Journal of Mathematical Extension Vol. 16, No. 6, (2022) (8)1-16 URL: https://doi.org/10.30495/JME.2022.1501 ISSN: 1735-8299 Original Research Paper

Perfect 4-Colorings of the 3-Regular Graphs of Order at Most 8

Z. Vahedi

Karaj Branch, Islamic Azad University

M. Alaeiyan^{*} Iran University of Science and Technology

M. Maghasedi Karaj Branch, Islamic Azad University

Abstract. The perfect *m*-coloring with matrix $A = [a_{ij}]_{i,j \in \{1, \dots, m\}}$ of a graph G = (V, E) with $\{1, \dots, m\}$ color is a vertex coloring of G with *m*-color so that the number of vertices in color j adjacent to a fixed vertex in color i is a_{ij} , independent of the choice of vertex in color i. The matrix $A = [a_{ij}]_{i,j \in \{1, \dots, m\}}$ is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order at most 8, that is, we determine a list of all color parameter matrices corresponding to perfect 4-colorings of 3-regular graphs of orders 4, 6, and 8.

AMS Subject Classification: 03E02, 05C15, 68R05 **Keywords and Phrases:** Perfect coloring, Parameter matrices, Cubic graph, Equitable partition.

Received: December 2019; Accepted: September 2020 *Corresponding Author

1 Introduction

The concept of a perfect *m*-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (Completely regular codes). There is another term for this concept in the literature as "equitable partition" (see [8]).

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson graphs. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including J(6,3), J(7,3), J(8,3), J(8,4), and J(n,3) (n odd) (see [2], [3] and [7]).

Fon-Der-Flaass enumerated the parameter matrices of *n*-dimensional hypercube Q_n for n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the *n*dimensional hypercube with a given parameter matrix (see [4], [5] and [6]).

In [1] all perfect 3-colorings of the cubic graphs of order 10 were described.

In this paper we enumerate the parameter matrices of all perfect 4-colorings of the 3-regular graphs of order at most 8.

2 Preliminaries

In this section we use the following definition.

Definition 2.1. For each graph G and each integer m, a mapping T: $V(G) \rightarrow \{1, \dots, m\}$ is called a perfect m-coloring with matrix $A = [a_{ij}]_{i,j\in\{1,\dots,m\}}$, if it is surjective and for all i, j for every vertex of color i, the number of its neighbors of color j is equal to a_{ij} . The matrix Ais called the parameter matrix of a perfect coloring.

The spectrum of a matrix A, denoted by $\sigma(A)$ is the set of all eigenvalues of A. The set of eigenvalues of the adjacency matrix of graph G is called the spectrum of G.

We denote $M_r(4)$ for all parameter matrices of the perfect 4-colorings of r-regular graphs. Note that if $A \in M_r(4)$, then the sum of entries for each row is equal to r.

If $A = [a_{ij}]_{n \times n}$ is a perfect 4-colorings matrix for a 3-regular graph G = (V, E), then $\sum_{i=1}^{4} a_{ij} = 3$ for all $1 \le i \le 4$. So there are 20 different

models for each row of matrices. Hence there are 20^4 matrices.

Let $A = [a_{ij}]_{4\times 4}$ be a 4-color parameter matrix for a graph G =(V, E). The first observation says A must possess a weak form of symmetry, described in the following lemma:

Lemma 2.2. Suppose $A = [a_{ij}]_{n \times n}$ is a parameter matrix for a graph G = (V, E). Then, $a_{ij} = 0$ if and only if $a_{ji} = 0$ for $1 \le i, j \le n$.

Definition 2.3. Let A and B are two parameter matrices of the perfect 4-colorings of graph G. We define A and B are equivalent if A transformed to B by a permutation on colors and we use the symbol \sim to show it.

We have the obvious lemmas:

Lemma 2.4. Let $A = [a_{ij}]_{4 \times 4}$ and $A \in M_3(4)$ and $\sigma \in S_4$ (where S_4 is the symmetric group of degree 4), then $[a_{ij}]_{4\times 4} \sim [a_{i\sigma(j)}]_{4\times 4}$.

Lemma 2.5. Let $A = [a_{ij}]_{4 \times 4} \in M_3(4)$. Then the following cases do not happen.

