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Abstract. We study the structure of the set of nilpotent elements
in skew polynomial ring R[x; α], when R is an α-Armendariz ring. We
prove that if R is a nil α-Armendariz ring and αt = IR, then the set
of nilpotent elements of R is an α-compatible subrng of R. Also, it
is shown that if R is an α-Armendariz ring and αt = IR, then R is
nil α-Armendariz. We give some examples of non α-Armendariz rings
which are nil α-Armendariz. Moreover, we show that if αt = IR for some
positive integer t and R is a nil α-Armendariz ring and nil(R[x][y; α]) =
nil(R[x])[y], then R[x] is nil α-Armendariz. Some results of [3] follow
as consequences of our results.
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1. Introduction

Rege and Chhawchharia ([17]) called a ring R an Armendariz ring if
whenever any polynomials f(x) = a0 + a1x + · · · + amx

m, g(x) = b0 +
b1x+· · ·+bnxn ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for any i and j.
The name of the ring was given due to Armendariz who proved [4] that
reduced rings (i.e. rings without nonzero nilpotent elements) satisfy this
condition. Armendariz rings are thus a generalization of reduced rings,
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(see [4, Lemma 1]), and therefore, nilpotent elements play an important
role in this class of rings (see [3]). Some properties of Armendariz rings
have been studied in [1, 2, 3, 4, 10, 12, 13, 11, 16, 17]. For a ring R with
a ring endomorphism α : R→ R, a skew polynomial ring (also called an
Ore extension of endomorphism type) R[x;α] of R is the ring obtained
by giving the polynomial ring over R, the new multiplication xr = α(r)x
for all r ∈ R (see [14, Example 1.7]).
The Armendariz property of rings mentioned earlier was extended to
skew polynomial rings in [10]: For an endomorphism α of a ring R, R
is called α-Armendariz ring if for f(x) = a0 + a1x + · · · + amx

m and
g(x) = b0 + b1x + · · · + bnx

n in R[x;α], f(x)g(x) = 0 implies aibj = 0
for all 0 6 i 6 m and 0 6 j 6 n.
Recall that an endomorphism α of a ring R is called rigid (see [11, 13])
if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is called α-rigid if
there exists a rigid endomorphism α of R. Note that any rigid endo-
morphism of a ring is a monomorphism, and α-rigid rings are reduced
by [9, Proposition 5], and according to [7], an endomorphism α of a ring
R is called compatible whenever ab = 0 ⇔ aα(b) = 0, for each a, b ∈ R.
Note that R is α-rigid if and only if R is α-compatible and reduced, by
[7]. If R is an α-rigid ring, then for p = a0 + a1x + · · · + amx

m and
q = b0 + b1x+ · · ·+ bnx

n in R[x;α], pq = 0 if and only if aibj = 0 for all
0 6 i 6 m and 0 6 j 6 n ([9, Proposition 6]). Hence α-rigid rings are
α-Armendariz by [7, Lemma 2.2].
Now, we establish our general notations. All rings considered here are
associative and unitary and subrng will denote a subring without unit.
If R is a ring, nil(R) denotes the set of nilpotent elements in R, R[x]
denotes the polynomial ring over R, and if f(x) ∈ R[x], coef(f(x))
denotes the subset of R of the coefficients of f(x). Also, if I is a subset of
R, I[x] denotes the set of all polynomials whose coefficients belong to I.
According to Antoine ([3]), a ring R is called to be nil-Armendariz if
whenever two polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) ∈ nil(R)[x]
then ab ∈ nil(R) for all a ∈ coef(f(x)) and b ∈ coef(g(x)). Then
he studied the conditions under which the polynomial ring over a nil-
Armendariz ring is also nil-Armendariz. That conditions are strongly
connected to the question of Amitsur of whether or not a polynomial
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ring over a nil ring is nil.
Motivated by Antoine [3] and Hong, Kwak and Rizvi [10], we introduce
the notion of a nil α-Armendariz ring for an endomorphism α of a ring
R as follows:

Definition 1.1. Let α be an endomorphism of a ring R. R is called nil
α-Armendariz, if whenever two polynomials f(x), g(x) ∈ R[x;α] satisfy
f(x)g(x) ∈ nil(R)[x], then ab ∈ nil(R) for all a ∈ coef(f(x)) and b ∈
coef(g(x)). Let α be an endomorphism of a ring R and X a nonempty
subset of R. We say X is an α-compatible subset of R, whenever ab ∈
X ⇔ aα(b) ∈ X. Clearly, R is an α-compatible ring if and only if {0}
is an α-compatible subset of R.

