On Nilpotent Elements of Skew Polynomial Rings

J. Esmaeili
Shahrood Branch, Islamic Azad University
E. Hashemi ${ }^{*}$
Shahrood University of Technology

Abstract

We study the structure of the set of nilpotent elements in skew polynomial ring $R[x ; \alpha]$, when R is an α-Armendariz ring. We prove that if R is a nil α-Armendariz ring and $\alpha^{t}=I_{R}$, then the set of nilpotent elements of R is an α-compatible subrng of R. Also, it is shown that if R is an α-Armendariz ring and $\alpha^{t}=I_{R}$, then R is nil α-Armendariz. We give some examples of non α-Armendariz rings which are nil α-Armendariz. Moreover, we show that if $\alpha^{t}=I_{R}$ for some positive integer t and R is a nil α-Armendariz ring and $\operatorname{nil}(R[x][y ; \alpha])=$ $n i l(R[x])[y]$, then $R[x]$ is nil α-Armendariz. Some results of [3] follow as consequences of our results.

AMS Subject Classification: 16S36; 16N60; 16P60
Keywords and Phrases: Armendariz rings, nil-armendariz rings, nilpotent elements, α-rigid rings

1. Introduction

Rege and Chhawchharia ([17]) called a ring R an Armendariz ring if whenever any polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+$ $b_{1} x+\cdots+b_{n} x^{n} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for any i and j. The name of the ring was given due to Armendariz who proved [4] that reduced rings (i.e. rings without nonzero nilpotent elements) satisfy this condition. Armendariz rings are thus a generalization of reduced rings,

[^0](see [4, Lemma 1]), and therefore, nilpotent elements play an important role in this class of rings (see [3]). Some properties of Armendariz rings have been studied in $[1,2,3,4,10,12,13,11,16,17]$. For a ring R with a ring endomorphism $\alpha: R \rightarrow R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x ; \alpha]$ of R is the ring obtained by giving the polynomial ring over R, the new multiplication $x r=\alpha(r) x$ for all $r \in R$ (see [14, Example 1.7]).
The Armendariz property of rings mentioned earlier was extended to skew polynomial rings in [10]: For an endomorphism α of a ring R, R is called α-Armendariz ring if for $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ in $R[x ; \alpha], f(x) g(x)=0$ implies $a_{i} b_{j}=0$ for all $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$.
Recall that an endomorphism α of a ring R is called rigid (see [11, 13]) if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is called α-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and α-rigid rings are reduced by [9, Proposition 5], and according to [7], an endomorphism α of a ring R is called compatible whenever $a b=0 \Leftrightarrow a \alpha(b)=0$, for each $a, b \in R$. Note that R is α-rigid if and only if R is α-compatible and reduced, by [7]. If R is an α-rigid ring, then for $p=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $q=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ in $R[x ; \alpha], p q=0$ if and only if $a_{i} b_{j}=0$ for all $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n([9$, Proposition 6$])$. Hence α-rigid rings are α-Armendariz by [7, Lemma 2.2].
Now, we establish our general notations. All rings considered here are associative and unitary and subrng will denote a subring without unit. If R is a ring, $\operatorname{nil}(R)$ denotes the set of nilpotent elements in $R, R[x]$ denotes the polynomial ring over R, and if $f(x) \in R[x], \operatorname{coe} f(f(x))$ denotes the subset of R of the coefficients of $f(x)$. Also, if I is a subset of $R, I[x]$ denotes the set of all polynomials whose coefficients belong to I.
According to Antoine ([3]), a ring R is called to be nil-Armendariz if whenever two polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x) \in \operatorname{nil}(R)[x]$ then $a b \in \operatorname{nil}(R)$ for all $a \in \operatorname{coef}(f(x))$ and $b \in \operatorname{coe} f(g(x))$. Then he studied the conditions under which the polynomial ring over a nilArmendariz ring is also nil-Armendariz. That conditions are strongly connected to the question of Amitsur of whether or not a polynomial
ring over a nil ring is nil.
Motivated by Antoine [3] and Hong, Kwak and Rizvi [10], we introduce the notion of a nil α-Armendariz ring for an endomorphism α of a ring R as follows:

Definition 1.1. Let α be an endomorphism of a ring R. R is called nil α-Armendariz, if whenever two polynomials $f(x), g(x) \in R[x ; \alpha]$ satisfy $f(x) g(x) \in \operatorname{nil}(R)[x]$, then $a b \in \operatorname{nil}(R)$ for all $a \in \operatorname{coef}(f(x))$ and $b \in$ $\operatorname{coe} f(g(x))$. Let α be an endomorphism of a ring R and X a nonempty subset of R. We say X is an α-compatible subset of R, whenever $a b \in$ $X \Leftrightarrow a \alpha(b) \in X$. Clearly, R is an α-compatible ring if and only if $\{0\}$ is an α-compatible subset of R.

Example 1.2. Let D be an integral domain and consider the trivial extension of D given by: $R=\left\{\left.\left(\begin{array}{cc}a & d \\ 0 & a\end{array}\right) \right\rvert\, a, d \in D\right\}$. Clearly, R is a commutative ring. Let $\alpha: R \rightarrow R$ be an automorphism defined by $\alpha\left(\left(\begin{array}{ll}a & d \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & u d \\ 0 & a\end{array}\right)$, where u is a fix unit element of D. Then:

1. R is α-compatible.
2. R is not α-rigid.
3. $\operatorname{nil}(R)$ is an α-compatible ideal of R.
4. R is a nil α-Armendariz ring.
(1) Suppose that $\left(\begin{array}{ll}a & d \\ 0 & a\end{array}\right)\left(\begin{array}{cc}b & d_{1} \\ 0 & b\end{array}\right)=0$, hence $a b=0=a d_{1}+d b$. So $a=0$ or $b=0$. In each case, $a u d_{1}+d b=0$, hence $\left(\begin{array}{cc}a & d \\ 0 & a\end{array}\right) \alpha\left(\left(\begin{array}{cc}b & d_{1} \\ 0 & b\end{array}\right)\right)=0$. If $\left(\begin{array}{cc}a & d \\ 0 & a\end{array}\right) \alpha\left(\left(\begin{array}{cc}b & d_{1} \\ 0 & b\end{array}\right)\right)=0$, then by a similar argument we have $\left(\begin{array}{cc}a & d \\ 0 & a\end{array}\right)\left(\begin{array}{cc}b & d_{1} \\ 0 & b\end{array}\right)=0$. Therefore R is α-compatible.
(2) If $d \neq 0$, then $\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right) \alpha\left(\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right)\right)=0$, but $\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right) \neq 0$.

