold, the (1, 1) tensor field h is said to be
recurrent if it satisfies the condition

(∇Xh)Y = η(Y )hX,

where η is the 1−form of contact metric manifold [13].
For an N(k)−contact metric manifold, the followings are satisfied

[4]:

h2 = (k − 1)ϕ2, (9)

(∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )hX,

R(X,Y )ξ = k(η(Y )X − η(X)Y ),

R(ξ,X)Y = k(g(X,Y )ξ − η(Y )X), (10)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+[2nk − 2(n− 1)]η(X)η(Y ), n ≥ 1 (11)

S(X, ξ) = 2nkη(X), (12)

Qξ = 2nkξ,

where S is the Ricci tensor and Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ).

Example 2.1. [12] We consider the three-dimensional manifold

M = {(x, y, z) ∈ R3, (x, y, z) 6= (0, 0, 0)},

where (x, y, z) are the Cartesian coordinates in R3. Let e1, e2 and e3 be
the linearly independent vector fields in R3 which satisfies

[e1, e2] = (1 + a)e3, [e1, e3] = −(1− a)e2 and [e2, e3] = 2e1,
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where a is a real number. Let g be the Riemannian metric defined by

g(ei, ei) = 1

g(ei, ej) = 0 for i 6= j.

Also, let η, ϕ be the 1− form and the (1, 1)−tensor field, respectively
defined by

η(Z) = g(Z, e1), ϕ(e2) = e3, ϕ(e3) = −e2, ϕ(e1) = 0

for any Z ∈ Γ(TM). Furthermore,

he1 = 0, he2 = ae2, and he3 = −ae3.

On the other hand, using Koszul’s formula for the Riemannian metric
g, we have:

∇e1e1 = ∇e1e2 = ∇e1e3 = ∇e2e2 = ∇e3e3 = 0,

∇e3e2 = −(1− a)e1, ∇e3e1 = (1− a)e2,

∇e2e1 = −(1 + a)e3, ∇e2e3 = (1 + a)e1.

Therefore, (M,ϕ, ξ, η, g) is a 3−dimensional contact metric manifold.
Using the above equations, one has

R(e1, e2)e3 = 0, R(e1, e3)e2 = 0, R(e2, e3)e1 = 0,

R(e1, e2)e2 = (1− a2)e1, R(e1, e2)e1 = −(1− a2)e2,
R(e1, e3)e3 = (1− a2)e1, R(e1, e3)e1 = −(1− a2)e3,
R(e2, e3)e3 = −(1− a2)e2, R(e2, e3)e2 = (1− a2)e3.

Hence, in view of the expressions of curvature tensors, the manifold M
is a 3−dimensional N(1− a2)−contact metric manifold.

3 Main Results

In this section, we deal with an N(k)−contact metric manifold endowed
with a torse-forming vector field and admitting a Ricci soliton. Also, we
give some important characterizations which classify such a manifold.

Now, we begin to this section with the following:
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Theorem 3.1. Let M be an N(k)−contact metric manifold. If the
tensor field h is recurrent, then the manifold M is Sasakian.

Proof. It follows from the equation (8), we have

g(hY, ξ) = 0 (13)

for any Y ∈ Γ(TM). Taking the covariant derivative of (13) along
arbitrary vector field X, one has

g(∇XhY, ξ) + g(hY,∇Xξ) = 0. (14)

Using the equation (6) in (14) yields

g((∇Xh)Y + h(∇XY ), ξ) = g(hY, ϕX) + g(hY, ϕhX). (15)

Since the tensor field h is recurrent, the equation (15) becomes

g(η(Y )hX + h(∇XY ), ξ) = g(hY, ϕX) + g(hY, ϕhX). (16)

Also, making use of (6) and (7) in (16) we get

g(hY, ϕX) + g(hY, ϕhX) = 0. (17)

Replacing Y by hY in (17) and using the equalities (3), (4), (9) one has

(k − 1)g(Y, ϕX) + (k − 1)g(Y, ϕhX) = 0. (18)

Interchanging the roles of X and Y in (18) gives

(k − 1)g(X,ϕY ) + (k − 1)g(X,ϕhY ) = 0. (19)

Adding (18) and (19) and using (4), (6), (7) we have

(k − 1)g(hY, ϕX) = 0. (20)

Again, replacing Y by hY in (20) and then using (3), (4), (9) we write

(k − 1)2g(Y, ϕX) = 0

and hence

(k − 1)2dη(Y,X) = 0.
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Removing X and Y in the above equation we have

(k − 1)2dη = 0.

In a contact metric manifold, since dη 6= 0, we get k = 1. This is the
required result. �

The next theorem provides a characterization for a torse-forming
vector field to be recurrent.

Theorem 3.2. Let M be an N(k)−contact metric manifold endowed
with a torse-forming vector field v. If the vector field v is orthogonal to
the characteristic vector field ξ, then v is a recurrent vector field on M .

