Journal of Mathematical Extension Vol. 6, No. 3, (2012), 1-15

On Nilpotent Elements of Skew Polynomial Rings

J. Esmaeili

Shahrood Branch, Islamic Azad University

E. Hashemi^{*}

Shahrood University of Technology

Abstract. We study the structure of the set of nilpotent elements in skew polynomial ring $R[x; \alpha]$, when R is an α -Armendariz ring. We prove that if R is a nil α -Armendariz ring and $\alpha^t = I_R$, then the set of nilpotent elements of R is an α -compatible subrug of R. Also, it is shown that if R is an α -Armendariz ring and $\alpha^t = I_R$, then R is nil α -Armendariz. We give some examples of non α -Armendariz rings which are nil α -Armendariz. Moreover, we show that if $\alpha^t = I_R$ for some positive integer t and R is a nil α -Armendariz ring and $nil(R[x][y; \alpha]) =$ nil(R[x])[y], then R[x] is nil α -Armendariz. Some results of [3] follow as consequences of our results.

AMS Subject Classification: 16S36; 16N60; 16P60 Keywords and Phrases: Armendariz rings, nil-armendariz rings, nilpotent elements, α -rigid rings

1. Introduction

Rege and Chhawchharia ([17]) called a ring R an Armendariz ring if whenever any polynomials $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for any i and j. The name of the ring was given due to Armendariz who proved [4] that reduced rings (i.e. rings without nonzero nilpotent elements) satisfy this condition. Armendariz rings are thus a generalization of reduced rings,

Received: December 2011; Accepted: July 2012

 $^{^{*}}$ Corresponding author

(see [4, Lemma 1]), and therefore, nilpotent elements play an important role in this class of rings (see [3]). Some properties of Armendariz rings have been studied in [1, 2, 3, 4, 10, 12, 13, 11, 16, 17]. For a ring R with a ring endomorphism $\alpha : R \to R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x; \alpha]$ of R is the ring obtained by giving the polynomial ring over R, the new multiplication $xr = \alpha(r)x$ for all $r \in R$ (see [14, Example 1.7]).

The Armendariz property of rings mentioned earlier was extended to skew polynomial rings in [10]: For an endomorphism α of a ring R, Ris called α -Armendariz ring if for $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$ in $R[x; \alpha]$, f(x)g(x) = 0 implies $a_ib_j = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

Recall that an endomorphism α of a ring R is called *rigid* (see [11, 13]) if $a\alpha(a) = 0$ implies a = 0 for $a \in R$. A ring R is called α -rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and α -rigid rings are reduced by [9, Proposition 5], and according to [7], an endomorphism α of a ring R is called *compatible* whenever $ab = 0 \Leftrightarrow a\alpha(b) = 0$, for each $a, b \in R$. Note that R is α -rigid if and only if R is α -compatible and reduced, by [7]. If R is an α -rigid ring, then for $p = a_0 + a_1x + \cdots + a_mx^m$ and $q = b_0 + b_1x + \cdots + b_nx^n$ in $R[x; \alpha], pq = 0$ if and only if $a_ib_j = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$ ([9, Proposition 6]). Hence α -rigid rings are α -Armendariz by [7, Lemma 2.2].

Now, we establish our general notations. All rings considered here are associative and unitary and *subrng* will denote a subring without unit. If R is a ring, nil(R) denotes the set of nilpotent elements in R, R[x] denotes the polynomial ring over R, and if $f(x) \in R[x]$, coef(f(x)) denotes the subset of R of the coefficients of f(x). Also, if I is a subset of R, I[x] denotes the set of all polynomials whose coefficients belong to I.

According to Antoine ([3]), a ring R is called to be *nil-Armendariz* if whenever two polynomials $f(x), g(x) \in R[x]$ satisfy $f(x)g(x) \in nil(R)[x]$ then $ab \in nil(R)$ for all $a \in coef(f(x))$ and $b \in coef(g(x))$. Then he studied the conditions under which the polynomial ring over a nil-Armendariz ring is also nil-Armendariz. That conditions are strongly connected to the question of Amitsur of whether or not a polynomial ring over a nil ring is nil.

Motivated by Antoine [3] and Hong, Kwak and Rizvi [10], we introduce the notion of a nil α -Armendariz ring for an endomorphism α of a ring R as follows:

Definition 1.1. Let α be an endomorphism of a ring R. R is called nil α -Armendariz, if whenever two polynomials $f(x), g(x) \in R[x; \alpha]$ satisfy $f(x)g(x) \in nil(R)[x]$, then $ab \in nil(R)$ for all $a \in coef(f(x))$ and $b \in coef(g(x))$. Let α be an endomorphism of a ring R and X a nonempty subset of R. We say X is an α -compatible subset of R, whenever $ab \in X \Leftrightarrow a\alpha(b) \in X$. Clearly, R is an α -compatible ring if and only if $\{0\}$ is an α -compatible subset of R.