Thus R is not α-rigid.
(3) Since $\operatorname{nil}(R)=\left\{\left.\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right) \right\rvert\, d \in D\right\}$, hence $\operatorname{nil}(R)$ is an α compatible ideal of R.
(4) Suppose that $f(x)=\sum_{i=0}^{m} A_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} B_{j} x^{j} \in R[x ; \alpha]$, where $A_{i}=\left(\begin{array}{cc}a_{i} & c_{i} \\ 0 & a_{i}\end{array}\right)$ and $B_{j}=\left(\begin{array}{cc}b_{j} & d_{j} \\ 0 & b_{j}\end{array}\right)$ for each $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$. Assume that $f(x) g(x) \in \operatorname{nil}(R)[x]$. Then we have:

$$
\left.\sum_{k=0}^{m+n}\left(\sum_{i+j=k} A_{i} \alpha^{i}\left(B_{j}\right)\right) x^{k} \in \operatorname{nil}(R)[x]\right)
$$

We claim that $A_{i} \alpha^{i}\left(B_{j}\right) \in \operatorname{nil}(R)$ for all i, j.
(i) Suppose that there is $A_{k}=\left(\begin{array}{cc}a_{k} & c_{k} \\ 0 & a_{k}\end{array}\right)$ with $a_{k} \neq 0$ and $A_{0}=$ $\cdots=A_{k-1}=0$ where $0 \leqslant k$. From Eq. $(\dagger), A_{0} B_{k}+A_{1} \alpha\left(B_{k-1}\right)+\cdots+$ $A_{k-1} \alpha^{k-1}\left(B_{1}\right)+A_{k} \alpha^{k}\left(B_{0}\right) \in \operatorname{nil}(R)$, so $A_{k} \alpha^{k}\left(B_{0}\right) \in \operatorname{nil}(R)$. That is

$$
\begin{aligned}
& \left(\begin{array}{cc}
a_{k} & c_{k} \\
0 & a_{k}
\end{array}\right)\left(\begin{array}{cc}
b_{0} & u^{k} d_{0} \\
0 & b_{0}
\end{array}\right) \\
= & \left(\begin{array}{cc}
a_{k} b_{0} & a_{k} u^{k} d_{0}+c_{k} b_{0} \\
0 & a_{k} b_{0}
\end{array}\right) \in \operatorname{nil}(R) . \text { Thus } a_{k} b_{0}=0 \text { and so } b_{0}=0,
\end{aligned}
$$

since D is a domain. Then $B_{0} \in \operatorname{nil}(R)$, which implies that $A_{i} \alpha^{i}\left(B_{0}\right) \in$ $\operatorname{nil}(R)$, for each $0 \leqslant i \leqslant m$, since $\operatorname{nil}(R)$ is an α-compatible ideal of R. Since $A_{0} B_{k+1}+A_{1} \alpha\left(B_{k}\right)+\cdots+A_{k} \alpha^{k}\left(B_{1}\right)+A_{k+1} \alpha^{k+1}\left(B_{0}\right) \in \operatorname{nil}(R)$, we have $A_{k} \alpha^{k}\left(B_{1}\right) \in \operatorname{nil}(R)$ and so $b_{1}=0$, by a similar argument as above. Then $B_{1} \in \operatorname{nil}(R)$, which implies that $A_{i} \alpha^{i}\left(B_{1}\right) \in \operatorname{nil}(R)$, for each $0 \leqslant i \leqslant m$, since $\operatorname{nil}(R)$ is an α-compatible ideal of R. Continuing this process, we obtain $B_{j} \in \operatorname{nil}(R)$ for all $0 \leqslant j \leqslant n$, which implies that $A_{i} \alpha^{i}\left(B_{j}\right) \in \operatorname{nil}(R)$ for all i, j.
(ii) Suppose that there is $B_{k}=\left(\begin{array}{cc}b_{k} & d_{k} \\ 0 & b_{k}\end{array}\right)$ with $b_{k} \neq 0$ and $B_{0}=$ $\cdots=B_{k-1}=0$, where $0 \leqslant k$. By a similar way as used in (i), we can show that $A_{i} \in \operatorname{nil}(R)$ for each $0 \leqslant i \leqslant m$, which implies that $A_{i} \alpha^{i}\left(B_{j}\right) \in \operatorname{nil}(R)$ for all i, j, since $\operatorname{nil}(R)$ is an ideal of R.
(iii) Suppose that $A_{i}=\left(\begin{array}{cc}0 & c_{i} \\ 0 & 0\end{array}\right), B_{j}=\left(\begin{array}{cc}0 & d_{j} \\ 0 & 0\end{array}\right)$ for all i, j.

Then
$A_{i} \alpha^{i}\left(B_{j}\right)=\left(\begin{array}{cc}0 & c_{i} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}0 & u^{i} d_{j} \\ 0 & 0\end{array}\right)=0 \in \operatorname{nil}(R)$ for all i, j. Therefore R is a nil α-Armendariz ring, by (i), (ii) and (iii).
In this paper, we prove that if R is a nil α-Armendariz ring and $\alpha^{t}=$ I_{R}, then the set of nilpotent elements of R is an α-compatible subrng of R. Also, it is shown that if R is an α-Armendariz ring and $\alpha^{t}=$ I_{R}, then R is nil α-Armendariz. Some examples of nil α-Armendariz rings which are'nt α-Armendariz are given. Moreover, we show that if $\alpha^{t}=I_{R}$ for some positive integer t and R is a nil α-Armendariz ring and $\operatorname{nil}(R[x][y ; \alpha])=\operatorname{nil}(R[x])[y]$, then $R[x]$ is nil α-Armendariz. Some results of ([3]) follow as consequences of our results.

