Journal of Mathematical Extension Vol. 16, No. 5, (2022) (8)1-13 URL: https://doi.org/10.30495/JME.2022.1513 ISSN: 1735-8299 Original Research Paper

Some Fixed Point Results for $\mathcal{F} - G$ -Contraction in \mathcal{F} -Metric Spaces Endowed with a Graph

H. Faraji*

Saveh Branch, Islamic Azad University

S. Radenović

University of Belgrade

Abstract. In this paper, we introduce the concept of $\mathcal{F}-G$ -contraction mappings in \mathcal{F} -metric spaces endowed with a graph and give some fixed point results for such contractions. Our results are generalization of some famous theorem in metric spaces to \mathcal{F} -metric spaces endowed with a graph. Also, we give some examples that support obtained theoretical results.

AMS Subject Classification: 47H10; 54H25; 55M20 Keywords and Phrases: Fixed point; \mathcal{F} -Metric spaces; \mathcal{F} -G-contraction.

1 Introduction

Fixed point theory is one of the traditional theory in functional and nonlinear analysis. Fixed point theory has developed rapidly in various extensions of metric spaces (see e.g. [4, 6, 9, 11, 14, 15, 20, 21, 22, 25]

Received: January 2020; Accepted: September 2020.

^{*}Corresponding Author

and references therein). Jleli and Samet [24] introduced the concept of a \mathcal{F} -metric spaces as follows (see e.g. [18, 26] and references therein).

Let \mathcal{F} be the set of functions $f: (0, \infty) \to \mathbb{R}$ such that (\mathcal{F}_1) f is non-decreasing, i.e., 0 < s < t implies $f(s) \leq f(t)$. (\mathcal{F}_2) For every sequence $\{t_n\} \subset (0, \infty)$, we have

$$\lim_{n \to \infty} t_n = 0 \text{ if and only if } \lim_{n \to \infty} f(t_n) = -\infty.$$

Definition 1.1. [24] Let X be a (nonempty) set. A function $D: X \times X \to [0, \infty)$ is a \mathcal{F} -metric on X iff, there exists $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ such that for all $x, y \in X$ the following conditions are satisfied: $(D_1) \ D(x, y) = 0$ if and only if x = y. $(D_2) \ D(x, y) = D(y, x)$.

 (D_3) For every $N \in \mathbb{N}, N \ge 2$ and for every $\{u_i\}_{i=1}^N \subset X$ with $(u_1, u_N) = (x, y)$, we have

$$D(x,y) > 0$$
 implies $f(D(x,y)) \le f(\sum_{i=1}^{N-1} D(u_i, u_{i+1})) + \alpha$

The pair (X, D) is called a \mathcal{F} -metric space.

Example 1.2. [24] Let $X = \mathbb{R}$ and $D: X \times X \to [0, \infty)$ be defined as follows:

$$D(x,y) = \begin{cases} (x-y)^2 & (x,y) \in [0,3] \times [0,3], \\ |x-y| & \text{otherwise,} \end{cases}$$

and let f(t) = ln(t) for all t > 0 and $\alpha = ln(3)$. Then, D is a \mathcal{F} -metric on X. Since $D(0,3) = 9 \ge D(0,1) + D(1,3) = 5$, then D is not a metric on X.

Example 1.3. [24] Let $X = \mathbb{R}$ and $D: X \times X \to [0, \infty)$ be defined as follows:

$$D(x,y) = \begin{cases} e^{|x-y|} & x \neq y, \\ 0 & x = y. \end{cases}$$

Then, D is a \mathcal{F} -metric on X. Since $D(2,4) = e^2 \ge D(2,3) + D(3,4) = 2e$, so D is not a metric on X.

Definition 1.4. [24] Let (X, D) be an \mathcal{F} -metric space and $\{x_n\}$ be a sequence in X.

1) A sequence $\{x_n\}$ is called \mathcal{F} -convergent to $x \in X$, iff $D(x_n, x) \to 0$ as $n \to \infty$.

2) A sequence $\{x_n\}$ is \mathcal{F} -Cauchy, iff $D(x_n, x_m) \to 0$ as $n, m \to \infty$.