Example 1.2. Let *D* be an integral domain and consider the trivial extension of *D* given by: $R = \left\{ \begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \mid a, d \in D \right\}$. Clearly, *R* is a commutative ring. Let $\alpha : R \to R$ be an automorphism defined by $\alpha \left(\begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & ud \\ 0 & a \end{pmatrix}$, where *u* is a fix unit element of *D*. Then:

- 1. R is α -compatible.
- 2. R is not α -rigid.
- 3. nil(R) is an α -compatible ideal of R.
- 4. R is a nil α -Armendariz ring.

(1) Suppose that $\begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \begin{pmatrix} b & d_1 \\ 0 & b \end{pmatrix} = 0$, hence $ab = 0 = ad_1 + db$. So a = 0 or b = 0. In each case, $aud_1 + db = 0$, hence $\begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \alpha \left(\begin{pmatrix} b & d_1 \\ 0 & b \end{pmatrix} \right) = 0$. If $\begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \alpha \left(\begin{pmatrix} b & d_1 \\ 0 & b \end{pmatrix} \right) = 0$, then by a similar argument we have $\begin{pmatrix} a & d \\ 0 & a \end{pmatrix} \begin{pmatrix} b & d_1 \\ 0 & b \end{pmatrix} = 0$. Therefore R is α -compatible. (2) If $d \neq 0$, then $\begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \alpha \left(\begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \right) = 0$, but $\begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \neq 0$. Thus R is not α -rigid. (3) Since $nil(R) = \left\{ \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \mid d \in D \right\}$, hence nil(R) is an α -compatible ideal of R.

(4) Suppose that $f(x) = \sum_{i=0}^{m} A_i x^i$ and $g(x) = \sum_{j=0}^{n} B_j x^j \in R[x; \alpha]$, where $A_i = \begin{pmatrix} a_i & c_i \\ 0 & a_i \end{pmatrix}$ and $B_j = \begin{pmatrix} b_j & d_j \\ 0 & b_j \end{pmatrix}$ for each $0 \leq i \leq m$ and $0 \leq j \leq n$. Assume that $f(x)g(x) \in nil(R)[x]$. Then we have:

$$\sum_{k=0}^{m+n} (\sum_{i+j=k} A_i \alpha^i(B_j)) x^k \in nil(R)[x])$$

We claim that $A_i \alpha^i(B_j) \in nil(R)$ for all i, j.

(i) Suppose that there is $A_k = \begin{pmatrix} a_k & c_k \\ 0 & a_k \end{pmatrix}$ with $a_k \neq 0$ and $A_0 = \cdots = A_{k-1} = 0$ where $0 \leq k$. From Eq.(†), $A_0B_k + A_1\alpha(B_{k-1}) + \cdots + A_{k-1}\alpha^{k-1}(B_1) + A_k\alpha^k(B_0) \in nil(R)$, so $A_k\alpha^k(B_0) \in nil(R)$. That is

$$\begin{pmatrix} a_k & c_k \\ 0 & a_k \end{pmatrix} \begin{pmatrix} b_0 & u^k d_0 \\ 0 & b_0 \end{pmatrix}$$
$$= \begin{pmatrix} a_k b_0 & a_k u^k d_0 + c_k b_0 \\ 0 & a_k b_0 \end{pmatrix} \in nil(R). \text{ Thus } a_k b_0 = 0 \text{ and so } b_0 = 0,$$

since D is a domain. Then $B_0 \in nil(R)$, which implies that $A_i \alpha^i(B_0) \in nil(R)$, for each $0 \leq i \leq m$, since nil(R) is an α -compatible ideal of R. Since $A_0B_{k+1} + A_1\alpha(B_k) + \cdots + A_k\alpha^k(B_1) + A_{k+1}\alpha^{k+1}(B_0) \in nil(R)$, we have $A_k\alpha^k(B_1) \in nil(R)$ and so $b_1 = 0$, by a similar argument as above. Then $B_1 \in nil(R)$, which implies that $A_i\alpha^i(B_1) \in nil(R)$, for each $0 \leq i \leq m$, since nil(R) is an α -compatible ideal of R. Continuing this process, we obtain $B_j \in nil(R)$ for all $0 \leq j \leq n$, which implies that $A_i\alpha^i(B_j) \in nil(R)$ for all i, j.

(ii) Suppose that there is $B_k = \begin{pmatrix} b_k & d_k \\ 0 & b_k \end{pmatrix}$ with $b_k \neq 0$ and $B_0 = \cdots = B_{k-1} = 0$, where $0 \leq k$. By a similar way as used in (i), we can show that $A_i \in nil(R)$ for each $0 \leq i \leq m$, which implies that $A_i \alpha^i(B_j) \in nil(R)$ for all i, j, since nil(R) is an ideal of R.

(iii) Suppose that
$$A_i = \begin{pmatrix} 0 & c_i \\ 0 & 0 \end{pmatrix}$$
, $B_j = \begin{pmatrix} 0 & d_j \\ 0 & 0 \end{pmatrix}$ for all i, j .

Then

 $A_{i}\alpha^{i}(B_{j}) = \begin{pmatrix} 0 & c_{i} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & u^{i}d_{j} \\ 0 & 0 \end{pmatrix} = 0 \in nil(R) \text{ for all } i, j. \text{ Therefore}$ R is a nil α -Armendariz ring, by (i), (ii) and (iii).