2. Polynomial Rings Over Nil α-Armendariz Rings

Recall that an ideal I of a ring R is called an α-ideal if $\alpha(I) \subseteq I$ (see [14, Page 47]). Clearly, if I is an α-ideal of R, then $\bar{\alpha}: R / I \rightarrow R / I$ defined by $\bar{\alpha}(a+I)=\alpha(a)+I$ for $a \in R$ is an endomorphism of the factor ring R / I. Note that each α-compatible ideal is α-ideal, by [6, Proposition 2.1].

Note that the set of nilpotent elements of a ring is not ideal in general, (see $[18,3]$). According to ([5]), a ring R is called semi-commutative if $a b=0$ implies $a R b=0$. If R is a semi-commutative ring, then $\operatorname{nil}(R)$ is an ideal of R, by ([8, Lemma 2.10]). Also, Example 1.2, shows that there exists a ring R and an endomorphism α on R such that $\operatorname{nil}(R)$ is an α-compatible ideal of R.

Proposition 2.1. Let R be a ring such that $\operatorname{nil}(R)$ is an α-compatible ideal of R. If $f(x), g(x) \in R[x ; \alpha]$ satisfy $f(x) g(x) \in \operatorname{nil}(R)[x]$, then $a b \in \operatorname{nil}(R)$ for all $a \in \operatorname{coe} f(f(x))$ and $b \in \operatorname{coe} f(g(x))$.

Proof. Observe that $R / \operatorname{nil}(R)$ is reduced. Then, since $\operatorname{nil}(R)$ is an α compatible ideal of R, hence $R / \operatorname{nil}(R)$ is an $\bar{\alpha}$-rigid ring, by [6]. Suppose that $f(x) g(x) \in \operatorname{nil}(R)[x]$. If we denote by $\bar{f}(x), \bar{g}(x)$ the corresponding polynomials in $R / \operatorname{nil}(R)[x ; \bar{\alpha}]$, then $\bar{f}(x) \bar{g}(x)=\overline{0}$. Since $R / \operatorname{nil}(R)$ is
$\bar{\alpha}$-rigid, $\bar{a} \bar{b}=\overline{0}$ for all $\bar{a} \in \operatorname{coef}(\bar{f}(x))$ and $\bar{b} \in \operatorname{coef}(\bar{g}(x))$, by [9]. Hence $a b$ is nilpotent for all $a \in \operatorname{coe} f(f(x))$ and $b \in \operatorname{coe} f(g(x))$.
Observe that if $\operatorname{nil}(R)$ is an α-compatible ideal of R, then by Proposition 2.1, R is nil α-Armendariz. More generally we obtain the following.

Proposition 2.2. Let α be an endomorphism of a ring R and I an α-compatible nil ideal of R. Then R is nil α-Armendariz if and only if R / I is nil $\bar{\alpha}$-Armendariz.

Proof. We denote $\bar{R}=R / I$. Since I is nil, then $\operatorname{nil}(\bar{R})=\overline{\operatorname{nil(R)}}$. Hence $f(x) g(x) \in \operatorname{nil}(x)[x]$ if and only if $\bar{f}(x) \bar{g}(x) \in \operatorname{nil}(\bar{R})[x]$, where $\bar{f}(x), \bar{g}(x) \in R / I[x ; \bar{\alpha}]$. And, if $a \in \operatorname{coef}(f(x)$ and $b \in \operatorname{coef}(g(x))$, then $a b \in \operatorname{nil}(R)$ if and only if $\bar{a} \bar{b} \in \operatorname{nil}(\bar{R})$. Therefore R is nil α-Armendariz if and only if \bar{R} is nil $\bar{\alpha}$-Armendariz.

Lemma 2.3. Let R be a nil α-Armendariz ring and $n \geqslant 2$. If
$f_{1}(x), f_{2}(x), \cdots, f_{n}(x) \in R[x ; \alpha]$ such that $f_{1}(x) f_{2}(x) \cdots f_{n}(x) \in \operatorname{nil}(R)[x]$, then if $a_{k} \in \operatorname{coef}\left(f_{k}(x)\right)$ for $k=1, \cdots, n$, we have $a_{1} a_{2} \cdots a_{n} \in \operatorname{nil}(R)$.

Proof. We use induction on n. The case $n=2$ is clear by definition of nil α-Armendariz ring. Suppose that $n>2$. Consider $h(x)=$ $f_{2}(x) \cdots f_{n}(x)$. Then $f_{1}(x) h(x) \in \operatorname{nil}(R)[x]$ and hence, since R is nil α Armendariz, $a_{1} a_{h} \in \operatorname{nil}(R)$ where $a_{h} \in \operatorname{coef}(h(x))$ and $a_{1} \in \operatorname{coef}\left(f_{1}(x)\right)$. Therefore, for all $a_{1} \in \operatorname{coef}\left(f_{1}(x)\right),\left(a_{1} f_{2}(x)\right)\left(f_{3}(x) \cdots f_{n}(x)\right)=a_{1} h(x) \in$ $n i l(R)[x]$, and by induction, since the coefficients of $a_{1} f_{2}(x)$ are $a_{1} a_{2}$ where a_{2} is a coefficient of $f_{2}(x)$, we obtain $a_{1} a_{2} \cdots a_{n-1} a_{n} \in \operatorname{nil}(R)$ for $a_{k} \in \operatorname{coef}\left(f_{k}(x)\right), k=1, \cdots, n$.

Proposition 2.4. Let R be a nil α-Armendariz ring. For $a, b \in R$, we have the following:

1. If $a b \in \operatorname{nil}(R)$, then $\alpha^{n}(a) b, a \alpha^{n}(b)$ are nilpotent for any positive integer n.
2. If $\alpha^{n}(a) b \in \operatorname{nil}(R)$ or $a \alpha^{n}(b) \in \operatorname{nil}(R)$ for some positive integer n, then $a b \in \operatorname{nil}(R)$.
3. $\operatorname{nil}(R)$ is an α-compatible subset of R.

Proof.