3) A \mathcal{F} -metric space (X, D) is said to be \mathcal{F} -complete, if every \mathcal{F} -Cauchy sequence in X is \mathcal{F} -convergent to some element in X.

Theorem 1.5. [24] Let (X, D) be an \mathcal{F} -complete \mathcal{F} -metric space and let $T: X \to X$ be a self-mapping satisfying

$$D(Tx, Ty) \le \lambda D(x, y),\tag{1}$$

for all $x, y \in X$ where $0 \leq \lambda < 1$. Then T has a unique fixed point.

Espinola and Kirk in 2006 published some useful results on combining fixed point theory and graph theory [12]. In 2008, Jachymski [23] proved the contraction Principal for mappings on a metric space with a graph. For some recent works in metric spaces endowed with graph the reader is referred to (see e.g. [1, 2, 3, 5, 7, 8, 10, 13, 16, 17, 19, 28]

Let G = (V(G), E(G)) be a directed graph such that V(G) is the set of vertices and E(G) is edges of G. Also $\Delta \subset E(G)$ where $\Delta = \{(x, x) : x \in X\}$ and assume that G has no parallel edges. We denote the conversion of a graph G by G^{-1} , i.e., the graph obtained from Gby reversing the direction of edges. Let \tilde{G} be the undirected graph obtained from G by ignoring the direction of edges, so we have $E(\tilde{G}) = E(G) \bigcup E(G^{-1})$. Let x and y are vertices in a graph G. A path in Gfrom x to y of length m is a sequence $\{x_n\}_{n=0}^m$ of m+1 vertices such that $x_0 = x, x_m = y$ and $(x_{i-1}, x_i) \in E(G)$ for i = 1, ..., m. A graph G is called connected if there is a path between any two vertices of Gand graph G is weakly connected if \tilde{G} is connected. For $x \in X$ we set $[x]_{\tilde{G}}$ which is the equivalence class of the following relation R defined on V(G) by the rule: xRy if there is a path in G from x to y. Also, for $x \in G$ and $m \in \mathbb{N}$, define

 $[x]_G^m = \{y \in X : \text{there is a directed path from } x \text{ to } y \text{ of length } m\}.$

Definition 1.6. [27] Let (X, d) be a metric space and $T : X \to X$ be a self-mapping. Then

- i) T is called a Picard operator (briefly PO), if T has a unique fixed point $x^* \in X$ and $T^n x \to x^*$ for each $x \in X$.
- ii) T is called a weakly Picard operator (briefly WPO) if the sequence $\{T^nx\}$ converges to a fixed point of T for all $x \in X$.

Definition 1.7. [23] Let (X, d) be a metric space endowed with a graph G. A mapping $T: X \to X$ is called orbitally G-continuous on X if for all $x, y \in X$ and all $\{p_n\}$ of positive integers with $(T^{p_n}x, T^{p_n+1}x) \in E(G)$ for all $n \geq 1$, the convergence $T^{p_n}x \to y$ implies $T(T^{p_n}x) \to Ty$.

Let T be a self mapping on X. We denote

$$X_T = \{x \in X | (x, Tx) \in E(G)\},$$
$$Fix(T) = \{x \in X | Tx = x\}.$$

2 Main Results

Now, we introduce one new type of contractive mappings in the context of \mathcal{F} -metric spaces endowed with a graph and prove the corresponding new result. We also prove and extend some the results of Jachymski [23] and Falahi et al. [13] to the context of \mathcal{F} -metric spaces. Throughout this section we assume that (X, D) is a \mathcal{F} -metric space endowed with directed graph G, which V(G) = X and $\Delta \subset E(G)$.

Definition 2.1. Let (X, D) be an \mathcal{F} -metric space and T be a selfmapping on X. We say that T is an $\mathcal{F} - G$ -contraction if for every $x, y \in X$, we have

$$(x,y) \in E(G)$$
 implies $(Tx,Ty) \in E(G);$

$$(x,y) \in E(G)$$
 implies $D(Tx,Ty) \le \lambda D(x,y);$

where $\lambda \in [0, 1)$.