Example 1.2. Let D be an integral domain and consider the trivial

extension of D given by: R =
{(

a d
0 a

)
| a, d ∈ D

}
. Clearly, R is

a commutative ring. Let α : R → R be an automorphism defined by

α

((
a d
0 a

))
=
(
a ud
0 a

)
, where u is a fix unit element of D. Then:

1. R is α-compatible.

2. R is not α-rigid.

3. nil(R) is an α-compatible ideal of R.

4. R is a nil α-Armendariz ring.

(1) Suppose that
(
a d
0 a

)(
b d1

0 b

)
= 0, hence ab = 0 = ad1+db.

So a = 0 or b = 0. In each case, aud1+db = 0, hence

(
a d
0 a

)
α

((
b d1

0 b

))
= 0.

If
(
a d
0 a

)
α

((
b d1

0 b

))
= 0, then by a similar argument we have(

a d
0 a

)(
b d1

0 b

)
= 0. Therefore R is α-compatible.

(2) If d 6= 0, then
(

0 d
0 0

)
α

((
0 d
0 0

))
= 0, but

(
0 d
0 0

)
6= 0.

Thus R is not α-rigid.
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(3) Since nil(R) =
{(

0 d
0 0

)
| d ∈ D

}
, hence nil(R) is an α-

compatible ideal of R.
(4) Suppose that f(x) =

∑m
i=0Aix

i and g(x) =
∑n

j=0Bjx
j ∈ R[x;α],

where Ai =
(
ai ci
0 ai

)
and Bj =

(
bj dj

0 bj

)
for each 0 6 i 6 m and

0 6 j 6 n. Assume that f(x)g(x) ∈ nil(R)[x]. Then we have:

m+n∑
k=0

(
∑

i+j=k

Aiα
i(Bj))xk ∈ nil(R)[x])

We claim that Aiα
i(Bj) ∈ nil(R) for all i, j.

(i) Suppose that there is Ak =
(
ak ck
0 ak

)
with ak 6= 0 and A0 =

· · · = Ak−1 = 0 where 0 6 k. From Eq.(†), A0Bk + A1α(Bk−1) + · · · +
Ak−1α

k−1(B1) +Akα
k(B0) ∈ nil(R), so Akα

k(B0) ∈ nil(R). That is(
ak ck
0 ak

)(
b0 ukd0

0 b0

)
=
(
akb0 aku

kd0 + ckb0
0 akb0

)
∈ nil(R). Thus akb0 = 0 and so b0 = 0,

since D is a domain. Then B0 ∈ nil(R), which implies that Aiα
i(B0) ∈

nil(R), for each 0 6 i 6 m, since nil(R) is an α-compatible ideal of R.
Since A0Bk+1 + A1α(Bk) + · · · + Akα

k(B1) + Ak+1α
k+1(B0) ∈ nil(R),

we have Akα
k(B1) ∈ nil(R) and so b1 = 0, by a similar argument as

above. Then B1 ∈ nil(R), which implies that Aiα
i(B1) ∈ nil(R), for

each 0 6 i 6 m, since nil(R) is an α-compatible ideal of R. Continuing
this process, we obtain Bj ∈ nil(R) for all 0 6 j 6 n, which implies that
Aiα

i(Bj) ∈ nil(R) for all i, j.

(ii) Suppose that there is Bk =
(
bk dk

0 bk

)
with bk 6= 0 and B0 =

· · · = Bk−1 = 0, where 0 6 k. By a similar way as used in (i), we
can show that Ai ∈ nil(R) for each 0 6 i 6 m, which implies that
Aiα

i(Bj) ∈ nil(R) for all i, j, since nil(R) is an ideal of R.