(1) Suppose that $a b \in \operatorname{nil}(R)$. It is enough to show that $\alpha(a) b \in$ $\operatorname{nil}(R)$. Let $p=\alpha(a) x$ and $q=b x$ in $R[x ; \alpha]$. Then $p q=\alpha(a) \alpha(b) x^{2}=$ $\alpha(a b) x^{2} \in \operatorname{nil}(R)[x]$. Since R is nil α-Armendariz, $\alpha(a) b \in \operatorname{nil}(R)$. Since $a b \in \operatorname{nil}(R)$, we have $b a \in \operatorname{nil}(R)$. By a similar argument one can show that $\alpha(b) a \in \operatorname{nil}(R)$, and hence $a \alpha(b) \in \operatorname{nil}(R)$.
(2) Suppose that $a \alpha^{n}(b) \in \operatorname{nil}(R)$, for some positive integer n. Let $p=a x^{n}$ and $q=b x$ in $R[x ; \alpha]$. Then $p q=a \alpha^{n}(b) x^{n+1} \in \operatorname{nil}(R)[x]$ and thus $a b \in \operatorname{nil}(R)$, since R is nil α-Armendariz.
(3) It follows from (1) and (2).

Theorem 2.5. Let R be a nil α-Armendariz ring and $\alpha^{t}=I_{R}$, for some $t \geqslant 1$. Then we have the following:

1. $\operatorname{nil}(R)$ is an α-compatible subrng of R.
2. R is an α-compatible ring.

Proof.

(1) The idea of the proof comes from the proof of [3, Theorem 12].
(a) Suppose that a, b are nilpotent and $b^{m}=0$. Then, since $\alpha^{t}=I_{R}$,

$$
\left(a-a b x^{t}\right)\left(1+b x^{t}+b^{2} x^{2 t}+\cdots+b^{m-1} x^{t(m-1)}\right)=a \in \operatorname{nil}(R)[x] .
$$

Since R is nil α-Armendariz, $a b \in \operatorname{nil}(R)$.
(b) Suppose a, b, c are nilpotent and $a^{n}=b^{m}=0$. Then
$\left(1+a x^{t}+\cdots+a^{(n-1)} x^{(n-1) t}\right)\left(1-a x^{t}\right)\left(1-b x^{t}\right)\left(1+b x^{t}+\cdots+b^{(m-1)} x^{(m-1) t}\right) c=$ $c \in \operatorname{nil}(R)[x]$. Hence $\left(1+a x^{t}+\cdots+a^{(n-1)} x^{(n-1) t}\right)\left(1-(a+b) x^{t}+a b x^{2 t}\right)(1+$ $\left.b x^{t}+\cdots+b^{(m-1)} x^{(m-1) t}\right) c=c \in \operatorname{nil}(R)[x]$. Now, since R is nil $\alpha-$ Armendariz, by Lemma 2.3, we can choose the appropriate coefficients from each polynomial to obtain $(a+b) c \in \operatorname{nil}(R)$. Similarly we see that $c(a+b) \in \operatorname{nil}(R)$.
(c) Suppose a, b, c are nilpotent. Then $b c$ and $b(a+b c)$ are nilpotent. Hence $\left(1-b x^{t}\right)\left(c+(a+b c) x^{t}\right)=c+a x^{t}-b(a+b c) x^{2 t} \in \operatorname{nil}(R)[x]$. Now, since R is nil α-Armendariz, 1. $(a+b c)=a+b c$ is nilpotent.
(d) Suppose that a, b are nilpotent. Now by applying (c) several times we can see that, since a^{2}, a and $-b$ are nilpotent, $a^{2}-a b$ is nilpotent;
hence $a^{2}-a b-b a$ is nilpotent; hence $a^{2}-a b-b a+b^{2}$ is nilpotent. Therefore $(a-b)^{2}$ is nilpotent, which means that $a-b$ is nilpotent. By using (a), (b), (c) and (d) we have $\operatorname{nil}(R)$ is a subrng of R.
(2) Suppose $a b=0$. Let $f(x)=\alpha(a) x$ and $g(x)=b x$ in $R[x ; \alpha]$. Then $f(x) g(x)=\alpha(a) \alpha(b) x^{2}=\alpha(a b) x^{2}=0$. Since R is α-Armendariz, $\alpha(a) b=0$. By using induction on m one can show that $\alpha^{m}(a) b=0$.
Now, since $a b=0$, we have $\alpha(a) b=0$, and hence $a \alpha^{t-1}(b)=\alpha^{t}(a) \alpha^{t-1}(b)=$ $\alpha^{t-1}(\alpha(a) b)=0$. Then $\alpha^{t-2}(a) \alpha^{t-1}(b)=0$, and so $a \alpha(b)=0$, since α is monomorphism.
Suppose $a \alpha(b)=0$. Then $\alpha(a) \alpha(b)=0$, by the previous paragraph. Hence $a b=0$, since α is monomorphism. Therefore R is α-compatible.

Lemma 2.6. Let R be an α-Armendariz ring and $\alpha^{t}=I_{R}$ for some $t \geqslant 1$. Then $\operatorname{nil}(R)[x] \subseteq \operatorname{nil}(R[x ; \alpha])$.