Example 2.2. Let (X, \mathcal{F}) be an \mathcal{F} -metric space and $G = (X, \Delta)$. Then any self-mapping T on X is an $\mathcal{F} - G$ -contraction. **Example 2.3.** Let X be a nonempty set and (X, \mathcal{F}) be an \mathcal{F} -metric space. Then for any graph G = (X, E(G)), constant mapping $T : X \to X$ is a $\mathcal{F} - G$ -contraction.

Example 2.4. Consider the \mathcal{F} -metric space given in Example 1.2. Define

$$Tx = \begin{cases} 3x & x > 2\\ \frac{x}{2} & 0 \le x \le 2\\ 0 & x < 0. \end{cases}$$

Then, for any $\lambda \in [0, 1)$, we have

$$D(T2,T3) = D(\frac{2}{3},9) = |\frac{2}{3} - 9| = \frac{25}{3} > \lambda = \lambda D(2,3).$$

Then, T does not satisfy (1). Define G = (V(G), E(G)), where $V(G) = \mathbb{R}$ and $E(G) = \{(x, x) | x \in \mathbb{R}\}$. Therefore, T is an $\mathcal{F} - G$ -contraction mapping for any $\lambda \in [0, 1)$.

Example 2.5. Let $X = \{0, 1, 2\}$ be endowed with the \mathcal{F} -metric given in Example 1.3. Define T0 = T2 = 0, T1 = 2. Then, for any $\lambda \in [0, 1)$, we have

$$D(T1.T2) = e^{|T1-T2|} = e^2 > \lambda e = \lambda D(1,2).$$

Consequently, T does not satisfy (1). Define G = (V(G), E(G)), where V(G) = X and $E(G) = \{(0,0), (1,1), (0,2), (2,2)\}$. Then T is an $\mathcal{F} - G$ -contraction mapping for any $\lambda \in [0, 1)$.

Proposition 2.6. Let (X, D) be an \mathcal{F} -metric space and $T : X \to X$ be a \mathcal{F} -G-contraction. Then:

(i) T is a $\mathcal{F} - \tilde{G}$ -contraction and also a $\mathcal{F} - G^{-1}$ -contraction.

(ii) $[x_0]_{\tilde{G}}$ is T-invariant and $T|_{[x_0]_{\tilde{G}}}$ is a $\mathcal{F} - \tilde{G}_{x_0}$ -contraction, where $x_0 \in X$ and $T(x_0) \in [x_0]_{\tilde{G}}$.

Proof. (i) Since \mathcal{F} -metric is symmetric, then T is a $\mathcal{F} - \tilde{G}$ -contraction and also a $\mathcal{F} - G^{-1}$ -contraction.

(ii) Let $x \in [x_0]_{\tilde{G}}$. So there exists a path $\{z_i\}_{i=0}^N$ in \tilde{G} from x to x_0 which $x = z_0$ and $x_0 = z_N$ and $(z_{i-1}, z_i) \in E(\tilde{G})$. Since T is a

 $\mathcal{F} - G$ -contaraction, for all i = 1, ..., N, we have $(Tz_{i-1}, Tz_i) \in E(G)$. Then $Tx \in [Tx_0]_{\tilde{G}} = [x_0]_{\tilde{G}}$, that is, $[x_0]_{\tilde{G}}$ is T-invariant. Now, assume $(x, y) \in E(\tilde{G}_{x_0})$. Since T is a $\mathcal{F} - G$ -contraction, $(Tx, Ty) \in E(G)$. Also, $[x_0]_{\tilde{G}}$ is T-invariant, then $(Tx, Ty) \in E(\tilde{G}_{x_0})$. Since \tilde{G}_{x_0} is a subgraph of G, we obtain $T|_{[x_0]_{\tilde{G}}}$ is a $\mathcal{F} - \tilde{G}_{x_0}$ -contraction. \Box

Definition 2.7. Let (X, \mathcal{F}) be a \mathcal{F} -metric space. We say that sequences $\{x_n\}, \{y_n\}$ are equivalent if $\lim_{n\to\infty} D(x_n, y_n) = 0$, and they are called \mathcal{F} -Cauchy equivalent, if each of them is a \mathcal{F} -Cauchy sequence.