- 1) $a_{14} = 0, a_{13} = 0, a_{12} = 0;$
- 2) $a_{24} = 0$, $a_{23} = 0$, $a_{21} = 0$;
- 3) $a_{34} = 0$, $a_{32} = 0$, $a_{31} = 0$;
- 4) $a_{43} = 0, a_{42} = 0, a_{41} = 0$:

Lemma 2.6. Suppose $A \in M_3(4)$. Then there is not $\sigma \in S_4$ such that $[a_{i\sigma(j)}] = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$

Proof. It is clear with connectivity. **Remark 2.7.** Suppose $A \in M_3(4)$ is a parameter matrix for a 3-regular $\begin{bmatrix} 0 & 0 & * & * \end{bmatrix}$

graph G. If there is
$$\sigma \in S_4$$
 such that $A = [a_{i\sigma(j)}] = \begin{bmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{bmatrix}$, then

G is bipartite.

To see this, V is the set of vertices of G. Divide V into two independent sets V_1 and V_2 include vertices with color number 3, 4 and 1, 2 respectively. According to matrix structure, thus vertices V_1 are nonadjacent. Similarly for the vertices V_2 . Therefore G is a bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an equitable partition. So by ([8], lemma 1.1), we have the following lemma.

Lemma 2.8. Suppose $A \in M_3(4)$ is a coloring matrix for graph G. Then the spectrum of A is a subset of the spectrum of G.

Lemma 2.9. If $A \in M_3(4)$, then all of the eigenvalues of A are real.

Proof. By symmetry of adjancy matrices of G is obvious. \Box

Proposition 2.10. Let $A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$ be a color incidence matrix

of some connected graph G = (V, E). Let |v| denote the number of vertices of G and v_i denote color i; $(1 \le i \le 4)$.

1) If $b \neq 0$, $c \neq 0$ and $d \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{ed}{bm}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{id}{cm}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{mb}{de} + \frac{mc}{di} + 1}$$

2) If $b \neq 0$, $c \neq 0$ and $h \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{bh}{en}}, v_{2} = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{h}{n}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{ibh}{cen}}, v_{4} = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{nec}{hbi} + 1}$$

3) If $b \neq 0$, $c \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{cl}{io}}, v_{2} = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{ecl}{bio}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{oi}{lc} + \frac{oib}{lce} + \frac{o}{l} + 1}$$

4) If $b \neq 0$, $d \neq 0$ and $g \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{ed}{bm}}$$

$$|v|$$

$$v_{3} = \frac{1}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{jed}{gbm}}, v_{4} = \frac{1}{\frac{m}{d} + \frac{mb}{de} + \frac{mbg}{dej} + 1}$$

5) If $b \neq 0$, $d \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{b}{e} + \frac{do}{ml} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{e}{b} + 1 + \frac{edo}{bml} + \frac{ed}{bm}}$$
$$v_{3} = \frac{|v|}{\frac{lm}{od} + \frac{lmb}{ode} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{mb}{de} + \frac{o}{l} + 1}$$

6) If $b \neq 0$, $g \neq 0$ and $h \neq 0$ then

$$v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{bh}{en}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{h}{n}}$$

$$v_3 = \frac{|v|}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_4 = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{ng}{hj} + 1}$$

7) If $b \neq 0$, $g \neq 0$ and $l \neq 0$ then

$$v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{bgl}{ejo}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{gl}{jo}}$$

$$v_{3} = \frac{|v|}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{oje}{lgb} + \frac{oj}{lg} + \frac{o}{l} + 1}$$

8) If $b \neq 0$, $h \neq 0$ and $l \neq 0$ then

$$v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bho}{enl} + \frac{bh}{en}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{ho}{nl} + \frac{h}{n}}$$

$$v_{3} = \frac{|v|}{\frac{lne}{ohb} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{o}{l} + 1}$$

9) If $c \neq 0$, $d \neq 0$ and $g \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{gi}{cj} + 1 + \frac{g}{j} + \frac{gid}{jcm}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{id}{cm}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{mcj}{dig} + \frac{mc}{di} + 1}$$

10) If $c \neq 0$, $d \neq 0$ and $h \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{dn}{mh} + \frac{c}{i} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{hm}{dn} + 1 + \frac{hmc}{ndi} + \frac{h}{n}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{idn}{cmh} + 1 + \frac{id}{cm}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{mc}{di} + 1}$$