(iii) Suppose that Ai =
(

0 ci
0 0

)
, Bj =

(
0 dj

0 0

)
for all i, j.



ON NILPOTENT ELEMENTS OF SKEW ... 5

Then

Aiα
i(Bj) =

(
0 ci
0 0

)(
0 uidj

0 0

)
= 0 ∈ nil(R) for all i, j. Therefore

R is a nil α-Armendariz ring, by (i), (ii) and (iii).
In this paper, we prove that if R is a nil α-Armendariz ring and αt =
IR, then the set of nilpotent elements of R is an α-compatible subrng
of R. Also, it is shown that if R is an α-Armendariz ring and αt =
IR, then R is nil α-Armendariz. Some examples of nil α-Armendariz
rings which are’nt α-Armendariz are given. Moreover, we show that if
αt = IR for some positive integer t and R is a nil α-Armendariz ring
and nil(R[x][y;α]) = nil(R[x])[y], then R[x] is nil α-Armendariz. Some
results of ([3]) follow as consequences of our results.

2. Polynomial Rings Over Nil α-Armendariz
Rings

Recall that an ideal I of a ring R is called an α-ideal if α(I) ⊆ I (see [14,
Page 47]). Clearly, if I is an α-ideal of R, then α : R/I → R/I defined
by α(a+ I) = α(a) + I for a ∈ R is an endomorphism of the factor ring
R/I. Note that each α-compatible ideal is α-ideal, by [6, Proposition
2.1].
Note that the set of nilpotent elements of a ring is not ideal in general,
(see [18, 3]). According to ([5]), a ring R is called semi-commutative if
ab = 0 implies aRb = 0. If R is a semi-commutative ring, then nil(R)
is an ideal of R, by ([8, Lemma 2.10]). Also, Example 1.2, shows that
there exists a ring R and an endomorphism α on R such that nil(R) is
an α-compatible ideal of R.

Proposition 2.1. Let R be a ring such that nil(R) is an α-compatible
ideal of R. If f(x), g(x) ∈ R[x;α] satisfy f(x)g(x) ∈ nil(R)[x], then
ab ∈ nil(R) for all a ∈ coef(f(x)) and b ∈ coef(g(x)).

Proof. Observe that R/nil(R) is reduced. Then, since nil(R) is an α-
compatible ideal of R, hence R/nil(R) is an α-rigid ring, by [6]. Suppose
that f(x)g(x) ∈ nil(R)[x]. If we denote by f(x), g(x) the corresponding
polynomials in R/nil(R)[x;α], then f(x)g(x) = 0. Since R/nil(R) is
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α-rigid, ab = 0 for all a ∈ coef(f(x)) and b ∈ coef(g(x)), by [9]. Hence
ab is nilpotent for all a ∈ coef(f(x)) and b ∈ coef(g(x)).
Observe that if nil(R) is an α-compatible ideal of R, then by Proposition
2.1, R is nil α-Armendariz. More generally we obtain the following. �

Proposition 2.2. Let α be an endomorphism of a ring R and I an
α-compatible nil ideal of R. Then R is nil α-Armendariz if and only if
R/I is nil α-Armendariz.

Proof. We denote R = R/I. Since I is nil, then nil(R) = nil(R).
Hence f(x)g(x) ∈ nil(x)[x] if and only if f(x)g(x) ∈ nil(R)[x], where
f(x), g(x) ∈ R/I[x;α]. And, if a ∈ coef(f(x) and b ∈ coef(g(x)), then
ab ∈ nil(R) if and only if ab ∈ nil(R). Therefore R is nil α-Armendariz
if and only if R is nil α-Armendariz. �

Lemma 2.3. Let R be a nil α-Armendariz ring and n > 2. If
f1(x), f2(x), · · · , fn(x) ∈ R[x;α] such that f1(x)f2(x) · · · fn(x) ∈ nil(R)[x],
then if ak ∈ coef(fk(x)) for k = 1, · · · , n, we have a1a2 · · · an ∈ nil(R).