The following result extend the main one from [23].

Theorem 2.8. Let (X, D) be an \mathcal{F} -metric space. The following are equivalent:

- (i) G is weakly connected.
- (ii) For any $\mathcal{F} G$ -contraction $T : X \to X$, given $x, y \in X$, the sequences $\{T^n x\}$ and $\{T^n y\}$ are equivalent.
- iii) For any $\mathcal{F} G$ -contraction $T : X \to X$, $card(Fix(T)) \leq 1$.

Proof. First we prove that (i) implies (ii). Let $x, y \in X$ and by hypothesis, $[x]_{\tilde{G}} = X$, then $y \in [x]_{\tilde{G}}$. So there exists a path $\{x_i\}_{i=0}^N$ in \tilde{G} from x to y which $x_0 = x$ and $x_N = y$ and $(x_{i-1}, x_i) \in E(\tilde{G})$ for all i = 1, 2, ..., N. Using Proposition 2.6, T is an $\mathcal{F} - \tilde{G}$ -contraction. Then, we have

$$(T^n x_{i-1}, T^n x_i) \in E(\tilde{G}),$$

consequently

$$D(T^{n}x_{i-1}, T^{n}x_{i}) \le \lambda D(T^{n-1}x_{i-1}, T^{n-1}x_{i}),$$

for all $n \in \mathbb{N}$ and i = 1, ..., N. Then, we get

$$D(T^{n}x_{i-1}, T^{n}x_{i}) \le \lambda^{n} D(x_{i-1}, x_{i}),$$
(2)

for all $n \in \mathbb{N}$ and i = 1, ..., N. Now, let $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$ be such that (D_3) is satisfied and $\varepsilon > 0$ be fixed. From (\mathcal{F}_2) , there exists $\delta > 0$ such that

$$0 < t < \delta \text{ implies } f(t) < f(\varepsilon) - \alpha. \tag{3}$$

Using (2), we have

$$\sum_{i=1}^{N} D(T^{n} x_{i-1}, T^{n} x_{i}) \le \sum_{i=1}^{N} \lambda^{n} D(x_{i-1}, x_{i}) = \lambda^{n} \sum_{i=1}^{N} D(x_{i-1}, x_{i}).$$

Scince $\lim_{n\to\infty} \lambda^n \sum_{i=1}^N D(x_{i-1}, x_i) = 0$, there exists some $N_0 \in \mathbb{N}$ such that

$$0 < \lambda^n \sum_{i=1}^N D(x_{i-1}, x_i) < \delta, \quad n \ge N_0.$$

Using (3) and (\mathcal{F}_1) , we obtain

$$f(\sum_{i=1}^{N} D(T^{n} x_{i-1}, T^{n} x_{i})) \le f(\lambda^{n} \sum_{i=1}^{N} D(x_{i-1}, x_{i})) < f(\varepsilon) - \alpha, \quad (4)$$

for all $n \ge N_0$. Using (D_3) and (4), we have

$$f(D(T^n x, T^n y)) \le f(\sum_{i=1}^N D(T^n x_{i-1}, T^n x_i)) + \alpha \le f(\varepsilon) - \alpha + \alpha < f(\varepsilon),$$

for all $n \geq N_0$. Then, we get

$$D(T^n x, T^n y) < \varepsilon, \quad n \ge N_0.$$

So $D(T^nx, T^ny) \to 0$ as $n \to \infty$, that is, the sequences $\{T^nx\}$ and $\{T^ny\}$ are equivalent.

Now, we shall prove that (ii) implies (iii). Let T be a $\mathcal{F}-G$ -contraction and $x, y \in Fix(T)$. From (ii), $\{T^n x\}$ and $\{T^n y\}$ are equivalent. Then, we have $D(x, y) = D(T^n x, T^n y) \to 0$ as $n \to \infty$, that is, x = y.

