Perfect 4-Colorings of the 3-Regular Graphs of Order at Most 8

Z. Vahedi
Karaj Branch, Islamic Azad University
M. Alaeiyan*
Iran University of Science and Technology
M. Maghasedi
Karaj Branch, Islamic Azad University

Abstract

The perfect m-coloring with matrix $A=\left[a_{i j}\right]_{i, j \in\{1, \cdots, m\}}$ of a graph $G=(V, E)$ with $\{1, \cdots, m\}$ color is a vertex coloring of G with m-color so that the number of vertices in color j adjacent to a fixed vertex in color i is $a_{i j}$, independent of the choice of vertex in color i. The matrix $A=\left[a_{i j}\right]_{i, j \in\{1, \cdots, m\}}$ is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order at most 8 , that is, we determine a list of all color parameter matrices corresponding to perfect 4 -colorings of 3 -regular graphs of orders 4,6 , and 8.

AMS Subject Classification: 03E02, 05C15, 68R05
Keywords and Phrases: Perfect coloring, Parameter matrices, Cubic graph, Equitable partition.

[^0]
1 Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (Completely regular codes). There is another term for this concept in the literature as "equitable partition" (see [8]).

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson graphs. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including $J(6,3), J(7,3), J(8,3), J(8,4)$, and $J(n, 3)$ (n odd) (see [2], [3] and [7]).

Fon-Der-Flaass enumerated the parameter matrices of n-dimensional hypercube Q_{n} for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2 -colorings of the n dimensional hypercube with a given parameter matrix (see [4], [5] and [6]).

In [1] all perfect 3-colorings of the cubic graphs of order 10 were described.

In this paper we enumerate the parameter matrices of all perfect 4 -colorings of the 3 -regular graphs of order at most 8 .

2 Preliminaries

In this section we use the following definition.
Definition 2.1. For each graph G and each integer m, a mapping T : $V(G) \rightarrow\{1, \cdots, m\}$ is called a perfect m-coloring with matrix $A=$ $\left[a_{i j}\right]_{i, j \in\{1, \ldots, m\}}$, if it is surjective and for all i, j for every vertex of color i, the number of its neighbors of color j is equal to $a_{i j}$. The matrix A is called the parameter matrix of a perfect coloring.

The spectrum of a matrix A , denoted by $\sigma(A)$ is the set of all eigenvalues of A. The set of eigenvalues of the adjacency matrix of graph G is called the spectrum of G .

We denote $M_{r}(4)$ for all parameter matrices of the perfect 4-colorings of r-regular graphs. Note that if $A \in M_{r}(4)$, then the sum of entries for each row is equal to r.

If $A=\left[a_{i j}\right]_{n \times n}$ is a perfect 4-colorings matrix for a 3-regular graph $G=(V, E)$, then $\sum_{j=1}^{4} a_{i j}=3$ for all $1 \leq i \leq 4$. So there are 20 different models for each row of matrices. Hence there are 20^{4} matrices.

Let $A=\left[a_{i j}\right]_{4 \times 4}$ be a 4 -color parameter matrix for a graph $G=$ (V, E). The first observation says A must possess a weak form of symmetry, described in the following lemma:

Lemma 2.2. Suppose $A=\left[a_{i j}\right]_{n \times n}$ is a parameter matrix for a graph $G=(V, E)$. Then, $a_{i j}=0$ if and only if $a_{j i}=0$ for $1 \leq i, j \leq n$.

Definition 2.3. Let A and B are two parameter matrices of the perfect 4 -colorings of graph G. We define A and B are equivalent if A transformed to B by a permutation on colors and we use the symbol \sim to show it.

We have the obvious lemmas:
Lemma 2.4. Let $A=\left[a_{i j}\right]_{4 \times 4}$ and $A \in M_{3}(4)$ and $\sigma \in S_{4}$ (where S_{4} is the symmetric group of degree 4), then $\left[a_{i j}\right]_{4 \times 4} \sim\left[a_{i \sigma(j)}\right]_{4 \times 4}$.

Lemma 2.5. Let $A=\left[a_{i j}\right]_{4 \times 4} \in M_{3}(4)$. Then the following cases do not happen.