Proof. We use induction on n. The case n = 2 is clear by defini-
tion of nil α-Armendariz ring. Suppose that n > 2. Consider h(x) =
f2(x) · · · fn(x). Then f1(x)h(x) ∈ nil(R)[x] and hence, since R is nil α-
Armendariz, a1ah ∈ nil(R) where ah ∈ coef(h(x)) and a1 ∈ coef(f1(x)).
Therefore, for all a1 ∈ coef(f1(x)), (a1f2(x))(f3(x) · · · fn(x)) = a1h(x) ∈
nil(R)[x], and by induction, since the coefficients of a1f2(x) are a1a2

where a2 is a coefficient of f2(x), we obtain
a1a2 · · · an−1an ∈ nil(R) for ak ∈ coef(fk(x)), k = 1, · · · , n. �

Proposition 2.4. Let R be a nil α-Armendariz ring. For a, b ∈ R, we
have the following:

1. If ab ∈ nil(R), then αn(a)b, aαn(b) are nilpotent for any positive
integer n.

2. If αn(a)b ∈ nil(R) or aαn(b) ∈ nil(R) for some positive integer n,
then ab ∈ nil(R).

3. nil(R) is an α-compatible subset of R.
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Proof.
(1) Suppose that ab ∈ nil(R). It is enough to show that α(a)b ∈

nil(R). Let p = α(a)x and q = bx in R[x;α]. Then pq = α(a)α(b)x2 =
α(ab)x2 ∈ nil(R)[x]. Since R is nil α-Armendariz, α(a)b ∈ nil(R). Since
ab ∈ nil(R), we have ba ∈ nil(R). By a similar argument one can show
that α(b)a ∈ nil(R), and hence aα(b) ∈ nil(R).

(2) Suppose that aαn(b) ∈ nil(R), for some positive integer n. Let
p = axn and q = bx in R[x;α]. Then pq = aαn(b)xn+1 ∈ nil(R)[x] and
thus ab ∈ nil(R), since R is nil α-Armendariz.

(3) It follows from (1) and (2). �

Theorem 2.5. Let R be a nil α-Armendariz ring and αt = IR, for some
t > 1. Then we have the following:

1. nil(R) is an α-compatible subrng of R.

2. R is an α-compatible ring.

Proof.
(1) The idea of the proof comes from the proof of [3, Theorem 12].

(a) Suppose that a, b are nilpotent and bm = 0. Then, since αt = IR,

(a− abxt)(1 + bxt + b2x2t + · · ·+ bm−1xt(m−1)) = a ∈ nil(R)[x].

Since R is nil α-Armendariz, ab ∈ nil(R).
(b) Suppose a, b, c are nilpotent and an = bm = 0. Then

(1+axt + · · ·+a(n−1)x(n−1)t)(1−axt)(1−bxt)(1+bxt + · · ·+b(m−1)x(m−1)t)c =
c ∈ nil(R)[x]. Hence (1+axt+· · ·+a(n−1)x(n−1)t)(1−(a+b)xt+abx2t)(1+
bxt + · · · + b(m−1)x(m−1)t)c = c ∈ nil(R)[x]. Now, since R is nil α-
Armendariz, by Lemma 2.3, we can choose the appropriate coefficients
from each polynomial to obtain (a+ b)c ∈ nil(R). Similarly we see that
c(a+ b) ∈ nil(R).

(c) Suppose a, b, c are nilpotent. Then bc and b(a+ bc) are nilpotent.
Hence (1− bxt)(c+(a+ bc)xt) = c+axt− b(a+ bc)x2t ∈ nil(R)[x]. Now,
since R is nil α-Armendariz, 1.(a+ bc) = a+ bc is nilpotent.