Finally we prove that (iii) implies (i). On the contrary, we assume that G is not weakly connected, that is, \tilde{G} is disconnected. Suppose that there exists $x_0 \in X$ such that both sets $[x_0]_{\tilde{G}}$ and $X - [x_0]_{\tilde{G}}$ are nonempty. Suppose $y_0 \in X - [x_0]_{\tilde{G}}$ and define

$$Tx = x_0 \text{ if } x \in [x_0]_{\tilde{G}} \quad ; \quad Tx = y_0 \text{ if } x \in X - [x_0]_{\tilde{G}}.$$

Consequently, $Fix(T) = \{x_0, y_0\}$. Now, we show that T is a $\mathcal{F} - G$ -contraction. Suppose $(x, y) \in E(G)$, so $[x]_{\tilde{G}} = [y]_{\tilde{G}}$, that is, $x, y \in C$

 $[x_0]_{\tilde{G}}$, or $x, y \in X - [x_0]_{\tilde{G}}$. Then, we have Tx = Ty, so $(Tx, Ty) \in E(G)$. Since $\Delta \subset E(G)$ and $D(Tx, Ty) = 0 \leq \lambda D(x, y)$ for any $\lambda \in [0, 1)$, we get T is a $\mathcal{F} - G$ -contraction having two fixed points which violates assumption (iii). \Box

Corollary 2.9. Let (X, D) be an \mathcal{F} -complete \mathcal{F} -metric space endowed with a graph weakly connected G. Then, for any $\mathcal{F} - G$ -contraction $T: X \to X$, there is $x^* \in X$ such that $\lim_{n\to\infty} T^n x = x^*$ for all $x \in X$.

Proof. Let $T: X \to X$ be a $\mathcal{F} - G$ -contraction and fix any point $x \in X$. Let $m > n \ge 0$ and $m, n \in \mathbb{N}$. Scince G is a weakly connected, from Theorem 2.8, the sequences $\{T^nx\}$ and $\{T^nT^{m-n}x\}$ are equvalent. Then $\lim_{n,m\to\infty} D(T^nx,T^mx) = 0$, that is, $\{T^n(x)\}$ is a \mathcal{F} -Cauchy sequence in X. Hence, there exists $x^* \in X$ such that $T^nx \to x^*$ as $n \to \infty$. Suppose $y \in X$, then by Theorem 2.8, sequences $\{T^nx\}$ and $\{T^ny\}$ are equivalent. Using (D_3) , we have

$$f(D(T^{n}y, x^{*}) \le f(D(T^{n}x, T^{n}y) + D(T^{n}x, x^{*})) + \alpha,$$

for all $n \in \mathbb{N}$. Since $D(T^n x, T^n y) + D(T^n x, x^*) \to 0$ as $n \to \infty$, so $\lim_{n\to\infty} f(D(T^n x, T^n y) + D(T^n x, x^*)) + \alpha = -\infty$. Then $D(T^n y, x^*) \to 0$ as $n \to \infty$. \Box

Theorem 2.10. Let (X, D) be an \mathcal{F} -complete \mathcal{F} -metric space endowed with a graph G and T be a self-mapping on X such that T is a \mathcal{F} -G-contraction mapping. Then $T|_{X_T}$ is a weakly Picard operator if one of the following conditions hold:

- i) T is orbitally G-continuous on X.
- ii) If $x_n \to x$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G)$ for all $n \in \mathbb{N}$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $(x_{n_k}, x) \in E(G)$ for all $k \in \mathbb{N}$.

Moreover, if (i) or (ii) holds, then $X_T \neq \emptyset$ if and only if $Fix(T) \neq \emptyset$.

Proof. If $X_T = \emptyset$, then it is clear that there is nothing to prove. Let $x \in X_T$, then $(x, Tx) \in E(G)$ and since T is an $\mathcal{F} - G$ -contraction mapping, it following $(Tx, T^2x) \in E(G)$, that is, $Tx \in X_T$. Thus, T

maps X_T into X_T . Then, it follows by induction that $(T^n x, T^{n+1} x) \in E(G)$ and

$$D(T^n x, T^{n+1} x) \le \alpha^n D(x, Tx), \tag{5}$$

for all $n \in \mathbb{N}$. Let $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$ be such that (D_3) is satisfied and $\varepsilon > 0$ be fixed. Using (\mathcal{F}_2) , there exists $\delta > 0$ such that

$$0 < t < \delta$$
 implies $f(t) < f(\varepsilon) - \alpha$. (6)