1) $a_{14}=0, a_{13}=0, a_{12}=0$;
2) $a_{24}=0, a_{23}=0, a_{21}=0$;
3) $a_{34}=0, a_{32}=0, a_{31}=0$;
4) $a_{43}=0, a_{42}=0, a_{41}=0$;

Lemma 2.6. Suppose $A \in M_{3}(4)$. Then there is not $\sigma \in S_{4}$ such that $\left[a_{i \sigma(j)}\right]=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$

Proof. It is clear with connectivity.

Remark 2.7. Suppose $A \in M_{3}(4)$ is a parameter matrix for a 3-regular graph G. If there is $\sigma \in S_{4}$ such that $A=\left[a_{i \sigma(j)}\right]=\left[\begin{array}{llll}0 & 0 & * & * \\ 0 & 0 & * & * \\ * & * & 0 & 0 \\ * & * & 0 & 0\end{array}\right]$, then G is bipartite.

To see this, V is the set of vertices of G. Divide V into two independent sets V_{1} and V_{2} include vertices with color number 3,4 and 1 , 2 respectively. According to matrix structure, thus vertices V_{1} are nonadjacent. Similarly for the vertices V_{2}. Therefore G is a bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an equitable partition. So by ([8], lemma 1.1), we have the following lemma.

Lemma 2.8. Suppose $A \in M_{3}(4)$ is a coloring matrix for graph G. Then the spectrum of A is a subset of the spectrum of G.

Lemma 2.9. If $A \in M_{3}(4)$, then all of the eigenvalues of A are real.
Proof. By symmetry of adjancy matrices of G is obvious.
Proposition 2.10. Let $A=\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$ be a color incidence matrix of some connected graph $G=(V, E)$. Let $|v|$ denote the number of vertices of G and v_{i} denote color i; $(1 \leq i \leq 4)$.

1) If $b \neq 0, c \neq 0$ and $d \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{c}{i}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{e c}{b i}+\frac{e d}{b m}} \\
v_{3}=\frac{|v|}{\frac{i}{c}+\frac{i b}{c e}+1+\frac{i d}{c m}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{m b}{d e}+\frac{m c}{d i}+1}
\end{gathered}
$$

PERFECT 4-COLORINGS OF THE 3-REGULAR GRAPHS OF ... 5

2) If $b \neq 0, c \neq 0$ and $h \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{c}{i}+\frac{b h}{e n}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{e c}{b i}+\frac{h}{n}} \\
v_{3}=\frac{|v|}{\frac{i}{c}+\frac{i b}{c e}+1+\frac{i b h}{c e n}}, v_{4}=\frac{|v|}{\frac{n e}{h b}+\frac{n}{h}+\frac{n e c}{h b i}+1}
\end{gathered}
$$

3) If $b \neq 0, c \neq 0$ and $l \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{c}{i}+\frac{c l}{i o}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{e c}{b i}+\frac{e c l}{b i o}} \\
& v_{3}=\frac{|v|}{\frac{i}{c}+\frac{i b}{c e}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{o i}{l c}+\frac{o i b}{l c e}+\frac{o}{l}+1}
\end{aligned}
$$

4) If $b \neq 0, d \neq 0$ and $g \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{b g}{e j}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{g}{j}+\frac{e d}{b m}} \\
v_{3}=\frac{|v|}{\frac{j e}{g b}+\frac{j}{g}+1+\frac{j e d}{g b m}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{m b}{d e}+\frac{m b g}{d e j}+1}
\end{gathered}
$$

5) If $b \neq 0, d \neq 0$ and $l \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{d o}{m l}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{e d o}{b m l}+\frac{e d}{b m}} \\
& v_{3}=\frac{|v|}{\frac{l m}{o d}+\frac{l m b}{o d e}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{m b}{d e}+\frac{o}{l}+1}
\end{aligned}
$$

6) If $b \neq 0, g \neq 0$ and $h \neq 0$ then

$$
\begin{aligned}
v_{1} & =\frac{|v|}{1+\frac{b}{e}+\frac{b g}{e j}+\frac{b h}{e n}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{g}{j}+\frac{h}{n}} \\
v_{3} & =\frac{|v|}{\frac{j e}{g b}+\frac{j}{g}+1+\frac{j h}{g n}}, v_{4}=\frac{|v|}{\frac{n e}{h b}+\frac{n}{h}+\frac{n g}{h j}+1}
\end{aligned}
$$