In this paper, we prove that if R is a nil α -Armendariz ring and $\alpha^t = I_R$, then the set of nilpotent elements of R is an α -compatible subrug of R. Also, it is shown that if R is an α -Armendariz ring and $\alpha^t = I_R$, then R is nil α -Armendariz. Some examples of nil α -Armendariz rings which are'nt α -Armendariz are given. Moreover, we show that if $\alpha^t = I_R$ for some positive integer t and R is a nil α -Armendariz ring and $nil(R[x][y; \alpha]) = nil(R[x])[y]$, then R[x] is nil α -Armendariz. Some results of ([3]) follow as consequences of our results.

2. Polynomial Rings Over Nil α -Armendariz Rings

Recall that an ideal I of a ring R is called an α -*ideal* if $\alpha(I) \subseteq I$ (see [14, Page 47]). Clearly, if I is an α -ideal of R, then $\overline{\alpha} : R/I \to R/I$ defined by $\overline{\alpha}(a+I) = \alpha(a) + I$ for $a \in R$ is an endomorphism of the factor ring R/I. Note that each α -compatible ideal is α -ideal, by [6, Proposition 2.1].

Note that the set of nilpotent elements of a ring is not ideal in general, (see [18, 3]). According to ([5]), a ring R is called *semi-commutative* if ab = 0 implies aRb = 0. If R is a semi-commutative ring, then nil(R) is an ideal of R, by ([8, Lemma 2.10]). Also, Example 1.2, shows that there exists a ring R and an endomorphism α on R such that nil(R) is an α -compatible ideal of R.

Proposition 2.1. Let R be a ring such that nil(R) is an α -compatible ideal of R. If $f(x), g(x) \in R[x; \alpha]$ satisfy $f(x)g(x) \in nil(R)[x]$, then $ab \in nil(R)$ for all $a \in coef(f(x))$ and $b \in coef(g(x))$.

Proof. Observe that R/nil(R) is reduced. Then, since nil(R) is an α compatible ideal of R, hence R/nil(R) is an $\overline{\alpha}$ -rigid ring, by [6]. Suppose
that $f(x)g(x) \in nil(R)[x]$. If we denote by $\overline{f}(x), \overline{g}(x)$ the corresponding
polynomials in $R/nil(R)[x;\overline{\alpha}]$, then $\overline{f}(x)\overline{g}(x) = \overline{0}$. Since R/nil(R) is

 $\overline{\alpha}$ -rigid, $\overline{ab} = \overline{0}$ for all $\overline{a} \in coef(\overline{f}(x))$ and $\overline{b} \in coef(\overline{g}(x))$, by [9]. Hence ab is nilpotent for all $a \in coef(f(x))$ and $b \in coef(g(x))$.

Observe that if nil(R) is an α -compatible ideal of R, then by Proposition 2.1, R is nil α -Armendariz. More generally we obtain the following. \Box

Proposition 2.2. Let α be an endomorphism of a ring R and I an α -compatible nil ideal of R. Then R is nil α -Armendariz if and only if R/I is nil $\overline{\alpha}$ -Armendariz.

Proof. We denote $\overline{R} = R/I$. Since I is nil, then $nil(\overline{R}) = nil(R)$. Hence $f(x)g(x) \in nil(x)[x]$ if and only if $\overline{f}(x)\overline{g}(x) \in nil(\overline{R})[x]$, where $\overline{f}(x), \overline{g}(x) \in R/I[x;\overline{\alpha}]$. And, if $a \in coef(f(x) \text{ and } b \in coef(g(x))$, then $ab \in nil(R)$ if and only if $\overline{ab} \in nil(\overline{R})$. Therefore R is nil α -Armendariz if and only if \overline{R} is nil $\overline{\alpha}$ -Armendariz. \Box

Lemma 2.3. Let R be a nil α -Armendariz ring and $n \ge 2$. If $f_1(x), f_2(x), \dots, f_n(x) \in R[x; \alpha]$ such that $f_1(x)f_2(x)\cdots f_n(x) \in nil(R)[x]$, then if $a_k \in coef(f_k(x))$ for $k = 1, \dots, n$, we have $a_1a_2\cdots a_n \in nil(R)$.

Proof. We use induction on n. The case n = 2 is clear by definition of nil α -Armendariz ring. Suppose that n > 2. Consider $h(x) = f_2(x) \cdots f_n(x)$. Then $f_1(x)h(x) \in nil(R)[x]$ and hence, since R is nil α -Armendariz, $a_1a_h \in nil(R)$ where $a_h \in coef(h(x))$ and $a_1 \in coef(f_1(x))$. Therefore, for all $a_1 \in coef(f_1(x)), (a_1f_2(x))(f_3(x)\cdots f_n(x)) = a_1h(x) \in nil(R)[x]$, and by induction, since the coefficients of $a_1f_2(x)$ are a_1a_2 where a_2 is a coefficient of $f_2(x)$, we obtain

 $a_1a_2\cdots a_{n-1}a_n \in nil(R)$ for $a_k \in coef(f_k(x)), k = 1, \cdots, n$. \Box

Proposition 2.4. Let R be a nil α -Armendariz ring. For $a, b \in R$, we have the following:

- 1. If $ab \in nil(R)$, then $\alpha^n(a)b$, $a\alpha^n(b)$ are nilpotent for any positive integer n.
- 2. If $\alpha^n(a)b \in nil(R)$ or $a\alpha^n(b) \in nil(R)$ for some positive integer n, then $ab \in nil(R)$.
- 3. nil(R) is an α -compatible subset of R.