From (5), we have

$$\sum_{i=n}^{m} D(T^{i}x, T^{i+1}x) \le \sum_{i=n}^{m} \lambda^{i} D(x, Tx) \le \frac{\lambda^{n}}{1-\lambda} D(x, Tx),$$

for all $m \ge n \ge 0$. Scince $\lim_{n\to\infty} \frac{\lambda^n}{1-\lambda} D(x,Tx) = 0$, there exists some $N_0 \in \mathbb{N}$ such that

$$0 < \frac{\lambda^n}{1-\lambda} D(x, Tx) < \delta, \quad n \ge N_0.$$

Using (6) and (\mathcal{F}_1) , we have

$$f(\sum_{i=n}^{m} D(T^{i}x, T^{i+1}x)) \le f(\frac{\lambda^{n}}{1-\lambda}D(x, Tx)) < f(\varepsilon) - \alpha.$$
(7)

Then, from (D_3) and (7), we get

$$f(D(T^m x, T^n x)) \le f(\sum_{i=n}^m D(T^i x, T^{i+1} x)) + \alpha < f(\varepsilon).$$

Using (\mathcal{F}_1) , we obtain

$$D(T^m x, T^n x) < \varepsilon, \qquad m > n \ge N_0.$$

This prove that $\{T^n x\}$ is a \mathcal{F} -Cauchy sequence. Since (X, D) is \mathcal{F} -complete, there exists $x^* \in X$, such that

$$\lim_{n \to \infty} T^n x = x^*.$$
(8)

Now, we show that x^* is a fixed point of T. To this end, if T is orbitally G-continuous on X, then $T^{n+1}x \to Tx^*$ as $n \to \infty$. Because the limit of convergent sequence in a \mathcal{F} -metric space is unique, we get, $Tx^* = x^*$. Now, we suppose that condition (ii) holds. Then there exists a strictly increasing sequence $\{n_k\}$ of positive integer such that $(T^{n_k}x, x^*) \in E(G)$ for all $k \geq 1$. Then, from (D_3) , we have

$$f(D(Tx^*, x^*)) \le f(D(Tx^*, T^{n_k+1}x) + D(T^{n_k+1}x, x^*)) + \alpha$$

$$\le f(\lambda D(x^*, T^{n_k}x) + D(T^{n_k+1}x, x^*)) + \alpha$$

Using (\mathcal{F}_2) and (8), we have

$$\lim_{k \to \infty} f(\lambda D(x^*, T^{n_k}x) + D(T^{n_k+1}x, x^*)) + \alpha = -\infty,$$

which is a contradiction. Therefore, we have $D(Tx^*, x^*) = 0$, i.e. $Tx^* = x^*$. Since $Fix(T) \subset X_T$, we have $x^* \in X_T$, that is, $T|_{X_T}$ is a weakly Picard operator. \Box

In Theorem 2.10, if $G = G_0$, where $G_0 = (X, X \times X)$, then $X_T = X$ and we get the following corollary.

Corollary 2.11. Let (X, D) be a \mathcal{F} -complete \mathcal{F} -metric space and T be a self-mapping on X which satisfy (1). Then T is a Picard operator.

References

- M. Abbas, T. Nazir and H. Aydi, Fixed points of generalized graphic contraction mappings in partial metric spaces endowed with a graph, J. Adv. Math. Stud., 6(2), (2013), 130-139.
- [2] M. Abbas, T. Nazir, B. Popovíć and S. Radenović, On weakly commuting set-valued mappings on a domain of sets endowed with directed graph, *Results Math.*, 71(3-4), (2017), 1277-1295.
- [3] M. Abbas, T. Nazir, T. Aleksić Lampert and S. Radenović, Common fixed points of set-valued *F*-contraction mappings on domain of sets endowed with directed graph, *Comput. Appl. Math.*, 36(4), (2017), 1607-1622.