7) If $b \neq 0, g \neq 0$ and $l \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{b g}{e j}+\frac{b g l}{e j o}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{g}{j}+\frac{g l}{j o}} \\
& v_{3}=\frac{|v|}{\frac{j e}{g b}+\frac{j}{g}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{o j e}{l g b}+\frac{o j}{l g}+\frac{o}{l}+1}
\end{aligned}
$$

8) If $b \neq 0, h \neq 0$ and $l \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{b}{e}+\frac{b h o}{e n l}+\frac{b h}{e n}}, v_{2}=\frac{|v|}{\frac{e}{b}+1+\frac{h o}{n l}+\frac{h}{n}} \\
& v_{3}=\frac{|v|}{\frac{\operatorname{lne}}{o h b}+\frac{l n}{o h}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{n e}{h b}+\frac{n}{h}+\frac{o}{l}+1}
\end{aligned}
$$

9) If $c \neq 0, d \neq 0$ and $g \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{g i}{c j}+1+\frac{g}{j}+\frac{g i d}{j c m}} \\
& v_{3}=\frac{|v|}{\frac{i}{c}+\frac{j}{g}+1+\frac{i d}{c m}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{m c j}{d i g}+\frac{m c}{d i}+1}
\end{aligned}
$$

PERFECT 4-COLORINGS OF THE 3-REGULAR GRAPHS OF ... 7

10) If $c \neq 0, d \neq 0$ and $h \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{d n}{m h}+\frac{c}{i}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{h m}{d n}+1+\frac{h m c}{n d i}+\frac{h}{n}} \\
& v_{3}=\frac{|v|}{\frac{i}{c}+\frac{i d n}{c m h}+1+\frac{i d}{c m}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{n}{h}+\frac{m c}{d i}+1}
\end{aligned}
$$

11) If $c \neq 0, g \neq 0$ and $h \neq 0$ then

$$
\begin{aligned}
& v_{1}=\frac{|v|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{c j h}{i g n}}, v_{2}=\frac{|v|}{\frac{g i}{j c}+1+\frac{g}{j}+\frac{h}{n}} \\
& v_{3}=\frac{|v|}{\frac{i}{c}+\frac{j}{g}+1+\frac{j h}{g n}}, v_{4}=\frac{|v|}{\frac{n g i}{h j c}+\frac{n}{h}+\frac{n g}{h j}+1}
\end{aligned}
$$

12) If $c \neq 0, g \neq 0$ and $l \neq 0$ then

$$
\begin{aligned}
v_{1} & =\frac{|v|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{c l}{i o}}, v_{2}=\frac{|v|}{\frac{g i}{j c}+1+\frac{g}{j}+\frac{g l}{j o}} \\
v_{3} & =\frac{|v|}{\frac{i}{c}+\frac{j}{g}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{o i}{l c}+\frac{o j}{l g}+\frac{o}{l}+1}
\end{aligned}
$$

13) If $c \neq 0, h \neq 0$ and $l \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{c l n}{i o h}+\frac{c}{i}+\frac{c l}{i o}}, v_{2}=\frac{|v|}{\frac{h o i}{n l c}+1+\frac{h o}{n l}+\frac{h}{n}} \\
v_{3}=\frac{|v|}{\frac{i}{c}+\frac{\ln }{o h}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{o i}{l c}+\frac{n}{h}+\frac{o}{l}+1}
\end{gathered}
$$

14) If $d \neq 0, g \neq 0$ and $h \neq 0$ then

$$
\begin{aligned}
v_{1} & =\frac{|v|}{1+\frac{d n}{m h}+\frac{d n g}{m h j}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{h m}{n d}+1+\frac{g}{j}+\frac{h}{n}} \\
v_{3} & =\frac{|v|}{\frac{j h m}{g n d}+\frac{j}{g}+1+\frac{j h}{g n}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{n}{h}+\frac{n g}{h j}+1}
\end{aligned}
$$

15) If $d \neq 0, g \neq 0$ and $l \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{d o j}{m l g}+\frac{d o}{m l}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{g l m}{j o d}+1+\frac{g}{j}+\frac{g l}{j o}} \\
v_{3}=\frac{|v|}{\frac{l m}{o d}+\frac{j}{g}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{o j}{l g}+\frac{o}{l}+1}
\end{gathered}
$$