(d) Suppose that a, b are nilpotent. Now by applying (c) several times
we can see that, since a2, a and −b are nilpotent, a2 − ab is nilpotent;
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hence a2 − ab − ba is nilpotent; hence a2 − ab − ba + b2 is nilpotent.
Therefore (a− b)2 is nilpotent, which means that a− b is nilpotent. By
using (a), (b), (c) and (d) we have nil(R) is a subrng of R.
(2) Suppose ab = 0. Let f(x) = α(a)x and g(x) = bx in R[x;α].
Then f(x)g(x) = α(a)α(b)x2 = α(ab)x2 = 0. Since R is α-Armendariz,
α(a)b = 0. By using induction on m one can show that αm(a)b = 0.
Now, since ab = 0, we have α(a)b = 0, and hence aαt−1(b) = αt(a)αt−1(b) =
αt−1(α(a)b) = 0. Then αt−2(a)αt−1(b) = 0, and so aα(b) = 0, since α is
monomorphism.
Suppose aα(b) = 0. Then α(a)α(b) = 0, by the previous paragraph.
Hence ab = 0, since α is monomorphism. ThereforeR is α-compatible. �

Lemma 2.6. Let R be an α-Armendariz ring and αt = IR for some
t > 1. Then nil(R)[x] ⊆ nil(R[x;α]).

Proof. Suppose that R is an α-Armendariz ring. Let f = a0+a1x+· · ·+
anx

n ∈ nil(R)[x] and k > 1 such that ak
i = 0 for all i = 0, 1, · · · , n. We

show that f(x)(n+1)k = 0. The coefficients of f(x)(n+1)k can be written as sums
of monomials of length (n + 1)k in αj(ai)’s, where j > 0 and i = 0, 1, · · · , n.
Consider one of these monomials αj1(ai1)α

j2(ai2) · · ·αj(n+1)k(ai(n+1)k
) where

0 6 is 6 n and js > 0. Clearly there exists αjs1 (ais1
), · · · , αjsk (aisk

) where
0 6 s1 6 s2 6 · · · 6 sk such that ais1

= ais2
= · · · = aisk

= aj0 for some
0 6 j0 6 n. Since (aj0)

k = 0, hence αjs1 (aj0)α
js2 (aj0) · · ·αjsk (aj0) = 0, by

Theorem 2.5. For irm 6= is, let f
′
irm

= 1− airm
xt and f

′′
irm

= 1 + airm
xt +

· · ·+ ak−1
irm

xt(k−1). Since αt = IR, we have f
′
irm

f
′′
irm

= 1 and observe that
airm

is a product of coefficients of f
′
irm

and f
′′
irm

. Now we can write the
monomial as αj1(ai1) · · ·αjs1−1(ais1−1)α

js1 (aj0)α
js1+1(ais1+1) · · ·

αjs2−1(ais2−1)α
js2 (aj0)α

js2+1(ais2+1) · · ·αj(n+1)k(ai(n+1)k
). By replacing each

αjrm (airm
) by the product f

′
irm

(x)f
′′
irm

(x), and since
αjs1 (aj0)α

js2 (aj0) · · ·αjsk (aj0) = 0, we have that
f
′
i1

(x)f
′′
i1

(x) · · · f ′is1−1
(x)f

′′
is1−1

(x)αjs1 (aj0)f
′
is1+1

(x)f
′′
is1+1

(x) · · ·
f
′
isk−1

(x)f
′′
isk−1

(x)αjsk (aj0)f
′
isk+1

(x)f
′′
isk+1

(x) · · · f ′i(n+1)k
(x)f

′′
i(n+1)k

(x) = 0.
Now, since R is α-Armendariz, by Lemma 2.3, we can choose a coeffi-
cient from each of the polynomials in the last equality and the product
will be 0. Hence
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ai1ai2 · · · ais1−1α
js1 (aj0)ais1+1 · · · aisk−1α

jsk (aj0)aisk+1 · · · ai(n+1)k
= 0. Thus

αj1(ai1)α
j2(ai2) · · ·αjs1−1(ais1−1)α

js1 (as1)α
js1+1(ais1+1) · · ·

αjsk−1(aisk−1)α
jsk (ask

)αjsk+1(aisk+1) · · ·αj(n+1)k(ai(n+1)k
) = 0, since R is

α-compatible and ais1
= ais2

= · · · = aisk
= aj0 . Therefore, we have

proved that all the monomials appearing in the coefficients of f(x)(n+1)k

are 0. Hence f(x) ∈ nil(R[x;α]). �

Proposition 2.7. If R is an α-Armendariz ring and αt = IR for some
t > 1, then R is nil α-Armendariz.