11) If $c \neq 0$, $g \neq 0$ and $h \neq 0$ then

$$v_1 = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{cjh}{ign}}, v_2 = \frac{|v|}{\frac{gi}{jc} + 1 + \frac{g}{j} + \frac{h}{n}}$$

$$v_3 = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_4 = \frac{|v|}{\frac{ngi}{hjc} + \frac{n}{h} + \frac{ng}{hj} + 1}$$

12) If $c \neq 0$, $g \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{cl}{io}}, v_{2} = \frac{|v|}{\frac{gi}{jc} + 1 + \frac{g}{j} + \frac{gl}{jo}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{oi}{lc} + \frac{oj}{lg} + \frac{o}{l} + 1}$$

13) If $c \neq 0$, $h \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{cln}{ioh} + \frac{c}{i} + \frac{cl}{io}}, v_{2} = \frac{|v|}{\frac{hoi}{nlc} + 1 + \frac{ho}{nl} + \frac{h}{n}}$$
$$v_{3} = \frac{|v|}{\frac{i}{c} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{oi}{lc} + \frac{n}{h} + \frac{o}{l} + 1}$$

14) If $d \neq 0$, $g \neq 0$ and $h \neq 0$ then

$$v_1 = \frac{|v|}{1 + \frac{dn}{mh} + \frac{dng}{mhj} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{hm}{nd} + 1 + \frac{g}{j} + \frac{h}{n}}$$

$$v_{3} = \frac{|v|}{\frac{jhm}{gnd} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{ng}{hj} + 1}$$

15) If $d \neq 0$, $g \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{doj}{mlg} + \frac{do}{ml} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{glm}{jod} + 1 + \frac{g}{j} + \frac{gl}{jo}}$$
$$v_{3} = \frac{|v|}{\frac{lm}{od} + \frac{j}{g} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{oj}{lg} + \frac{o}{l} + 1}$$

16) If $d \neq 0$, $h \neq 0$ and $l \neq 0$ then

$$v_{1} = \frac{|v|}{1 + \frac{dn}{mh} + \frac{do}{ml} + \frac{d}{m}}, v_{2} = \frac{|v|}{\frac{hm}{nd} + 1 + \frac{ho}{nl} + \frac{h}{n}}$$
$$v_{3} = \frac{|v|}{\frac{lm}{od} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_{4} = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{o}{l} + 1}$$

By using above proposition and lemmas for n = 4, 6, 8 we only have the following matrices, which we have shown with $M_1, ..., M_{42}$.

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_2 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_3 = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},$$

$$\begin{split} M_4 &= \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, M_5 = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_8 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_9 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, \\ M_{10} &= \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, M_{11} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}, M_{12} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \\ M_{13} &= \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{14} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_{15} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \\ M_{16} &= \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{17} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 2 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, M_{18} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \\ M_{19} &= \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{20} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}, M_{21} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \\ M_{22} &= \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix}, M_{23} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_{24} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \\ M_{22} &= \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix}, M_{23} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_{24} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \\ M_{22} &= \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, M_{23} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \\ M_{24} &= \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$M_{25} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}, M_{26} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{27} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix},$$

$$M_{28} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}, M_{29} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{bmatrix}, M_{30} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix},$$

$$M_{31} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_{32} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}, M_{33} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix},$$

$$M_{34} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 3 \\ 3 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{35} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{36} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix},$$

$$M_{37} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}, M_{38} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{39} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix},$$

$$M_{40} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{41} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}, M_{42} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$$

Figure 1: Connected 3-regular graph of order 4

Figure 2: Connected 3-regular graphs of order 6

3 Main Results

None isomorphic 3-regular connected graphs of order 4, 6 and 8 are shown below in figures 1, 2 and 3.

Theorem 3.1. The parameter matrix of 3-regular graph of order 4 is just M_1 .

Proof. Because each vertex is colored with one color. \Box

Theorem 3.2. If M is a perfect 4-colorings matrix of the 3-regular graph of order 6, then only the matrices M_{23} , M_{30} for G_2 and M_{20} for G_3 can be parameter matrices.