16) If $d \neq 0, h \neq 0$ and $l \neq 0$ then

$$
\begin{gathered}
v_{1}=\frac{|v|}{1+\frac{d n}{m h}+\frac{d o}{m l}+\frac{d}{m}}, v_{2}=\frac{|v|}{\frac{h m}{n d}+1+\frac{h o}{n l}+\frac{h}{n}} \\
v_{3}=\frac{|v|}{\frac{l m}{o d}+\frac{l n}{o h}+1+\frac{l}{o}}, v_{4}=\frac{|v|}{\frac{m}{d}+\frac{n}{h}+\frac{o}{l}+1}
\end{gathered}
$$

By using above proposition and lemmas for $\mathrm{n}=4,6,8$ we only have the following matrices, which we have shown with M_{1}, \ldots, M_{42}.

$$
M_{1}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], M_{2}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{3}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

PERFECT 4-COLORINGS OF THE 3-REGULAR GRAPHS OF ... 9

$$
\begin{aligned}
& M_{4}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], M_{5}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], M_{6}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \\
& M_{7}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], M_{8}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{9}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 0 & 2 \\
2 & 0 & 1 & 0 \\
1 & 2 & 0 & 0
\end{array}\right], \\
& M_{10}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], M_{11}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
2 & 1 & 0 & 0 \\
1 & 0 & 0 & 2
\end{array}\right], M_{12}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& M_{13}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \\
2 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{14}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \\
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0
\end{array}\right], M_{15}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& M_{16}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{17}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], M_{18}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& M_{19}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 \\
2 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{20}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right], M_{21}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], \\
& M_{22}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
1 & 1 & 1 & 0
\end{array}\right], M_{23}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 0
\end{array}\right], M_{24}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 2 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& M_{25}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 2 & 0 \\
2 & 1 & 0 & 0 \\
2 & 0 & 0 & 1
\end{array}\right], M_{26}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 0 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], M_{27}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 0 & 2 \\
1 & 0 & 0 & 2 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& M_{28}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right], M_{29}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 2 & 0
\end{array}\right], M_{30}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \\
& M_{31}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 \\
1 & 2 & 0 & 0
\end{array}\right], M_{32}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], M_{33}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \\
& M_{34}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 3 \\
3 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{35}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 3 \\
1 & 1 & 1 & 0
\end{array}\right], M_{36}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 3 & 0 \\
2 & 1 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right], \\
& M_{37}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], M_{38}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{39}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \\
& M_{40}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \\
1 & 2 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], M_{41}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], M_{42}=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 \\
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Figure 1: Connected 3-regular graph of order 4

Figure 2: Connected 3-regular graphs of order 6

3 Main Results

None isomorphic 3-regular connected graphs of order 4, 6 and 8 are shown below in figures 1,2 and 3 .

Theorem 3.1. The parameter matrix of 3-regular graph of order 4 is just M_{1}.

Proof. Because each vertex is colored with one color.
Theorem 3.2. If M is a perfect 4-colorings matrix of the 3-regular graph of order 6 , then only the matrices M_{23}, M_{30} for G_{2} and M_{20} for G_{3} can be parameter matrices.

Figure 3: Connected 3-regular graphs of order 8

Proof. With consideration of 3 -regular graphs eigenvalues and using Lemma 2.5, it can be seen the connected 3-regular graphs with 6 vertices can have perfect 4 -colorings with matrices M_{20}, M_{23} and M_{30}.

So we introduce 3 -regular graphs of order 6 that have perfect 4 colorings. Now we introduce the mappings of all graphs that have perfect 4-colorings with the parameter matrices.

The graph G_{2} has perfect 4-colorings with matrix M_{23}. Consider the mapping T as follows:
$T\left(a_{1}\right)=1, T\left(a_{3}\right)=T\left(a_{5}\right)=2, T\left(a_{2}\right)=T\left(a_{6}\right)=3, T\left(a_{4}\right)=4$.
There is no perfect 4 -colorings with the matrix M_{30} for the graph G_{2}. Contrary to our claim, suppose that T is a perfect 4 -colorings with the matrix M_{30} for the graph G_{2}. Then according to the matrix M_{30}, by symmetry if T , is a coloring, then we have 2 cases for the color of number 1 as follows:
$T\left(a_{1}\right)=1$ or $T\left(a_{2}\right)=1$.
(1) $T\left(a_{1}\right)=1$, according to the matrix $M_{30}, T\left(a_{2}\right)=3, T\left(a_{6}\right)=3$ as a result $T\left(a_{4}\right)=4$, it follows that $T\left(a_{3}\right)=4$ or $T\left(a_{5}\right)=4$, which are a contradiction with the third row and fourth column of the matrix M_{30}.
(2) $T\left(a_{2}\right)=1$, according to the matrix $M_{30}, T\left(a_{1}\right)=3$ and $T\left(a_{6}\right)=3$
as a result $T\left(a_{3}\right)=4$, it follows that $T\left(a_{4}\right)=4$ or $T\left(a_{5}\right)=4$, which are a contradiction with the third row and fourth column of the matrix M_{30}.