Proof. Let the vector field v be a torse-forming on M . Then, from the
definition of Lie-derivative and from (2), we have

(£vg)(X,Y ) = £vg(X,Y )− g(£vX,Y )− g(X,£vY )

= g(∇vX,Y ) + g(X,∇vY )− g(∇vX,Y )

+g(∇Xv, Y )− g(X,∇vY ) + g(∇Y v,X)

= g(∇Xv, Y ) + g(∇Y v,X)

= 2fg(X,Y ) + α(X)g(v, Y ) + α(Y )g(v,X) (21)

for any X,Y ∈ Γ(TM). Substituting X = Y = ξ in (21) implies

(£vg)(ξ, ξ) = 2f + 2α(ξ)η(v). (22)

On the other hand, with the help of the equalities (2)-(4) and (6) one
has

(£vg)(ξ, ξ) = −2g(£vξ, ξ)

= −2g(∇vξ, ξ) + 2g(∇ξv, ξ)
= −2g(−ϕv − ϕhv, ξ) + 2g(∇ξv, ξ)
= 2g(∇ξv, ξ) (23)

Also, it is easy to see that ∇ξ(g(v, ξ)) = g(∇ξv, ξ). Therefore, from (22)
and (23) we get

2f + 2α(ξ)η(v) = (£vg)(ξ, ξ)

= 2g(∇ξv, ξ)
= 2∇ξ(g(v, ξ)).
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If the vector field v is orthogonal to ξ, we have that f = 0. This
means that v becomes recurrent vector field on M . Thus, the proof is
completed. �

As a consequence of the Theorem 3.2, we can state the following
corollary:

Corollary 3.3. Let M be an N(k)−contact metric manifold endowed
with a concircular vector field v. If the vector field v is orthogonal to the
characteristic vector field ξ, then v is Killing on M .

Theorem 3.4. Let M be an N(k)−contact metric manifold. Then, the
characteristic vector field ξ is not torse-forming on M .

Proof. Let us assume that the structure vector field ξ is torse-forming
on M . Then, we have

∇Xξ = fX + α(X)ξ (24)

for any X ∈ Γ(TM). From (6) and (24), we write

fX + α(X)ξ = −ϕX − ϕhX. (25)

Taking the inner product of (25) with vector field ξ, then we get

α(X) = −fη(X). (26)

Similarly, taking the inner product of (25) with vector field ϕY and
using (3) one has

fg(X,ϕY ) = −g(ϕX,ϕY )− g(ϕhX,ϕY ). (27)

Also, interchanging the roles of X and Y in (27) gives

fg(Y, ϕX) = −g(ϕY, ϕX)− g(ϕhY, ϕX). (28)

Adding (27) and (28) and using (3), (4), (6)-(8) we obtain

g(ϕX,ϕY ) = −g(hX, Y ). (29)

Replacing X by hX in (29) and then using (3), (4), (8) and (9) yields

g(hX, Y ) = (k − 1)g(ϕX,ϕY ). (30)
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From (29) and (30), we have

kg(hX, Y ) = 0. (31)

Again, replacing X by hX in (31) and making use of (4), (9) one has

k(k − 1)g(ϕX,ϕY ) = 0

equivalent to

k(k − 1)dη(ϕX, Y ) = 0.

Since dη 6= 0, either k = 0 or k = 1. If k = 1, then h = 0. From (29),
one write

dη(ϕX, Y ) = g(ϕX,ϕY ) = −g(hX, Y ) = 0.

This is a contradiction. Therefore, we have k = 0.
On the other hand, if we use (4) and (29) in (27) we get

fg(X,ϕY ) = fdη(X,Y ) = 0

which implies that f = 0. So, from (26), we have α = 0. Then, from (6)
and (24) we find that

0 = (£ξg)(X,Y ) = 2g(hX,ϕY )

Since h 6= 0, This is a contradiction. Thus, the vector field ξ is not
torse-forming on M and which completes the proof of the theorem. �

The next theorem presents a characterization for an N(k)−contact
metric manifold.

Theorem 3.5. Let M be an N(k)−contact metric manifold endowed
with a torse-forming vector field v. If the vector field v is orthogonal
to the characteristic vector field ξ, then M is locally isometric to the
product En+1 × S4 for n > 1 and flat for n = 1 provided α(ξ) 6= 0.

Proof. In a Riemannian manifold, we have

g(R(X,Y )Z,W ) + g(R(X,Y )W,Z) = 0 (32)
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for any X,Y, Z,W ∈ Γ(TM). If we take the Lie-derivative of (32) with
respect to the vector field v, we write

(£vg)(R(X,Y )Z,W ) + (£vg)(R(X,Y )W,Z) = 0. (33)

If we put X = Z = W = ξ in (33) and use the equations (3), (10) we
find

(£vg)(k(η(Y )ξ − Y ), ξ) = 0,

that is,

(£vg)(kη(Y )ξ, ξ) = (£vg)(kY, ξ). (34)

For the left side of (34), from definition of Lie-derivative, one has

(£vg)(kη(Y )ξ, ξ) = 2kη(X)g(∇ξv, ξ). (35)

Since the vector v is torse-forming on M , for the right side of (34), we
get

(£vg)(kY, ξ) = g(∇kY v, ξ) + g(kY,∇ξv)

= 2fkη(Y ) + kα(Y )η(v) + kα(ξ)g(Y, v) (36)

By virtue of (34), (35) and (36), we have

2kη(X)g(∇ξv, ξ) = 2fkη(Y ) + kα(Y )η(v) + kα(ξ)g(Y, v). (37)

If the vector field v is orthogonal to ξ, then equation (37) becomes

2kη(X)g(∇ξv, ξ) = 2fkη(Y ) + kα(ξ)g(Y, v).