Proof. Suppose that f(x), g(x) ∈ R[x;α] such that f(x)g(x) ∈ nil(R)[x].
By Lemma 2.6, f(x)g(x) is nilpotent and there exists k > 1 such that
(f(x)g(x))k = 0. Hence, since R is α-Armendariz, for all a ∈ coef(f(x)
and b ∈ coef(g(x)), by choosing the corresponding coefficient in each
polynomial, we have abab · · · ab = 0 and thus ab ∈ nil(R). Therefore R
is nil α-Armendariz. �

Corollary 2.8. [3, Proposition 2.7] If R is an Armendariz ring, then
R is nil-Armendariz.

Proof. It follows from Proposition 2.7, whenever α = idR.
The following examples show that there exists a ring R with an auto-
morphism α such that R is nil α-Armendariz but not α-Armendariz. �

Example 2.9. Let R =
[
F F
0 F

]
, where F is a filed and an endo-

morphism of R defined by α(
[
a b
0 c

]
) =

[
a −b
0 c

]
. By [10, Example

1.12] R is not α-armendariz. We claim that R is nil α-Armendariz.

Clearly nil(R) =
[

0 F
0 0

]
is an ideal of R. Now we show that nil(R)

is α-compatible. Let A =
[
a b
0 c

]
and B =

[
a
′
b
′

0 c
′

]
∈ R such that

AB ∈ nil(R). Then aa
′
= 0 = cc

′
, since F is a filed. Hence a

′
= c

′
= 0

or a = c
′

= 0 or a = c = 0 or a
′

= c = 0. Let a
′

= c = 0. Then

Aα(B) =
[

0 −ab′ + bc
′

0 0

]
∈ nil(R). In each other cases, by a similar
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argument one can show that Aα(B) ∈ nil(R).
Now assume that Aα(B) ∈ nil(R). Then by a similar argument as above
one can show that AB ∈ nil(R). Thus nil(R) is an α-compatible ideal
of R, and hence by Proposition 2.1, R is nil α-Armendariz.

Example 2.10. Let Z be the set of all integers. Consider the ring

R =
{[

a c
0 b

]
|a− b ≡ c ≡ 0 mod(2) and a, b, c ∈ Z

}
. Let α : R → R

be an endomorphism defined by α(
[
a c
0 b

]
) =

[
a −c
0 b

]
. Then R is

not α-Armendariz. For, p =
[

2 2
0 0

]
+
[

0 2
0 0

]
x and q =

[
0 2
0 −2

]
+[

0 2
0 0

]
x ∈ R[x;α], we have pq = 0, but

[
0 2
0 0

] [
0 2
0 −2

]
6= 0.

Since nil(R) =
{[

0 c
0 0

]
|c ∈ 2Z

}
is an α-compatible ideal of R, hence

by Proposition 2.1, R is nil α-Armendariz.
Example 2.11. shows that there exists a nil α-Armendariz ring R such

that α(e) 6= e for some e2 = e ∈ R. For example e =
[

1 −1
0 0

]
is an

idempotent of R and α(e) 6= e. Recall that a ring R is called abelian, if
each idempotent of R is central.

Proposition 2.11. Let R be an abelian ring with α(e) = e for any
e = e2 ∈ R. Then the following statements are equivalent:

1. R is nil α-Armendariz;

2. eR and (1− e)R are nil α-Armendariz for any e = e2 ∈ R;

3. eR and (1− e)R are nil α-Armendariz for some e = e2 ∈ R.