Therefore the graph G_{2} has no perfect 4-colorings with matrix M_{30}.
The graph G_{3} has perfect 4-colorings with matrix M_{20}. Consider the mapping T as follows:

$$
T\left(a_{1}\right)=T\left(a_{3}\right)=T\left(a_{5}\right)=1 . T\left(a_{2}\right)=2, T\left(a_{6}\right)=4, T\left(a_{4}\right)=3
$$

Theorem 3.3. If M is a perfect 4-colorings matrix of the 3-regular graph of order 8 , then only matrices M_{2}, M_{9}, M_{18} for G_{4} and M_{35} for G_{5} and M_{8} for G_{6} and M_{8}, M_{34} for G_{7} and $M_{1}, M_{2}, M_{14}, M_{36}$ for G_{8} can be parameter matrices.

Proof. With consideration of 3-regular graphs eigenvalues and using Lemma 2.5, it can be seen the connected 3-regular graphs with 8 vertices can have perfect 4-colorings with matrices $M_{1}, M_{2}, M_{8}, M_{9}, M_{14}, M_{18}$, M_{34}, M_{35} and M_{36}.

The graph G_{4} has perfect 4-colorings with the matrices M_{2} and M_{9}. Consider two mappings T_{1} and T_{2} as follows:
$T_{1}\left(a_{1}\right)=T_{1}\left(a_{6}\right)=1, T_{1}\left(a_{2}\right)=T_{1}\left(a_{5}\right)=4, T_{1}\left(a_{3}\right)=T_{1}\left(a_{4}\right)=2$, $T_{1}\left(a_{7}\right)=T_{1}\left(a_{8}\right)=3$.
$T_{2}\left(a_{1}\right)=T_{2}\left(a_{4}\right)=1, T_{2}\left(a_{2}\right)=T_{2}\left(a_{3}\right)=4, T_{2}\left(a_{5}\right)=T_{2}\left(a_{8}\right)=2$, $T_{2}\left(a_{6}\right)=T_{2}\left(a_{7}\right)=3$.

There is no perfect 4-colorings with the matrix M_{18}.
Contrary to our claim, suppose that T is a perfect 4-colorings with the matrix M_{18} for graph G_{4}.

According to the matrix M_{18}, by symmetry we have two cases for the color of number 1 as follows:
(1) If $T\left(a_{1}\right)=1$, then $T\left(a_{8}\right)=T\left(a_{2}\right)=3$. It follows that $T\left(a_{7}\right)=4$, which is a contradiction with the third row of the matrix M_{18}.
(2) If $T\left(a_{2}\right)=1$, then $T\left(a_{1}\right)=T\left(a_{3}\right)=3$. It follows that $T\left(a_{8}\right)=4$, which is a contradiction with the third row of the matrix M_{18}. Therefore the graph G_{4} has no perfect 4-colorings with the matrix M_{18}.

The graph G_{5} has perfect 4-colorings with the matrix M_{35}.
Consider the mapping T as follows:
$T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{6}\right)=1, T\left(a_{2}\right)=2$.
$T\left(a_{3}\right)=T\left(a_{1}\right)=T\left(a_{7}\right)=4, T\left(a_{8}\right)=3$.

The graph G_{6} has perfect 4-colorings with the matrix M_{8}. Consider the mapping T as follows:

$$
\begin{aligned}
& T\left(a_{2}\right)=T\left(a_{7}\right)=1, T\left(a_{4}\right)=T\left(a_{5}\right)=2 . \\
& T\left(a_{3}\right)=T\left(a_{6}\right)=3, T\left(a_{1}\right)=T\left(a_{8}\right)=4 .
\end{aligned}
$$

The graph G_{7} has no perfect 4-colorings with the matrices M_{8} and M_{34}.