Proof.

(1) Suppose that $ab \in nil(R)$. It is enough to show that $\alpha(a)b \in nil(R)$. Let $p = \alpha(a)x$ and q = bx in $R[x; \alpha]$. Then $pq = \alpha(a)\alpha(b)x^2 = \alpha(ab)x^2 \in nil(R)[x]$. Since R is nil α -Armendariz, $\alpha(a)b \in nil(R)$. Since $ab \in nil(R)$, we have $ba \in nil(R)$. By a similar argument one can show that $\alpha(b)a \in nil(R)$, and hence $a\alpha(b) \in nil(R)$.

(2) Suppose that $a\alpha^n(b) \in nil(R)$, for some positive integer n. Let $p = ax^n$ and q = bx in $R[x; \alpha]$. Then $pq = a\alpha^n(b)x^{n+1} \in nil(R)[x]$ and thus $ab \in nil(R)$, since R is nil α -Armendariz.

(3) It follows from (1) and (2). \Box

Theorem 2.5. Let R be a nil α -Armendariz ring and $\alpha^t = I_R$, for some $t \ge 1$. Then we have the following:

- 1. nil(R) is an α -compatible subrag of R.
- 2. R is an α -compatible ring.

Proof.

(1) The idea of the proof comes from the proof of [3, Theorem 12].

(a) Suppose that a, b are nilpotent and $b^m = 0$. Then, since $\alpha^t = I_R$,

$$(a - abx^{t})(1 + bx^{t} + b^{2}x^{2t} + \dots + b^{m-1}x^{t(m-1)}) = a \in nil(R)[x].$$

Since R is nil α -Armendariz, $ab \in nil(R)$.

(b) Suppose a, b, c are nilpotent and $a^n = b^m = 0$. Then

 $(1+ax^t+\dots+a^{(n-1)}x^{(n-1)t})(1-ax^t)(1-bx^t)(1+bx^t+\dots+b^{(m-1)}x^{(m-1)t})c = c \in nil(R)[x]$. Hence $(1+ax^t+\dots+a^{(n-1)}x^{(n-1)t})(1-(a+b)x^t+abx^{2t})(1+bx^t+\dots+b^{(m-1)}x^{(m-1)t})c = c \in nil(R)[x]$. Now, since R is nil α -Armendariz, by Lemma 2.3, we can choose the appropriate coefficients from each polynomial to obtain $(a+b)c \in nil(R)$. Similarly we see that $c(a+b) \in nil(R)$.

(c) Suppose a, b, c are nilpotent. Then bc and b(a+bc) are nilpotent. Hence $(1-bx^t)(c+(a+bc)x^t) = c + ax^t - b(a+bc)x^{2t} \in nil(R)[x]$. Now, since R is nil α -Armendariz, 1.(a+bc) = a + bc is nilpotent.

(d) Suppose that a, b are nilpotent. Now by applying (c) several times we can see that, since a^2 , a and -b are nilpotent, $a^2 - ab$ is nilpotent;

hence $a^2 - ab - ba$ is nilpotent; hence $a^2 - ab - ba + b^2$ is nilpotent. Therefore $(a - b)^2$ is nilpotent, which means that a - b is nilpotent. By using (a), (b), (c) and (d) we have nil(R) is a subrug of R. (2) Suppose ab = 0. Let $f(x) = \alpha(a)x$ and g(x) = bx in $R[x; \alpha]$. Then $f(x)g(x) = \alpha(a)\alpha(b)x^2 = \alpha(ab)x^2 = 0$. Since R is α -Armendariz, $\alpha(a)b = 0$. By using induction on m one can show that $\alpha^m(a)b = 0$. Now, since ab = 0, we have $\alpha(a)b = 0$, and hence $a\alpha^{t-1}(b) = \alpha^t(a)\alpha^{t-1}(b) = \alpha^{t-1}(\alpha(a)b) = 0$. Then $\alpha^{t-2}(a)\alpha^{t-1}(b) = 0$, and so $a\alpha(b) = 0$, since α is monomorphism.

Suppose $a\alpha(b) = 0$. Then $\alpha(a)\alpha(b) = 0$, by the previous paragraph. Hence ab = 0, since α is monomorphism. Therefore R is α -compatible. \Box

Lemma 2.6. Let R be an α -Armendariz ring and $\alpha^t = I_R$ for some $t \ge 1$. Then $nil(R)[x] \subseteq nil(R[x; \alpha])$.