Proof. Suppose that R is an α-Armendariz ring. Let $f=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n} \in \operatorname{nil}(R)[x]$ and $k>1$ such that $a_{i}^{k}=0$ for all $i=0,1, \cdots, n$. We show that $f(x)^{(n+1) k}=0$. The coefficients of $f(x)^{(n+1) k}$ can be written as sums of monomials of length $(n+1) k$ in $\alpha^{j}\left(a_{i}\right)$'s, where $j \geqslant 0$ and $i=0,1, \cdots, n$. Consider one of these monomials $\alpha^{j_{1}}\left(a_{i_{1}}\right) \alpha^{j_{2}}\left(a_{i_{2}}\right) \cdots \alpha^{j_{(n+1) k}}\left(a_{i_{(n+1) k}}\right)$ where $0 \leqslant i_{s} \leqslant n$ and $j_{s} \geqslant 0$. Clearly there exists $\alpha^{j_{s_{1}}}\left(a_{i_{s_{1}}}\right), \cdots, \alpha^{j_{s_{k}}}\left(a_{i_{s_{k}}}\right)$ where $0 \leqslant s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{k}$ such that $a_{i_{s_{1}}}=a_{i_{s_{2}}}=\cdots=a_{i_{s_{k}}}=a_{j_{0}}$ for some $0 \leqslant j_{0} \leqslant n$. Since $\left(a_{j_{0}}\right)^{k}=0$, hence $\alpha^{j_{s_{1}}}\left(a_{j_{0}}\right) \alpha^{j_{s_{2}}}\left(a_{j_{0}}\right) \cdots \alpha^{j_{s_{k}}}\left(a_{j_{0}}\right)=0$, by Theorem 2.5. For $i_{r_{m}} \neq i_{s}$, let $f_{i_{r_{m}}}^{\prime}=1-a_{i_{r_{m}}} x^{t}$ and $f_{i_{m}}^{\prime \prime}=1+a_{i_{r_{m}}} x^{t}+$ $\cdots+a_{i_{r_{m}}}^{k-1} x^{t(k-1)}$. Since $\alpha^{t}=I_{R}$, we have $f_{i_{r_{m}}}^{\prime} f_{i_{r_{m}}}^{\prime \prime}=1$ and observe that $a_{i_{r_{m}}}$ is a product of coefficients of $f_{i_{r_{m}}}^{\prime}$ and $f_{i_{r_{m}}}^{\prime \prime}$. Now we can write the monomial as $\alpha^{j_{1}}\left(a_{i_{1}}\right) \cdots \alpha^{j_{s_{1}-1}}\left(a_{i_{s_{1}-1}}\right) \alpha^{j_{s_{1}}}\left(a_{j_{0}}\right) \alpha^{j_{s_{1}+1}}\left(a_{i_{s_{1}+1}}\right) \cdots$
$\alpha^{j_{s_{2}-1}}\left(a_{i_{s_{2}-1}}\right) \alpha^{j_{s_{2}}}\left(a_{j_{0}}\right) \alpha^{j_{s_{2}+1}}\left(a_{i_{s_{2}+1}}\right) \cdots \alpha^{j_{(n+1) k}}\left(a_{i_{(n+1) k}}\right)$. By replacing each $\alpha^{j_{r_{m}}}\left(a_{i_{r_{m}}}\right)$ by the product $f_{i_{r m}}^{\prime}(x) f_{i_{r_{m}}}^{\prime \prime}(x)$, and since $\alpha^{j_{s_{1}}}\left(a_{j_{0}}\right) \alpha^{j_{s_{2}}}\left(a_{j_{0}}\right) \cdots \alpha^{j_{s_{k}}}\left(a_{j_{0}}\right)=0$, we have that $f_{i_{1}}^{\prime}(x) f_{i_{1}}^{\prime \prime}(x) \cdots f_{i_{s_{1}-1}}^{\prime}(x) f_{i_{s_{1}-1}}^{\prime \prime}(x) \alpha^{j_{s_{1}}}\left(a_{j_{0}}\right) f_{i_{s_{1}+1}}^{\prime}(x) f_{i_{s_{1}+1}}^{\prime \prime}(x) \cdots$ $f_{i_{s_{k}-1}}^{\prime}(x) f_{i_{s_{k}-1}}^{\prime \prime}(x) \alpha^{j_{s_{k}}}\left(a_{j_{0}}\right) f_{i_{s_{k}+1}}^{\prime}(x) f_{i_{s_{k}+1}}^{\prime \prime}(x) \cdots f_{i_{(n+1) k}}^{\prime}(x) f_{i_{(n+1) k}}^{\prime \prime}(x)=0$. Now, since R is α-Armendariz, by Lemma 2.3, we can choose a coefficient from each of the polynomials in the last equality and the product will be 0 . Hence
$a_{i_{1}} a_{i_{2}} \cdots a_{i_{s_{1}-1}} \alpha^{j_{s_{1}}}\left(a_{j_{0}}\right) a_{i_{s_{1}+1}} \cdots a_{i_{s_{k}-1}} \alpha^{j_{s_{k}}}\left(a_{j_{0}}\right) a_{i_{s_{k}+1}} \cdots a_{i_{(n+1) k}}=0$. Thus $\alpha^{j_{1}}\left(a_{i_{1}}\right) \alpha^{j_{2}}\left(a_{i_{2}}\right) \cdots \alpha^{j_{s_{1}-1}}\left(a_{i_{s_{1}-1}}\right) \alpha^{j_{s_{1}}}\left(a_{s_{1}}\right) \alpha^{j_{s_{1}+1}}\left(a_{i_{s_{1}+1}}\right) \cdots$
$\alpha^{j_{s_{k}-1}}\left(a_{i_{s_{k}-1}}\right) \alpha^{j_{s_{k}}}\left(a_{s_{k}}\right) \alpha^{j_{s_{k}+1}}\left(a_{i_{s_{k}+1}}\right) \cdots \alpha^{j(n+1) k}\left(a_{i_{(n+1) k}}\right)=0$, since R is α-compatible and $a_{i_{s_{1}}}=a_{i_{s_{2}}}=\cdots=a_{i_{s_{k}}}=a_{j_{0}}$. Therefore, we have proved that all the monomials appearing in the coefficients of $f(x)^{(n+1) k}$ are 0 . Hence $f(x) \in \operatorname{nil}(R[x ; \alpha])$.

Proposition 2.7. If R is an α-Armendariz ring and $\alpha^{t}=I_{R}$ for some $t \geqslant 1$, then R is nil α-Armendariz.

Proof. Suppose that $f(x), g(x) \in R[x ; \alpha]$ such that $f(x) g(x) \in \operatorname{nil}(R)[x]$. By Lemma 2.6, $f(x) g(x)$ is nilpotent and there exists $k \geqslant 1$ such that $(f(x) g(x))^{k}=0$. Hence, since R is α-Armendariz, for all $a \in \operatorname{coe} f(f(x)$ and $b \in \operatorname{coe} f(g(x))$, by choosing the corresponding coefficient in each polynomial, we have $a b a b \cdots a b=0$ and thus $a b \in \operatorname{nil}(R)$. Therefore R is nil α-Armendariz.