Also, as a result of the Theorem 3.2, the above equation reduces

0 = kα(ξ)g(Y, v).

Since g(Y, v) 6= 0 and α(ξ) 6= 0, we have k = 0. Thus, we get the
requested result. �

The next theorem gives an important characterization for a Ricci
soliton to be shrinking.
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Theorem 3.6. Let M be an N(k)−contact metric manifold admitting
a Ricci soliton whose the non-zero potential vector field V is pointwise
collinear with the structure vector field ξ. Then, the followings are sat-
isfied:

i) The vector field V is constant multiple of ξ.

ii) The Ricci soliton (M, g, V, λ) is shrinking.

Proof. Suppose that the vector field v be a pointwise collinear with the
structure vector field ξ. That is, V = bξ, where b is a smooth function
on M . Then, from (1) we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0

for any X,Y ∈ Γ(TM). From (3), (4), (6) and (7), one has

X(b)η(Y ) + Y (b)η(X) + 2bg(hX,ϕY ) + 2S(X,Y ) + 2λg(X,Y ) = 0.(38)

Putting X = Y = ξ in (38) and using (3), (6), (12), we get

ξ(b) = −(λ+ 2nk). (39)

Replacing Y by ξ in (38) and making use of (3), (6), (12), (39) gives

X(b) = −(λ+ 2nk)η(X)

and hence

db(X) = −(λ+ 2nk)η(X). (40)

Removing X in equation (40) implies

db = −(λ+ 2nk)η. (41)

Applying d to the both sides of the equation (41), we get

0 = −(λ+ 2nk)dη.

Since dη 6= 0, we have

λ = −2nk. (42)
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Using (42) in (41) yields

db(X) = X(b) = 0 (43)

which means that the function b is a constant.

On the other hand, from (38) and (43) we have

−bg(hX,ϕY )− λg(X,Y ) = S(X,Y ). (44)

Replacing X by hX in (44) and then using (8), (9), (11) we derive

−b(k − 1)g(X,ϕY )− λg(hX, Y ) = 2(n− 1){g(hX, Y )

−(k − 1)g(ϕX,ϕY )}. (45)

Interchanging the roles of X and Y in (45) one has

−b(k − 1)g(Y, ϕX)− λg(hY,X) = 2(n− 1){g(hY,X)

−(k − 1)g(ϕY, ϕX)}. (46)

Subtracting (46) from (45) and using (4), (7) we find

b(k − 1)g(X,ϕY ) = 0,

namely,

(k − 1)dη(X,Y ) = 0.

which shows that k = 1. Using the fact that k = 1 and from (42), we
have that the Ricci soliton is shrinking. This is the desired result. �

Theorem 3.7. Let M be an N(k)−contact metric manifold admitting
a Ricci soliton whose the potential vector field V is orthogonal to ξ.
Then, the Ricci soliton (M, g, V, λ) is steady if and only if M is locally
isometric to the product En+1 × S4 for n > 1 and flat for n = 1.

Proof. It follows from the definition of Lie-derivative and from∇ξξ = 0,
we have

(£V g)(ξ, ξ) = 2g(∇ξV, ξ) = 2∇ξ(g(V, ξ)) = 0. (47)



14 H. İ. YOLDAŞ

Since M is a Ricci soliton and from equation (1) we write

(£V g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0 (48)

for any X,Y ∈ Γ(TM). Also, putting X = Y = ξ in (48) and using
(12), (47), we get

λ = −2nk. (49)

This result ends the proof of the theorem. �
Using the equality (49), we can state the following.

Corollary 3.8. Let M be an N(k)−contact metric manifold admitting
a Ricci soliton whose the potential vector field V is orthogonal to ξ. If
M is Sasakian, then the Ricci soliton (M, g, V, λ) is shrinking.

Example 3.9. From example 2.1, we know that the manifold M is a
3−dimensional N(1 − a2)−contact metric manifold. Using the expres-
sions of the curvature tensors, we find the values of the Ricci tensors as
follows:

S(e1, e1) = 2(1− a2), S(e2, e2) = 0, S(e3, e3) = 0, S(ei, ej) = 0

for all i, j = 1, 2, 3 (i 6= j). In this case, M admits a Ricci soliton
(g, V = e2, λ) which satisfies the equation (1) for λ = 0. Similarly, M
admits a Ricci soliton (g, V = e3, λ) which satisfies the equation (1) for
λ = 0. From λ = 0, the manifold M becomes N(0)−contact metric
manifold. This verifies our Theorem 3.7.
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Halil İbrahim Yoldaş
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