Contrary to our claim, suppose that T is a perfect 4 -colorings with matrix M_{8} for the graph G_{7}. Then according to the matrix M_{8}, by symmetry we have two cases for the color of number 2 as follows:
(1) If $T\left(a_{1}\right)=2$, then $T\left(a_{2}\right)=2, T\left(a_{8}\right)=4$ and $T\left(a_{5}\right)=T\left(a_{3}\right)=$ 3. It follows that $T\left(a_{7}\right)=1, T\left(a_{4}\right)=1$ and $T\left(a_{6}\right)=1$, which is a contradiction with the first row of the matrix M_{8}.
(2) If $T\left(a_{2}\right)=2$, then $T\left(a_{1}\right)=2, T\left(a_{8}\right)=3$ and $T\left(a_{3}\right)=4$ according to the $T\left(a_{8}\right), 2$ vertices should be connected with color 1 so, it's not possible.

Therefore the graph G_{7} has no perfect 4-colorings with the matrix M_{8}. Similarly, we can show that the graph G_{7} has no perfect 4-colorings with the matrix M_{34}.

The connected 3-regular graphs G_{8} with 8 vertices can have perfect 4-colorings with the matrices $M_{1}, M_{2}, M_{14}, M_{36}$. Now we introduce the mappings of all graphs that have perfect 4-colorings with the parameter matrices.

The graph G_{8} has perfect 4-colorings with the matrices M_{1}, M_{2}, M_{14} and M_{36}. Consider four mappings T_{1}, T_{2}, T_{3} and T_{4} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{1}\right)=T_{1}\left(a_{6}\right)=1, T_{1}\left(a_{3}\right)=T_{1}\left(a_{8}\right)=2 . \\
& T_{1}\left(a_{2}\right)=T_{1}\left(a_{5}\right)=3, T_{1}\left(a_{4}\right)=T_{1}\left(a_{7}\right)=4 . \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{6}\right)=1, T_{2}\left(a_{2}\right)=T_{2}\left(a_{5}\right)=2 . \\
& T_{2}\left(a_{7}\right)=T_{2}\left(a_{8}\right)=3, T_{2}\left(a_{3}\right)=T_{2}\left(a_{4}\right)=4 . \\
& T_{3}\left(a_{1}\right)=T_{3}\left(a_{3}\right)=3, T_{3}\left(a_{2}\right)=T_{3}\left(a_{4}\right)=1 . \\
& T_{3}\left(a_{6}\right)=T_{3}\left(a_{8}\right)=2, T_{3}\left(a_{5}\right)=T_{3}\left(a_{7}\right)=4 . \\
& T_{4}\left(a_{1}\right)=T_{4}\left(a_{3}\right)=T_{4}\left(a_{7}\right)=1, T_{4}\left(a_{5}\right)=2 . \\
& T_{4}\left(a_{4}\right)=T_{4}\left(a_{6}\right)=T_{4}\left(a_{8}\right)=3, T_{4}\left(a_{2}\right)=4 .
\end{aligned}
$$

References

[1] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10, Electronic Journal of Graph Theory and Applications (EJGTA), 5(2) (2017), 194-206.
[2] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs $\mathrm{J}(6,3)$ and $\mathrm{J}(7,3)$, Lecture Notes in Computer Science, 5228 (2008), 11-19.
[3] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs $\mathrm{J}(8,3)$ and $\mathrm{J}(8,4)$ with two colors, Journal of Applied and Industrial Mathematics, 5 (2011), 19-30.
[4] D. G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal, 4 (2007), 133-135.
[5] D. G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal, 4 (2007), 740-745.
[6] D. G. Fon-der-Flaass, Perfect 2-colorings of the 12-Cube that attain the bounds on correlation immunity, Siberian Mathematical Journal, 4 (2007), 292-295.
[7] A. L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v,3), Journal of Combinatorial Designs, 21 (2013), 232-252.
[8] C. Godsil, Compact graphs and equitable partitions, Linear Algebra and Its Applications, 255 (1997), 259-266.

Zeinab Vahedi

PhD Student of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Karaj, Iran.
E-mail: zeinab.vahedi20@kiau.ac.ir

Mehdi Alaeiyan

Professor of Mathematics
School of Mathematics
Iran University of Science and Technology
Narmak 16846, Tehran, Iran.
E-mail: alaeiyan@iust.ac.ir

Mohammad Maghasedi

Associate Professor of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Karaj, Iran.
E-mail: maghasedi@kiau.ac.ir

[^0]: Received: December 2019; Accepted: September 2020
 *Corresponding Author