Corollary 2.8. [3, Proposition 2.7] If R is an Armendariz ring, then R is nil-Armendariz.

Proof. It follows from Proposition 2.7, whenever $\alpha=i d_{R}$.
The following examples show that there exists a ring R with an automorphism α such that R is nil α-Armendariz but not α-Armendariz.

Example 2.9. Let $R=\left[\begin{array}{ll}F & F \\ 0 & F\end{array}\right]$, where F is a filed and an endomorphism of R defined by $\alpha\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=\left[\begin{array}{cc}a & -b \\ 0 & c\end{array}\right]$. By [10, Example 1.12] R is not α-armendariz. We claim that R is nil α-Armendariz. Clearly $\operatorname{nil}(R)=\left[\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right]$ is an ideal of R. Now we show that $\operatorname{nil}(R)$ is α-compatible. Let $A=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ and $B=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right] \in R$ such that $A B \in \operatorname{nil}(R)$. Then $a a^{\prime}=0=c c^{\prime}$, since F is a filed. Hence $a^{\prime}=c^{\prime}=0$ or $a=c^{\prime}=0$ or $a=c,=0$ or $a^{\prime}=c=0$. Let $a^{\prime}=c=0$. Then $A \alpha(B)=\left[\begin{array}{cc}0 & -a b^{\prime}+b c^{\prime} \\ 0 & 0\end{array}\right] \in \operatorname{nil}(R)$. In each other cases, by a similar
argument one can show that $A \alpha(B) \in \operatorname{nil}(R)$.
Now assume that $A \alpha(B) \in \operatorname{nil}(R)$. Then by a similar argument as above one can show that $A B \in \operatorname{nil}(R)$. Thus $\operatorname{nil}(R)$ is an α-compatible ideal of R, and hence by Proposition 2.1, R is nil α-Armendariz.

Example 2.10. Let \mathbb{Z} be the set of all integers. Consider the ring $R=\left\{\left.\left[\begin{array}{ll}a & c \\ 0 & b\end{array}\right] \right\rvert\, a-b \equiv c \equiv 0 \bmod (2)\right.$ and $\left.a, b, c \in \mathbb{Z}\right\}$. Let $\alpha: R \rightarrow R$ be an endomorphism defined by $\alpha\left(\left[\begin{array}{ll}a & c \\ 0 & b\end{array}\right]\right)=\left[\begin{array}{cc}a & -c \\ 0 & b\end{array}\right]$. Then R is not α-Armendariz. For, $p=\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] x$ and $q=\left[\begin{array}{cc}0 & 2 \\ 0 & -2\end{array}\right]+$ $\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] x \in R[x ; \alpha]$, we have $p q=0$, but $\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ 0 & -2\end{array}\right] \neq 0$. Since $\operatorname{nil}(R)=\left\{\left.\left[\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right] \right\rvert\, c \in 2 \mathbb{Z}\right\}$ is an α-compatible ideal of R, hence by Proposition 2.1, R is nil α-Armendariz.
Example 2.11. shows that there exists a nil α-Armendariz ring R such that $\alpha(e) \neq e$ for some $e^{2}=e \in R$. For example $e=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$ is an idempotent of R and $\alpha(e) \neq e$. Recall that a ring R is called abelian, if each idempotent of R is central.

Proposition 2.11. Let R be an abelian ring with $\alpha(e)=e$ for any $e=e^{2} \in R$. Then the following statements are equivalent:

1. R is nil α-Armendariz;
2. $e R$ and $(1-e) R$ are nil α-Armendariz for any $e=e^{2} \in R$;
3. $e R$ and $(1-e) R$ are nil α-Armendariz for some $e=e^{2} \in R$.

Proof. It is enough to show (3) \Rightarrow (1). Let $p=\sum_{i=0}^{m} a_{i} x^{i}$ and $q=$ $\sum_{j=0}^{n} b_{j} x^{j}$ in $R[x ; \alpha]$ with $p q \in \operatorname{nil}(R)[x]$. Then $(e p)(e q) \in \operatorname{nil}(e R)[x]$ and $((1-e) p)((1-e) q) \in \operatorname{nil}((1-e) R)[x]$ for some $e=e^{2} \in R$ by hypothesis. Since $e R$ and $(1-e) R$ are nil α-Armendariz, we have $e a_{i} b_{j} \in$ $\operatorname{nil}(e R)$ and $(1-e) a_{i} b_{j} \in \operatorname{nil}(1-e) R$, for all $0 \leqslant i \leqslant m$ and $0 \leqslant$
$j \leqslant n$. Let $k \geqslant 1$, such that $\left(e a_{i} b_{j}\right)^{k}=0=\left((1-e) a_{i} b_{j}\right)^{k}$. Then $\left(a_{i} b_{j}\right)^{k}=\left(\left(e a_{i} b_{j}\right)+(1-e) a_{i} b_{j}\right)^{k}=\left(e a_{i} b_{j}\right)^{k}+\left((1-e) a_{i} b_{j}\right)^{k}=0$, since $\left(e a_{i} b_{j}\right)\left((1-e) a_{i} b_{j}\right)=0=\left((1-e) a_{i} b_{j}\right)\left(e a_{i} b_{j}\right)$. Therefore R is nil α Armendariz.

Lemma 2.12. If R is a nil α-Armendariz ring and $\alpha^{t}=I_{R}$, for some $t \geqslant 1$, then $\operatorname{nil}(R[x ; \alpha]) \subseteq \operatorname{nil}(R)[x]$.

Proof. Suppose that $f(x) \in \operatorname{nil}(R[x ; \alpha])$ and $f(x)^{m}=0$ for some $m \geqslant 1$. By Lemma 2.3, we have $a_{1} \cdots a_{m} \in \operatorname{nil}(R)$ where $a_{i} \in \operatorname{coef}(f(x))$ for $i=1, \cdots, m$. In particular, for every $a \in \operatorname{coe} f(f(x)), a^{m}$ is nilpotent. Therefore $a \in \operatorname{nil}(R)$ for all $a_{i} \in \operatorname{coef}(f(x))$ and hence $f(x) \in$ $\operatorname{nil}(R)[x]$.