Proof. Suppose that R is an α -Armendariz ring. Let $f = a_0 + a_1 x + \dots + a_n x^n \in nil(R)[x]$ and k > 1 such that $a_i^k = 0$ for all $i = 0, 1, \dots, n$. We show that $f(x)^{(n+1)k} = 0$. The coefficients of $f(x)^{(n+1)k}$ can be written as sums of monomials of length (n+1)k in $\alpha^j(a_i)$'s, where $j \ge 0$ and $i = 0, 1, \dots, n$. Consider one of these monomials $\alpha^{j_1}(a_{j_1})\alpha^{j_2}(a_{j_2})\dots\alpha^{j_{(n+1)k}}(a_{i_{(n+1)k}})$ where $0 \le i_s \le n$ and $j_s \ge 0$. Clearly there exists $\alpha^{j_{s_1}}(a_{i_{s_1}}), \dots, \alpha^{j_{s_k}}(a_{i_{s_k}})$ where $0 \le i_s \le n$ and $j_s \ge 0$. Clearly there exists $\alpha^{j_{s_1}}(a_{j_0})\alpha^{j_{s_2}}(a_{j_0})\dots\alpha^{j_{s_k}}(a_{j_0}) = 0$, by $0 \le s_1 \le s_2 \le \dots \le s_k$ such that $a_{i_{s_1}} = a_{i_{s_2}} = \dots = a_{i_{s_k}} = a_{j_0}$ for some $0 \le j_0 \le n$. Since $(a_{j_0})^k = 0$, hence $\alpha^{j_{s_1}}(a_{j_0})\alpha^{j_{s_2}}(a_{j_0})\dots\alpha^{j_{s_k}}(a_{j_0}) = 0$, by Theorem 2.5. For $i_{r_m} \ne i_s$, let $f'_{i_{r_m}} = 1 - a_{i_{r_m}}x^t$ and $f''_{i_{r_m}} = 1 + a_{i_{r_m}}x^t + \dots + a_{i_{r_m}}^{k-1}x^{t(k-1)}$. Since $\alpha^t = I_R$, we have $f'_{i_{r_m}} f''_{i_{r_m}} = 1$ and observe that $a_{i_{r_m}}$ is a product of coefficients of $f'_{i_{r_m}}$ and $f''_{i_{r_m}}$. Now we can write the monomial as $\alpha^{j_1}(a_{i_1})\dots\alpha^{j_{s_{1-1}}}(a_{i_{s_{2+1}}})\dots\alpha^{j_{s_{1+1}}}(a_{i_{s_{1+1}}})\dots$ $\alpha^{j_{s_{2}-1}}(a_{i_{s_{2}-1}})\alpha^{j_{s_{2}}}(a_{j_{0}})\alpha^{j_{s_{2}+1}}(a_{i_{s_{2}+1}})\dots\alpha^{j_{(n+1)k}}(a_{i_{(n+1)k}})$. By replacing each $\alpha^{j_{r_m}}(a_{i_{r_m}})$ by the product $f'_{i_{r_m}}(x)f''_{i_{r_m}}(x)$, and since $\alpha^{j_{s_{1}-1}}(x)f''_{i_{s_{1}-1}}(x)f''_{i_{s_{1}-1}}(x)\alpha^{j_{s_{1}}}(a_{j_{0}})f'_{i_{s_{1}+1}}(x)f''_{i_{s_{1}+1}}(x) \dots$ $f'_{i_{s_{k}-1}}(x)f''_{i_{s_{k}-1}}(x)\alpha^{j_{s_{k}}}(a_{j_{0}})f'_{i_{s_{k}+1}}(x)\cdots f'_{i_{(n+1)k}}(x)f''_{i_{(n+1)k}}(x) = 0$. Now, since R is α -Armendariz, by Lemma 2.3, we can choose a coefficient from each of the polynomials in the last equality and the product will be 0. Hence $\begin{array}{l} a_{i_{1}}a_{i_{2}}\cdots a_{i_{s_{1}-1}}\alpha^{j_{s_{1}}}(a_{j_{0}})a_{i_{s_{1}+1}}\cdots a_{i_{s_{k}-1}}\alpha^{j_{s_{k}}}(a_{j_{0}})a_{i_{s_{k}+1}}\cdots a_{i_{(n+1)k}}=0. \text{ Thus }\\ \alpha^{j_{1}}(a_{i_{1}})\alpha^{j_{2}}(a_{i_{2}})\cdots \alpha^{j_{s_{1}-1}}(a_{i_{s_{1}-1}})\alpha^{j_{s_{1}}}(a_{s_{1}})\alpha^{j_{s_{1}+1}}(a_{i_{s_{1}+1}})\cdots \\ \alpha^{j_{s_{k}-1}}(a_{i_{s_{k}-1}})\alpha^{j_{s_{k}}}(a_{s_{k}})\alpha^{j_{s_{k}+1}}(a_{i_{s_{k}+1}})\cdots \alpha^{j_{(n+1)k}}(a_{i_{(n+1)k}})=0, \text{ since } R \text{ is }\\ \alpha\text{-compatible and } a_{i_{s_{1}}}=a_{i_{s_{2}}}=\cdots=a_{i_{s_{k}}}=a_{j_{0}}. \text{ Therefore, we have }\\ \text{proved that all the monomials appearing in the coefficients of } f(x)^{(n+1)k} \\ \text{are } 0. \text{ Hence } f(x) \in nil(R[x;\alpha]). \quad \Box \end{array}$

Proposition 2.7. If R is an α -Armendariz ring and $\alpha^t = I_R$ for some $t \ge 1$, then R is nil α -Armendariz.