Figure 3: Connected 3-regular graphs of order 8

Proof. With consideration of 3-regular graphs eigenvalues and using Lemma 2.5, it can be seen the connected 3-regular graphs with 6 vertices can have perfect 4-colorings with matrices M_{20} , M_{23} and M_{30} .

So we introduce 3-regular graphs of order 6 that have perfect 4colorings. Now we introduce the mappings of all graphs that have perfect 4-colorings with the parameter matrices.

The graph G_2 has perfect 4-colorings with matrix M_{23} . Consider the mapping T as follows:

 $T(a_1) = 1, T(a_3) = T(a_5) = 2, T(a_2) = T(a_6) = 3, T(a_4) = 4.$

There is no perfect 4-colorings with the matrix M_{30} for the graph G_2 . Contrary to our claim, suppose that T is a perfect 4-colorings with the matrix M_{30} for the graph G_2 . Then according to the matrix M_{30} , by symmetry if T, is a coloring, then we have 2 cases for the color of number 1 as follows:

 $T(a_1) = 1$ or $T(a_2) = 1$.

(1) $T(a_1) = 1$, according to the matrix M_{30} , $T(a_2) = 3$, $T(a_6) = 3$ as a result $T(a_4) = 4$, it follows that $T(a_3) = 4$ or $T(a_5) = 4$, which are a contradiction with the third row and fourth column of the matrix M_{30} .

(2) $T(a_2) = 1$, according to the matrix M_{30} , $T(a_1) = 3$ and $T(a_6) = 3$

as a result $T(a_3) = 4$, it follows that $T(a_4) = 4$ or $T(a_5) = 4$, which are a contradiction with the third row and fourth column of the matrix M_{30} .

Therefore the graph G_2 has no perfect 4-colorings with matrix M_{30} .

The graph G_3 has perfect 4-colorings with matrix M_{20} . Consider the mapping T as follows:

$$T(a_1) = T(a_3) = T(a_5) = 1$$
. $T(a_2) = 2$, $T(a_6) = 4$, $T(a_4) = 3$.

Theorem 3.3. If M is a perfect 4-colorings matrix of the 3-regular graph of order 8, then only matrices M_2 , M_9 , M_{18} for G_4 and M_{35} for G_5 and M_8 for G_6 and M_8 , M_{34} for G_7 and M_1 , M_2 , M_{14} , M_{36} for G_8 can be parameter matrices.

Proof. With consideration of 3-regular graphs eigenvalues and using Lemma 2.5, it can be seen the connected 3-regular graphs with 8 vertices can have perfect 4-colorings with matrices M_1 , M_2 , M_8 , M_9 , M_{14} , M_{18} , M_{34} , M_{35} and M_{36} .

The graph G_4 has perfect 4-colorings with the matrices M_2 and M_9 . Consider two mappings T_1 and T_2 as follows:

 $T_1(a_1) = T_1(a_6) = 1, T_1(a_2) = T_1(a_5) = 4, T_1(a_3) = T_1(a_4) = 2,$ $T_1(a_7) = T_1(a_8) = 3.$

 $T_2(a_1) = T_2(a_4) = 1, T_2(a_2) = T_2(a_3) = 4, T_2(a_5) = T_2(a_8) = 2,$ $T_2(a_6) = T_2(a_7) = 3.$

There is no perfect 4-colorings with the matrix M_{18} .

Contrary to our claim, suppose that T is a perfect 4-colorings with the matrix M_{18} for graph G_4 .

According to the matrix M_{18} , by symmetry we have two cases for the color of number 1 as follows:

(1) If $T(a_1) = 1$, then $T(a_8) = T(a_2) = 3$. It follows that $T(a_7) = 4$, which is a contradiction with the third row of the matrix M_{18} .

(2) If $T(a_2) = 1$, then $T(a_1) = T(a_3) = 3$. It follows that $T(a_8) = 4$, which is a contradiction with the third row of the matrix M_{18} . Therefore the graph G_4 has no perfect 4-colorings with the matrix M_{18} .