Proposition 2.13. Let R be a nil ring. Then R is nil α-Armendariz for each endomorphism α over R.

Proof. Since $\operatorname{nil}(R)=R$, hence $a \alpha(b) \in \operatorname{nil}(R)$, for each $a, b \in R$.
Smoktunowicz [18] proved that for each countable filed K there is a nil algebra R over K (generated by three elements), such that polynomial algebra $R[x]$ over R is not nil. In Lemma 2.13 we have seen the other inclusion for α-Armendariz rings which $\alpha^{t}=I_{R}$, hence we have proved:

Corollary 2.14. If R is an α-Armendariz ring and $\alpha^{t}=I_{R}$, for some $t \geqslant 1$, then $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$.

Corollary 2.15. [3, Corollary 5.2] If R is an Armendariz ring, then $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$.

Theorem 2.16. Let R be a nil α-Armendariz ring and $\alpha^{t}=I_{R}$, for some $t \geqslant 1$. Then $R[x ; \alpha]$ is nil-Armendariz if and only if nil $(R[x ; \alpha])=$ $\operatorname{nil}(R)[x]$.

Proof. If $R[x ; \alpha]$ is nil-Armendariz, by Theorem 2.5, we have that $\operatorname{nil}(R[x ; \alpha])$ is a subrng of $R[x ; \alpha]$. Let $a \in \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is an α-compatible subrng of R, we have that $a \alpha(a) \cdots \alpha^{t-1}(a) \in \operatorname{nil}(R)$. If $\left(a \alpha(a) \cdots \alpha^{t-1}(a)\right)^{s}=0$, then since $\alpha^{t}=I_{R}$, we have $(a x)^{s t}=$
$\left(a \alpha(a) \cdots \alpha^{t-1}(a)\right)^{s t} x^{s t}=0$. By a similar argument one can show that $a x^{r}$ is nilpotent for any $r \geqslant 2$. Hence $\operatorname{nil}(R)[x] \subseteq \operatorname{nil}(R[x ; \alpha])$. Now, since R is nil α-Armendariz, by Lemma 2.12, we have the other inclusion. Hence $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$.
Now suppose that $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$. Let $f(y), g(y) \in R[x ; \alpha][y]$ such that $f(y) g(y) \in \operatorname{nil}(R[x ; \alpha])[y]$. Also, let $f(y)=f_{0}(x)+f_{1}(x) y+\cdots+f_{m}(x) y^{m}$ where $f_{i}(x)=\sum_{k=0}^{s_{i}} f_{i_{k}} x^{k}$ and $g(y)=g_{0}(x)+g_{1}(x) y+\cdots+g_{n}(x) y^{n}$ where $g_{j}(x)=\sum_{\ell=0}^{t_{j}} g_{j_{\ell}} x^{\ell}$, and $M>\max \left\{\operatorname{deg}\left(f_{i}(x)\right), \operatorname{deg}\left(g_{j}(x)\right)\right\}$ for any $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$, where the degree is as polynomials in $R[x]$ and the degree of zero polynomial is taken to be 0 . Let $f\left(x^{t M}\right)=f_{0}(x)+f_{1}(x) x^{t M}+\cdots+$ $f_{m}(x) x^{t m M}$, and $g\left(x^{t M}\right)=g_{0}(x)+g_{1}(x) x^{t M}+\cdots+g_{n}(x) x^{t n M}$ in $R[x ; \alpha]$. Then the set of coefficients of $f_{i}(x)$'s (resp., $g_{j}(x)$'s) equals the set of coefficients of $f\left(x^{t M}\right)$ (resp., $g\left(x^{t M}\right)$). Since $f(y) g(y) \in \operatorname{nil}(R[x ; \alpha])[y], x^{t M}$ commutes with elements of R in $R[x ; \alpha]$, and $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$ is a subrng of $R[x ; \alpha]$, we have $f\left(x^{t M}\right) g\left(x^{t M}\right) \in \operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$. Since R is nil α-Armendariz, $f_{i_{k}} g_{j \ell} \in \operatorname{nil}(R)$ for all i, j, k, ℓ. Now since $\operatorname{nil}(R)$ is an α-compatible subrng of R, we have $f_{i}(x) g_{j}(x) \in \operatorname{nil}(R)[x]$. Finally, since $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x], f_{i}(x) g_{j}(x)$ is nilpotent.

Corollary 2.17. [3, Theorem 5.3]Let R be a nil-Armendariz ring. Then $R[x]$ is nil-Armendariz if and only if $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$.

Proof. It follows from Theorem 2.17, wheneve $\alpha=i d_{R}$. Recall that if α is an endomorphism of a ring R, then the map α can be extended to an endomorphism of the polynomial ring $R[x]$ defined by $\sum_{i=0}^{m} a_{i} x^{i} \mapsto$ $\sum_{i=0}^{m} \alpha\left(a_{i}\right) x^{i}$. We shall also denote the extended map $R[x] \rightarrow R[x]$ by α and the image of $f \in R[x]$ by $\alpha(f)$.

Theorem 2.18. Let α be an endomorphism of a ring R and $\alpha^{t}=$ I_{R} for some positive integer t. If R is a nil α-Armendariz ring and $\operatorname{nil}(R[x][y ; \alpha])=\operatorname{nil}(R[x])[y]$, then $R[x]$ is nil α-Armendariz.