Proof. Suppose that $f(x), g(x) \in R[x; \alpha]$ such that $f(x)g(x) \in nil(R)[x]$. By Lemma 2.6, f(x)g(x) is nilpotent and there exists $k \ge 1$ such that $(f(x)g(x))^k = 0$. Hence, since R is α -Armendariz, for all $a \in coef(f(x)$ and $b \in coef(g(x))$, by choosing the corresponding coefficient in each polynomial, we have $abab \cdots ab = 0$ and thus $ab \in nil(R)$. Therefore R is nil α -Armendariz. \Box

Corollary 2.8. [3, Proposition 2.7] If R is an Armendariz ring, then R is nil-Armendariz.

Proof. It follows from Proposition 2.7, whenever $\alpha = id_R$.

The following examples show that there exists a ring R with an automorphism α such that R is nil α -Armendariz but not α -Armendariz. \Box

Example 2.9. Let $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, where F is a filed and an endomorphism of R defined by $\alpha(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}) = \begin{bmatrix} a & -b \\ 0 & c \end{bmatrix}$. By [10, Example 1.12] R is not α -armendariz. We claim that R is nil α -Armendariz. Clearly $nil(R) = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ is an ideal of R. Now we show that nil(R) is α -compatible. Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ and $B = \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} \in R$ such that $AB \in nil(R)$. Then aa' = 0 = cc', since F is a filed. Hence a' = c' = 0 or a = c' = 0 or a = c = 0 or a' = c = 0. Let a' = c = 0. Then $A\alpha(B) = \begin{bmatrix} 0 & -ab' + bc' \\ 0 & 0 \end{bmatrix} \in nil(R)$. In each other cases, by a similar

argument one can show that $A\alpha(B) \in nil(R)$.

Now assume that $A\alpha(B) \in nil(R)$. Then by a similar argument as above one can show that $AB \in nil(R)$. Thus nil(R) is an α -compatible ideal of R, and hence by Proposition 2.1, R is nil α -Armendariz.

Example 2.10. Let \mathbb{Z} be the set of all integers. Consider the ring $R = \left\{ \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} | a - b \equiv c \equiv 0 \mod(2) \text{ and } a, b, c \in \mathbb{Z} \right\}$. Let $\alpha : R \to R$ be an endomorphism defined by $\alpha \begin{pmatrix} \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & -c \\ 0 & b \end{bmatrix}$. Then R is not α -Armendariz. For, $p = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} x$ and $q = \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} x \in R[x; \alpha]$, we have pq = 0, but $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \neq 0$. Since $nil(R) = \left\{ \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix} | c \in 2\mathbb{Z} \right\}$ is an α -compatible ideal of R, hence by Proposition 2.1, R is nil α -Armendariz.

Example 2.11. shows that there exists a nil α -Armendariz ring R such that $\alpha(e) \neq e$ for some $e^2 = e \in R$. For example $e = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ is an idempotent of R and $\alpha(e) \neq e$. Recall that a ring R is called *abelian*, if each idempotent of R is central.

Proposition 2.11. Let R be an abelian ring with $\alpha(e) = e$ for any $e = e^2 \in R$. Then the following statements are equivalent:

- 1. R is nil α -Armendariz;
- 2. eR and (1-e)R are nil α -Armendariz for any $e = e^2 \in R$;
- 3. eR and (1-e)R are nil α -Armendariz for some $e = e^2 \in R$.

Proof. It is enough to show $(3) \Rightarrow (1)$. Let $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha]$ with $pq \in nil(R)[x]$. Then $(ep)(eq) \in nil(eR)[x]$ and $((1-e)p)((1-e)q) \in nil((1-e)R)[x]$ for some $e = e^2 \in R$ by hypothesis. Since eR and (1-e)R are nil α -Armendariz, we have $ea_ib_j \in nil(eR)$ and $(1-e)a_ib_j \in nil(1-e)R$, for all $0 \leq i \leq m$ and $0 \leq i \leq m$.

 $j \leq n$. Let $k \geq 1$, such that $(ea_ib_j)^k = 0 = ((1-e)a_ib_j)^k$. Then $(a_ib_j)^k = ((ea_ib_j) + (1-e)a_ib_j)^k = (ea_ib_j)^k + ((1-e)a_ib_j)^k = 0$, since $(ea_ib_j)((1-e)a_ib_j) = 0 = ((1-e)a_ib_j)(ea_ib_j)$. Therefore R is nil α -Armendariz. \Box

Lemma 2.12. If R is a nil α -Armendariz ring and $\alpha^t = I_R$, for some $t \ge 1$, then $nil(R[x; \alpha]) \subseteq nil(R)[x]$.