- [4] S. P. Acharya, Some results on fixed points in uniform spaces, Yokohama Math. J., 22, (1974), 105-116.
- [5] S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, *Topology Appl.*, 159(3) (2012), 659-663.
- [6] M. A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapınar, A note on extended Z-contraction, *Mathematics*, 8(2) (2020), p. 195.
- [7] M. U. Ali, Fahimuddin, T. Kamran and E. Karapınar, Fixed point theorems in uniform space endowed with graph, *Miskolc Mathematical Notes*, 18(1) (2017), pp. 57–69.
- [8] A. Azam, N. Mehmood, T. Došenović and S. Radenović, Coincidence point of L-fuzzy sets endowed with graph, *RACSAM*, (2018), 112:915-931.
- [9] I. C. Chifu and E. Karapınar, Admissible Hybrid Z-Contractions in b-Metric Spaces, Axioms, 9(1), (2020), 2.
- [10] C. Chifu, E. Karapınar and G. Petrusel, Qualitative properties of the solution of a system of operator inclusions in *b*-metric spaces endowed with a graph, *Bull. Iranian Math. Soc.*, 44(5) (2018), 1267-1281.
- [11] L. B. Ćirić, Some Recent Results In Metrical Fixed Point Theory, Faculty of Mechanical Engineering, University of Belgrade, Belgrade (2003).
- [12] R. Espinola and W.A. Kirk, Fixed point theorems in R-trees with applications to graph theory, *Topology Appl.*, 153, (2006), 1046-1055.
- [13] K. Fallahi and A. Aghanians, Fixed points for Chatterjea contractions on a metric space with a graph, Int. J. Nonlinear Anal. Appl., 7(2), (2016), 49-58.
- [14] H. Faraji, K. Nourouzi and D. O'Regan, A fixed point theorem in uniform spaces generated by a family of b-pseudometrics, *Fixed Point Theory*, 20(1), (2019), 177-183.

- [15] H. Faraji, D. Savić and S. Radenović, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Axioms, 8(1), (2019), 34.
- [16] R. George, H. A. Nabwey, R. Ramaswamy and S. Radenović, Some generalized contraction classes and common fixed points in b-metric space endowed with a graph, *Mathematics*, 7(8), (2019), 754; doi:10.3390/math7080754.
- [17] G. Gwozdz-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356(2), (2009), 453-463.
- [18] A. Hussain and T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, *Trans. A. Razmadze Math. Inst.*, 172(3), (2018), 481-490.
- [19] T. Kamran, M. Samreen and N. Shahzad, Probabilistic Gcontractions, Fixed Point Theory Appl., 2013(1), (2013), 223, 14.
- [20] E. Karapinar and C. Chifu, Results in wt-Distance over b-Metric Spaces, *Mathematics*, 8(2), (2020), 220.
- [21] E. Karapinar, A. Fulga and A. Petrusel, On Istratescu Type Contractions in b-Metric Spaces, *Mathematics*, 8(3), (2020), 388.
- [22] W. Kirk and N. Shahzad, Fixed Point Theory In Distances Spaces, Springer: Berlin, Germany, (2014).
- [23] J. Jachymski, The contraction principal for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 36(4), (2008), 1359-1373.
- [24] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20(3), (2018), Art. 128, 20 pp.
- [25] S.G. Matthews, *Partial Metric Topology*, Research Report 212, Dept. of Computer Science, University of Warwick, (1992).

- [26] Z. D. Mitrović, H. Aydi, N. Hussain and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on *F*-metric spaces and an application, *Mathematics*, (2019), 7, 387.
- [27] A. Petrusel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2), (2006), 411-418.
- [28] M. D. L. Sen, N. Nikolić, T. Došenović, M. Pavlović and S. Radenović, Some results on (sq)-graphic contraction mappings in b-metric-like spaces, *Mathematics*, 7(12), (2019), 1190; doi:10.3390/math7121190.

Hamid Faraji

Assistant Professor of Mathematics. Department of Mathematics College of Technical and Engineering Saveh Branch, Islamic Azad University Saveh, Iran. E-mail: faraji@iau-saveh.ac.ir

Stojan Radenović

Professor of Mathematics. Faculty of Mechanical Engineering University of Belgrade Kraljice Marije 16 11120 Beograd 35, Serbia. E-mail: radens@beotel.rs