Proof. Let $f(y), g(y) \in R[x][y ; \alpha]$ such that $f(y) g(y) \in \operatorname{nil}(R[x])[y]$. Let $f(y)=f_{0}(x)+f_{1}(x) y+\cdots+f_{m}(x) y^{m}$ where $f_{i}(x)=\sum_{k=0}^{s_{i}} f_{i_{k}} x^{k}$ and $g(y)=g_{0}(x)+g_{1}(x) y+\cdots+g_{n}(x) y^{n}$ where $g_{j}=\sum_{\ell=0}^{t_{j}} g_{j_{\ell}} x^{\ell}$. Then

$$
h_{0}(x)=f_{0}(x) g_{0}(x) \in \operatorname{nil}(R[x]),
$$

$$
\begin{aligned}
& h_{1}(x)=f_{0}(x) g_{1}(x)+f_{1}(x) \alpha\left(g_{0}(x)\right) \in \operatorname{nil}(R[x]), \\
& h_{2}(x)=f_{0}(x) g_{2}(x)+f_{1}(x) \alpha\left(g_{1}(x)\right)+f_{2}(x) \alpha^{2}\left(g_{0}(x)\right) \in \operatorname{nil}(R[x]), \\
& \vdots \\
& h_{m+n}(x)=f_{m}(x) \alpha^{m}\left(g_{n}(x)\right) \in \operatorname{nil}(R[x]) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& h_{0}\left(x^{t}\right)=f_{0}\left(x^{t}\right) g_{0}\left(x^{t}\right) \in \operatorname{nil}(R[x]), \\
& h_{1}\left(x^{t}\right)=f_{0}\left(x^{t}\right) g_{1}\left(x^{t}\right)+f_{1}\left(x^{t}\right) \alpha\left(g_{0}\left(x^{t}\right)\right) \in \operatorname{nil}(R[x]), \\
& h_{2}\left(x^{t}\right)=f_{0}\left(x^{t}\right) g_{2}\left(x^{t}\right)+f_{1}\left(x^{t}\right) \alpha\left(g_{1}\left(x^{t}\right)\right)+f_{2}\left(x^{t}\right) \alpha^{2}\left(g_{0}\left(x^{t}\right)\right) \in \operatorname{nil}(R[x]), \\
& \vdots \\
& h_{m+n}\left(x^{t}\right)=f_{m}\left(x^{t}\right) \alpha^{m}\left(g_{n}\left(x^{t}\right)\right) \in \operatorname{nil}(R[x]) .
\end{aligned}
$$

Thus

$$
\begin{gathered}
\left(f_{0}\left(x^{t}\right)+f_{1}\left(x^{t}\right) y+f_{2}\left(x^{t}\right) y^{2}+\cdots+f_{m}\left(x^{t}\right) y^{m}\right)\left(g_{0}\left(x^{t}\right)+g_{1}\left(x^{t}\right) y+\right. \\
\left.g_{2}\left(x^{t}\right) y^{2}+\cdots+g_{n}\left(x^{t}\right) y^{n}\right) \in \operatorname{nil}(R[x])[y] .
\end{gathered}
$$

Let $M>\max \left\{t s_{i}, t t_{j}\right\}_{i, j}, f\left(x^{M t+1}\right)=f_{0}\left(x^{t}\right)+f_{1}\left(x^{t}\right) x^{M t+1}+\cdots+$ $f_{m}\left(x^{t}\right) x^{(M t+1) m}$ and $g\left(x^{M t+1}\right)=g_{0}\left(x^{t}\right)+g_{1}\left(x^{t}\right) x^{M t+1}+\cdots+g_{n}\left(x^{t}\right) x^{(M t+1) n}$ in $R[x]$. Then the set of coefficients of the f_{i} 's (resp., g_{j} 's) equals the set of coefficients of $f\left(x^{M t+1}\right)$ (resp., $g\left(x^{M t+1}\right)$). Since $\alpha^{t}=I_{R}$, the set of coefficients of the h_{i} 's equals the set of coefficients of $f\left(x^{M t+1}\right) g\left(x^{M t+1}\right)$ in $R[x ; \alpha]$. Also, since $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x], f\left(x^{M t+1}\right) g\left(x^{M t+1}\right) \in$ $\operatorname{nil}(R)[x]$. Since R is nil α-Armendariz, $f_{i_{k}} g_{j_{\ell}} \in \operatorname{nil}(R)$. Now, since $\operatorname{nil}(R)$ is a subring of $R, \alpha^{t}=I_{R}$ and $\operatorname{nil}(R[x ; \alpha])=\operatorname{nil}(R)[x]$, we have that $f_{i}\left(x^{t}\right) g_{j}\left(x^{t}\right) \in \operatorname{nil}(R[x ; \alpha])$ and so $f_{i}\left(x^{t}\right) g_{j}\left(x^{t}\right)$ is nilpotent, for each i, j. Therefore in $R[x], f_{i}(x) g_{j}(x)$ is nilpotent, for each i, j.

References

[1] A. Amitsur, Algebras over infinite fileds, Proc. Amer. Math. Soc., 7 (1956), 35-48.
[2] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 7 (1998), 2265-2272.
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3128-3140.
[4] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
[5] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
[6] E. Hashemi, Compatible Ideals and Radicals of Ore Extensions, New Yourk J. Math., 12 (2006), 349-356.
[7] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107 (3) (2005), 207-224.
[8] E. Hashemi, On Weak McCoy Rings, J. Sci. Tarbiat Moallem University, 9 (2010), 49-58.
[9] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151:3 (2000), 215-226.
[10] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of Generalized Armendariz Rings, Algebra Colloquium, 13:2 (2006), 253-266.
[11] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloquium, $12: 3$ (2005), 399-412.
[12] N. H. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477-488.
[13] J. Krempa, Some examples of reduced rings, Algebra Colloquium, 3:4 (1996), 289-300.
[14] T. Y. Lam, A First Course in Noncommutative Rings, Berlin-HeidelbergNew York: Springer-Verlag, 1991.
[15] T. K. Lee and T. L. Wong, On Armendariz rings,Houston J. Math., 29 (2003), 583-593.
[16] Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra, 34 (2006), 2607-2616.
[17] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
[18] A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra, 233 (2000), 427-436.

Javad Esmaeili

Department of Mathematics
Instructor of Mathematics
Shahrood Branch, Islamic Azad University
Shahrood, Iran
E-mail: j_esmaili2002@yahoo.com

Ebrahim Hashemi

Department of Mathematics
Shahrood University of Technology
Associate Professor of Mathematics
P. O. Box 316-3619995161

Shahrood, Iran
E-mail: eb_hashemi@yahoo.com

[^0]: Received: December 2011; Accepted: July 2012

 * Corresponding author