Proof. It is enough to show (3) ⇒ (1). Let p =
∑m

i=0 aix
i and q =∑n

j=0 bjx
j in R[x;α] with pq ∈ nil(R)[x]. Then (ep)(eq) ∈ nil(eR)[x]

and ((1 − e)p)((1 − e)q) ∈ nil((1 − e)R)[x] for some e = e2 ∈ R by
hypothesis. Since eR and (1−e)R are nil α-Armendariz, we have eaibj ∈
nil(eR) and (1 − e)aibj ∈ nil(1 − e)R, for all 0 6 i 6 m and 0 6



ON NILPOTENT ELEMENTS OF SKEW ... 11

j 6 n. Let k > 1, such that (eaibj)k = 0 = ((1 − e)aibj)k. Then
(aibj)k = ((eaibj) + (1 − e)aibj)k = (eaibj)k + ((1 − e)aibj)k = 0, since
(eaibj)((1 − e)aibj) = 0 = ((1 − e)aibj)(eaibj). Therefore R is nil α-
Armendariz. �

Lemma 2.12. If R is a nil α-Armendariz ring and αt = IR, for some
t > 1, then nil(R[x;α]) ⊆ nil(R)[x].

Proof. Suppose that f(x) ∈ nil(R[x;α]) and f(x)m = 0 for somem > 1.
By Lemma 2.3, we have a1 · · · am ∈ nil(R) where ai ∈ coef(f(x)) for
i = 1, · · · ,m. In particular, for every a ∈ coef(f(x)), am is nilpo-
tent. Therefore a ∈ nil(R) for all ai ∈ coef(f(x)) and hence f(x) ∈
nil(R)[x]. �

Proposition 2.13. Let R be a nil ring. Then R is nil α-Armendariz
for each endomorphism α over R.

Proof. Since nil(R) = R, hence aα(b) ∈ nil(R), for each a, b ∈ R.
Smoktunowicz [18] proved that for each countable filed K there is a
nil algebra R over K (generated by three elements), such that polyno-
mial algebra R[x] over R is not nil. In Lemma 2.13 we have seen the
other inclusion for α-Armendariz rings which αt = IR, hence we have
proved: �

Corollary 2.14. If R is an α-Armendariz ring and αt = IR, for some
t > 1, then nil(R[x;α]) = nil(R)[x].

Corollary 2.15. [3, Corollary 5.2] If R is an Armendariz ring, then
nil(R[x]) = nil(R)[x].

Theorem 2.16. Let R be a nil α-Armendariz ring and αt = IR, for
some t > 1. Then R[x;α] is nil-Armendariz if and only if nil(R[x;α]) =
nil(R)[x].

Proof. If R[x;α] is nil-Armendariz, by Theorem 2.5, we have that
nil(R[x;α]) is a subrng of R[x;α]. Let a ∈ nil(R). Since nil(R) is
an α-compatible subrng of R, we have that aα(a) · · ·αt−1(a) ∈ nil(R).
If (aα(a) · · ·αt−1(a))s = 0, then since αt = IR, we have (ax)st =
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(aα(a) · · ·αt−1(a))stxst = 0. By a similar argument one can show that
axr is nilpotent for any r > 2. Hence nil(R)[x] ⊆ nil(R[x;α]). Now,
since R is nil α-Armendariz, by Lemma 2.12, we have the other inclusion.
Hence nil(R[x;α]) = nil(R)[x].
Now suppose that nil(R[x;α]) = nil(R)[x]. Let f(y), g(y) ∈ R[x;α][y] such
that f(y)g(y) ∈ nil(R[x;α])[y]. Also, let f(y) = f0(x)+f1(x)y+ · · ·+fm(x)ym

where fi(x) =
∑si

k=0 fik
xk and g(y) = g0(x) + g1(x)y + · · · + gn(x)yn where

gj(x) =
∑tj

`=0 gj`
x`, andM > max{deg(fi(x)), deg(gj(x))} for any 0 6 i 6 m

and 0 6 j 6 n, where the degree is as polynomials in R[x] and the degree
of zero polynomial is taken to be 0. Let f(xtM ) = f0(x)+f1(x)xtM+· · ·+
fm(x)xtmM , and g(xtM ) = g0(x)+g1(x)xtM + · · ·+gn(x)xtnM in R[x;α].
Then the set of coefficients of fi(x)’s (resp., gj(x)’s) equals the set of coef-
ficients of f(xtM ) (resp., g(xtM )). Since f(y)g(y) ∈ nil(R[x;α])[y], xtM

commutes with elements of R in R[x;α], and nil(R[x;α]) = nil(R)[x] is
a subrng of R[x;α], we have f(xtM )g(xtM ) ∈ nil(R[x;α]) = nil(R)[x].
Since R is nil α-Armendariz, fikgj`