Proof. Suppose that $f(x) \in nil(R[x; \alpha])$ and $f(x)^m = 0$ for some $m \ge 1$. By Lemma 2.3, we have $a_1 \cdots a_m \in nil(R)$ where $a_i \in coef(f(x))$ for $i = 1, \cdots, m$. In particular, for every $a \in coef(f(x))$, a^m is nilpotent. Therefore $a \in nil(R)$ for all $a_i \in coef(f(x))$ and hence $f(x) \in nil(R)[x]$. \Box

Proposition 2.13. Let R be a nil ring. Then R is nil α -Armendariz for each endomorphism α over R.

Proof. Since nil(R) = R, hence $a\alpha(b) \in nil(R)$, for each $a, b \in R$. Smoktunowicz [18] proved that for each countable filed K there is a nil algebra R over K (generated by three elements), such that polynomial algebra R[x] over R is not nil. In Lemma 2.13 we have seen the other inclusion for α -Armendariz rings which $\alpha^t = I_R$, hence we have proved: \Box

Corollary 2.14. If R is an α -Armendariz ring and $\alpha^t = I_R$, for some $t \ge 1$, then $nil(R[x; \alpha]) = nil(R)[x]$.

Corollary 2.15. [3, Corollary 5.2] If R is an Armendariz ring, then nil(R[x]) = nil(R)[x].

Theorem 2.16. Let R be a nil α -Armendariz ring and $\alpha^t = I_R$, for some $t \ge 1$. Then $R[x; \alpha]$ is nil-Armendariz if and only if $nil(R[x; \alpha]) = nil(R)[x]$.

Proof. If $R[x; \alpha]$ is nil-Armendariz, by Theorem 2.5, we have that $nil(R[x; \alpha])$ is a subrag of $R[x; \alpha]$. Let $a \in nil(R)$. Since nil(R) is an α -compatible subrag of R, we have that $a\alpha(a) \cdots \alpha^{t-1}(a) \in nil(R)$. If $(a\alpha(a) \cdots \alpha^{t-1}(a))^s = 0$, then since $\alpha^t = I_R$, we have $(ax)^{st} =$

 $(a\alpha(a)\cdots\alpha^{t-1}(a))^{st}x^{st}=0$. By a similar argument one can show that ax^r is nilpotent for any $r \ge 2$. Hence $nil(R)[x] \subseteq nil(R[x;\alpha])$. Now, since R is nil α -Armendariz, by Lemma 2.12, we have the other inclusion. Hence $nil(R[x;\alpha]) = nil(R)[x]$.

Now suppose that $nil(R[x;\alpha]) = nil(R)[x]$. Let $f(y), g(y) \in R[x;\alpha][y]$ such that $f(y)g(y) \in nil(R[x;\alpha])[y]$. Also, let $f(y) = f_0(x) + f_1(x)y + \dots + f_m(x)y^m$ where $f_i(x) = \sum_{k=0}^{s_i} f_{i_k} x^k$ and $g(y) = g_0(x) + g_1(x)y + \dots + g_n(x)y^n$ where $g_j(x) = \sum_{\ell=0}^{t_j} g_{j_\ell} x^\ell$, and $M > max\{deg(f_i(x)), deg(g_j(x))\}$ for any $0 \leq i \leq m$ and $0 \leq j \leq n$, where the degree is as polynomials in R[x] and the degree of zero polynomial is taken to be 0. Let $f(x^{tM}) = f_0(x) + f_1(x)x^{tM} + \dots + f_m(x)x^{tmM}$, and $g(x^{tM}) = g_0(x) + g_1(x)x^{tM} + \dots + g_n(x)x^{tnM}$ in $R[x;\alpha]$. Then the set of coefficients of $f_i(x)$'s (resp., $g_j(x)$'s) equals the set of coefficients of $f(x^{tM})$ (resp., $g(x^{tM})$). Since $f(y)g(y) \in nil(R[x;\alpha])[y], x^{tM}$ commutes with elements of R in $R[x;\alpha]$, and $nil(R[x;\alpha]) = nil(R)[x]$ is a subrup of $R[x;\alpha]$, we have $f(x^{tM})g(x^{tM}) \in nil(R[x;\alpha]) = nil(R)[x]$. Since nil(R) is an α -compatible subrup of R, we have $f_i(x)g_j(x) \in nil(R)[x]$. Finally, since $nil(R[x;\alpha]) = nil(R)[x], f_i(x)g_j(x)$ is nilpotent. \Box

Corollary 2.17. [3, Theorem 5.3] Let R be a nil-Armendariz ring. Then R[x] is nil-Armendariz if and only if nil(R[x]) = nil(R)[x].

Proof. It follows from Theorem 2.17, wheneve $\alpha = id_R$. Recall that if α is an endomorphism of a ring R, then the map α can be extended to an endomorphism of the polynomial ring R[x] defined by $\sum_{i=0}^{m} a_i x^i \mapsto \sum_{i=0}^{m} \alpha(a_i) x^i$. We shall also denote the extended map $R[x] \to R[x]$ by α and the image of $f \in R[x]$ by $\alpha(f)$. \Box

Theorem 2.18. Let α be an endomorphism of a ring R and $\alpha^t = I_R$ for some positive integer t. If R is a nil α -Armendariz ring and $nil(R[x][y;\alpha]) = nil(R[x])[y]$, then R[x] is nil α -Armendariz.