The graph G_5 has perfect 4-colorings with the matrix M_{35} . Consider the mapping T as follows:

 $T(a_4) = T(a_5) = T(a_6) = 1, T(a_2) = 2.$

 $T(a_3) = T(a_1) = T(a_7) = 4, T(a_8) = 3.$

The graph G_6 has perfect 4-colorings with the matrix M_8 . Consider the mapping T as follows:

$$T(a_2) = T(a_7) = 1, T(a_4) = T(a_5) = 2.$$

 $T(a_3) = T(a_6) = 3, T(a_1) = T(a_8) = 4.$

The graph G_7 has no perfect 4-colorings with the matrices M_8 and M_{34} .

Contrary to our claim, suppose that T is a perfect 4-colorings with matrix M_8 for the graph G_7 . Then according to the matrix M_8 , by symmetry we have two cases for the color of number 2 as follows:

(1) If $T(a_1) = 2$, then $T(a_2) = 2$, $T(a_8) = 4$ and $T(a_5) = T(a_3) = 3$. It follows that $T(a_7) = 1$, $T(a_4) = 1$ and $T(a_6) = 1$, which is a contradiction with the first row of the matrix M_8 .

(2) If $T(a_2) = 2$, then $T(a_1) = 2$, $T(a_8) = 3$ and $T(a_3) = 4$ according to the $T(a_8)$, 2 vertices should be connected with color 1 so, it's not possible.

Therefore the graph G_7 has no perfect 4-colorings with the matrix M_8 . Similarly, we can show that the graph G_7 has no perfect 4-colorings with the matrix M_{34} .

The connected 3-regular graphs G_8 with 8 vertices can have perfect 4-colorings with the matrices M_1 , M_2 , M_{14} , M_{36} . Now we introduce the mappings of all graphs that have perfect 4-colorings with the parameter matrices.

The graph G_8 has perfect 4-colorings with the matrices M_1 , M_2 , M_{14} and M_{36} . Consider four mappings T_1 , T_2 , T_3 and T_4 as follows:

$$T_1(a_1) = T_1(a_6) = 1, \ T_1(a_3) = T_1(a_8) = 2.$$

$$T_1(a_2) = T_1(a_5) = 3, \ T_1(a_4) = T_1(a_7) = 4.$$

$$T_2(a_1) = T_2(a_6) = 1, \ T_2(a_2) = T_2(a_5) = 2.$$

$$T_2(a_7) = T_2(a_8) = 3, \ T_2(a_3) = T_2(a_4) = 4.$$

$$T_3(a_1) = T_3(a_3) = 3, \ T_3(a_2) = T_3(a_4) = 1.$$

$$T_3(a_6) = T_3(a_8) = 2, \ T_3(a_5) = T_3(a_7) = 4.$$

$$T_4(a_1) = T_4(a_3) = T_4(a_7) = 1, \ T_4(a_5) = 2.$$

$$T_4(a_4) = T_4(a_6) = T_4(a_8) = 3, \ T_4(a_2) = 4.$$

References

- M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10, *Electronic Journal of Graph Theory and Applications* (*EJGTA*), 5(2) (2017), 194-206.
- [2] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6, 3) and J(7, 3), *Lecture Notes in Computer Science*, 5228 (2008), 11-19.
- [3] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs J(8, 3) and J(8, 4) with two colors, *Journal of Applied and Industrial Mathematics*, 5 (2011), 19-30.
- [4] D. G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal, 4 (2007), 133-135.
- [5] D. G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal, 4 (2007), 740-745.
- [6] D. G. Fon-der-Flaass, Perfect 2-colorings of the 12-Cube that attain the bounds on correlation immunity, *Siberian Mathematical Journal*, 4 (2007), 292-295.
- [7] A. L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v,3), Journal of Combinatorial Designs, 21 (2013), 232-252.
- [8] C. Godsil, Compact graphs and equitable partitions, *Linear Algebra* and Its Applications, 255 (1997), 259-266.

Zeinab Vahedi

PhD Student of Mathematics Department of Mathematics Karaj Branch, Islamic Azad University Karaj, Iran. E-mail: zeinab.vahedi20@kiau.ac.ir

Mehdi Alaeiyan

16

Professor of Mathematics School of Mathematics Iran University of Science and Technology Narmak 16846, Tehran, Iran. E-mail: alaeiyan@iust.ac.ir

Mohammad Maghasedi

Associate Professor of Mathematics Department of Mathematics Karaj Branch, Islamic Azad University Karaj, Iran. E-mail: maghasedi@kiau.ac.ir