∈ nil(R) for all i, j, k, `. Now since
nil(R) is an α-compatible subrng of R, we have fi(x)gj(x) ∈ nil(R)[x].
Finally, since nil(R[x;α]) = nil(R)[x], fi(x)gj(x) is nilpotent. �

Corollary 2.17. [3, Theorem 5.3]Let R be a nil-Armendariz ring. Then
R[x] is nil-Armendariz if and only if nil(R[x]) = nil(R)[x].

Proof. It follows from Theorem 2.17, wheneve α = idR. Recall that if
α is an endomorphism of a ring R, then the map α can be extended to
an endomorphism of the polynomial ring R[x] defined by

∑m
i=0 aix

i 7→∑m
i=0 α(ai)xi. We shall also denote the extended map R[x] → R[x] by

α and the image of f ∈ R[x] by α(f). �

Theorem 2.18. Let α be an endomorphism of a ring R and αt =
IR for some positive integer t. If R is a nil α-Armendariz ring and
nil(R[x][y;α]) = nil(R[x])[y], then R[x] is nil α-Armendariz.

Proof. Let f(y), g(y) ∈ R[x][y;α] such that f(y)g(y) ∈ nil(R[x])[y].
Let f(y) = f0(x) + f1(x)y + · · · + fm(x)ym where fi(x) =

∑si
k=0 fikx

k

and g(y) = g0(x) + g1(x)y+ · · ·+ gn(x)yn where gj =
∑tj

`=0 gj`
x`. Then

h0(x) = f0(x)g0(x) ∈ nil(R[x]),
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h1(x) = f0(x)g1(x) + f1(x)α(g0(x)) ∈ nil(R[x]),
h2(x) = f0(x)g2(x) + f1(x)α(g1(x)) + f2(x)α2(g0(x)) ∈ nil(R[x]),

...

hm+n(x) = fm(x)αm(gn(x)) ∈ nil(R[x]).
Hence

h0(xt) = f0(xt)g0(xt) ∈ nil(R[x]),
h1(xt) = f0(xt)g1(xt) + f1(xt)α(g0(xt)) ∈ nil(R[x]),
h2(xt) = f0(xt)g2(xt)+f1(xt)α(g1(xt))+f2(xt)α2(g0(xt)) ∈ nil(R[x]),

...

hm+n(xt) = fm(xt)αm(gn(xt)) ∈ nil(R[x]).
Thus

(f0(xt) + f1(xt)y + f2(xt)y2 + · · ·+ fm(xt)ym)(g0(xt) + g1(xt)y +
g2(xt)y2 + · · ·+ gn(xt)yn) ∈ nil(R[x])[y].

Let M > max{tsi, ttj}i,j , f(xMt+1) = f0(xt) + f1(xt)xMt+1 + · · · +
fm(xt)x(Mt+1)m and g(xMt+1) = g0(xt)+g1(xt)xMt+1 + · · ·+gn(xt)x(Mt+1)n

in R[x]. Then the set of coefficients of the fi’s (resp., gj ’s) equals the set
of coefficients of f(xMt+1) (resp., g(xMt+1)). Since αt = IR, the set of
coefficients of the hi’s equals the set of coefficients of f(xMt+1)g(xMt+1)
in R[x;α]. Also, since nil(R[x;α]) = nil(R)[x], f(xMt+1)g(xMt+1) ∈
nil(R)[x]. Since R is nil α-Armendariz, fikgj`

∈ nil(R). Now, since
nil(R) is a subring of R, αt = IR and nil(R[x;α]) = nil(R)[x], we have
that fi(xt)gj(xt) ∈ nil(R[x;α]) and so fi(xt)gj(xt) is nilpotent, for each
i, j. Therefore in R[x], fi(x)gj(x) is nilpotent, for each i, j. �
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