Proof. Let $f(y), g(y) \in R[x][y; \alpha]$ such that $f(y)g(y) \in nil(R[x])[y]$. Let $f(y) = f_0(x) + f_1(x)y + \dots + f_m(x)y^m$ where $f_i(x) = \sum_{k=0}^{s_i} f_{i_k}x^k$ and $g(y) = g_0(x) + g_1(x)y + \dots + g_n(x)y^n$ where $g_j = \sum_{\ell=0}^{t_j} g_{j_\ell}x^\ell$. Then $h_0(x) = f_0(x)g_0(x) \in nil(R[x]),$
$$\begin{split} h_1(x) &= f_0(x)g_1(x) + f_1(x)\alpha(g_0(x)) \in nil(R[x]), \\ h_2(x) &= f_0(x)g_2(x) + f_1(x)\alpha(g_1(x)) + f_2(x)\alpha^2(g_0(x)) \in nil(R[x]), \end{split}$$

:

 $\begin{aligned} h_{m+n}(x) &= f_m(x)\alpha^m(g_n(x)) \in nil(R[x]).\\ \text{Hence} \\ h_0(x^t) &= f_0(x^t)g_0(x^t) \in nil(R[x]),\\ h_1(x^t) &= f_0(x^t)g_1(x^t) + f_1(x^t)\alpha(g_0(x^t)) \in nil(R[x]),\\ h_2(x^t) &= f_0(x^t)g_2(x^t) + f_1(x^t)\alpha(g_1(x^t)) + f_2(x^t)\alpha^2(g_0(x^t)) \in nil(R[x]), \end{aligned}$

÷

$$h_{m+n}(x^t) = f_m(x^t)\alpha^m(g_n(x^t)) \in nil(R[x]).$$

Thus

 $(f_0(x^t) + f_1(x^t)y + f_2(x^t)y^2 + \dots + f_m(x^t)y^m)(g_0(x^t) + g_1(x^t)y + g_2(x^t)y^2 + \dots + g_n(x^t)y^n) \in nil(R[x])[y].$

Let $M > max\{ts_i, tt_j\}_{i,j}, f(x^{Mt+1}) = f_0(x^t) + f_1(x^t)x^{Mt+1} + \cdots + f_m(x^t)x^{(Mt+1)m}$ and $g(x^{Mt+1}) = g_0(x^t) + g_1(x^t)x^{Mt+1} + \cdots + g_n(x^t)x^{(Mt+1)n}$ in R[x]. Then the set of coefficients of the f_i 's (resp., g_j 's) equals the set of coefficients of $f(x^{Mt+1})$ (resp., $g(x^{Mt+1})$). Since $\alpha^t = I_R$, the set of coefficients of the h_i 's equals the set of coefficients of $f(x^{Mt+1})g(x^{Mt+1})$ in $R[x;\alpha]$. Also, since $nil(R[x;\alpha]) = nil(R)[x], f(x^{Mt+1})g(x^{Mt+1}) \in nil(R)[x]$. Since R is nil α -Armendariz, $f_{i_k}g_{j_\ell} \in nil(R)$. Now, since nil(R) is a subring of $R, \alpha^t = I_R$ and $nil(R[x;\alpha]) = nil(R)[x]$, we have that $f_i(x^t)g_j(x^t) \in nil(R[x;\alpha])$ and so $f_i(x^t)g_j(x^t)$ is nilpotent, for each i, j. \Box

References

- A. Amitsur, Algebras over infinite fileds, Proc. Amer. Math. Soc., 7 (1956), 35-48.
- [2] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 7 (1998), 2265-2272.

- [3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3128-3140.
- [4] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
- [5] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
- [6] E. Hashemi, Compatible Ideals and Radicals of Ore Extensions, New Yourk J. Math., 12 (2006), 349-356.
- [7] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107 (3) (2005), 207-224.
- [8] E. Hashemi, On Weak McCoy Rings, J. Sci. Tarbiat Moallem University, 9 (2010), 49-58.
- [9] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151:3 (2000), 215-226.
- [10] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of Generalized Armendariz Rings, Algebra Colloquium, 13:2 (2006), 253-266.
- [11] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, *Algebra Colloquium*, 12 :3 (2005), 399-412.
- [12] N. H. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477-488.
- [13] J. Krempa, Some examples of reduced rings, Algebra Colloquium, 3:4 (1996), 289-300.
- [14] T. Y. Lam, A First Course in Noncommutative Rings, Berlin-Heidelberg-New York: Springer-Verlag, 1991.
- [15] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math., 29 (2003), 583-593.
- [16] Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra, 34 (2006), 2607-2616.
- [17] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.

[18] A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra, 233 (2000), 427-436.

Javad Esmaeili

Department of Mathematics Instructor of Mathematics Shahrood Branch, Islamic Azad University Shahrood, Iran E-mail: j_esmaili2002@yahoo.com

Ebrahim Hashemi

Department of Mathematics Shahrood University of Technology Associate Professor of Mathematics P. O. Box 316-3619995161 Shahrood, Iran E-mail: eb_hashemi@yahoo.com