Some Fixed Point Results for $\mathcal{F}-G$-Contraction in \mathcal{F}-Metric Spaces Endowed with a Graph

H. Faraji ${ }^{*}$
Saveh Branch, Islamic Azad University
S. Radenović
University of Belgrade

Abstract

In this paper, we introduce the concept of $\mathcal{F}-G$-contraction mappings in \mathcal{F}-metric spaces endowed with a graph and give some fixed point results for such contractions. Our results are generalization of some famous theorem in metric spaces to \mathcal{F}-metric spaces endowed with a graph. Also, we give some examples that support obtained theoretical results.

AMS Subject Classification: 47H10; 54H25; 55M20
Keywords and Phrases: Fixed point; \mathcal{F}-Metric spaces; \mathcal{F} - G-contraction.

1 Introduction

Fixed point theory is one of the traditional theory in functional and nonlinear analysis. Fixed point theory has developed rapidly in various extensions of metric spaces (see e.g. [4, 6, 9, 11, 14, 15, 20, 21, 22, 25]

[^0]and references therein). Jleli and Samet [24] introduced the concept of a \mathcal{F}-metric spaces as follows (see e.g. $[18,26]$ and references therein).

Let \mathcal{F} be the set of functions $f:(0, \infty) \rightarrow \mathbb{R}$ such that
$\left(\mathcal{F}_{1}\right) f$ is non-decreasing, i.e., $0<s<t$ implies $f(s) \leq f(t)$.
$\left(\mathcal{F}_{2}\right)$ For every sequence $\left\{t_{n}\right\} \subset(0, \infty)$, we have

$$
\lim _{n \rightarrow \infty} t_{n}=0 \text { if and only if } \lim _{n \rightarrow \infty} f\left(t_{n}\right)=-\infty
$$

Definition 1.1. [24] Let X be a (nonempty) set. A function $D: X \times$ $X \rightarrow[0, \infty)$ is a \mathcal{F}-metric on X iff, there exists $(f, \alpha) \in \mathcal{F} \times[0, \infty)$ such that for all $x, y \in X$ the following conditions are satisfied:
$\left(D_{1}\right) D(x, y)=0$ if and only if $x=y$.
$\left(D_{2}\right) D(x, y)=D(y, x)$.
$\left(D_{3}\right)$ For every $N \in \mathbb{N}, N \geq 2$ and for every $\left\{u_{i}\right\}_{i=1}^{N} \subset X$ with $\left(u_{1}, u_{N}\right)=$ (x, y), we have

$$
D(x, y)>0 \text { implies } f(D(x, y)) \leq f\left(\sum_{i=1}^{N-1} D\left(u_{i}, u_{i+1}\right)\right)+\alpha
$$

The pair (X, D) is called a \mathcal{F}-metric space.
Example 1.2. [24] Let $X=\mathbb{R}$ and $D: X \times X \rightarrow[0, \infty)$ be defined as follows:

$$
D(x, y)= \begin{cases}(x-y)^{2} & (x, y) \in[0,3] \times[0,3] \\ |x-y| & \text { otherwise }\end{cases}
$$

and let $f(t)=\ln (t)$ for all $t>0$ and $\alpha=\ln (3)$. Then, D is a \mathcal{F}-metric on X. Since $D(0,3)=9 \geq D(0,1)+D(1,3)=5$, then D is not a metric on X.

Example 1.3. [24] Let $X=\mathbb{R}$ and $D: X \times X \rightarrow[0, \infty)$ be defined as follows:

$$
D(x, y)= \begin{cases}e^{|x-y|} & x \neq y \\ 0 & x=y\end{cases}
$$

Then, D is a \mathcal{F}-metric on X. Since $D(2,4)=e^{2} \geq D(2,3)+D(3,4)=2 e$, so D is not a metric on X.

Definition 1.4. [24] Let (X, D) be an \mathcal{F}-metric space and $\left\{x_{n}\right\}$ be a sequence in X.

1) A sequence $\left\{x_{n}\right\}$ is called \mathcal{F}-convergent to $x \in X$, iff $D\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
2) A sequence $\left\{x_{n}\right\}$ is \mathcal{F}-Cauchy, iff $D\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
3) A \mathcal{F}-metric space (X, D) is said to be \mathcal{F}-complete, if every \mathcal{F}-Cauchy sequence in X is \mathcal{F}-convergent to some element in X.

Theorem 1.5. [24] Let (X, D) be an \mathcal{F}-complete \mathcal{F}-metric space and let $T: X \rightarrow X$ be a self-mapping satisfying

$$
\begin{equation*}
D(T x, T y) \leq \lambda D(x, y), \tag{1}
\end{equation*}
$$

for all $x, y \in X$ where $0 \leq \lambda<1$. Then T has a unique fixed point.
Espinola and Kirk in 2006 published some useful results on combining fixed point theory and graph theory [12]. In 2008, Jachymski [23] proved the contraction Principal for mappings on a metric space with a graph. For some recent works in metric spaces endowed with graph the reader is referred to (see e.g. [1, 2, 3, 5, 7, 8, 10, 13, 16, 17, 19, 28]

Let $G=(V(G), E(G))$ be a directed graph such that $V(G)$ is the set of vertices and $E(G)$ is edges of G. Also $\Delta \subset E(G)$ where $\Delta=$ $\{(x, x): x \in X\}$ and assume that G has no parallel edges. We denote the conversion of a graph G by G^{-1}, i.e., the graph obtained from G by reversing the direction of edges. Let \tilde{G} be the undirected graph obtained from G by ignoring the direction of edges, so we have $E(\tilde{G})=$ $E(G) \bigcup E\left(G^{-1}\right)$. Let x and y are vertices in a graph G. A path in G from x to y of length m is a sequence $\left\{x_{n}\right\}_{n=0}^{m}$ of $m+1$ vertices such that $x_{0}=x, x_{m}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, m$. A graph G is called connected if there is a path between any two vertices of G and graph G is weakly connected if \tilde{G} is connected. For $x \in X$ we set $[x]_{\tilde{G}}$ which is the equivalence class of the following relation R defined on $V(G)$ by the rule: $x R y$ if there is a path in G from x to y. Also, for $x \in G$ and $m \in \mathbb{N}$, define

$$
[x]_{G}^{m}=\{y \in X: \text { there is a directed path from } x \text { to } y \text { of length } m\} .
$$

Definition 1.6. [27] Let (X, d) be a metric space and $T: X \rightarrow X$ be a self-mapping. Then
i) T is called a Picard operator (briefly PO), if T has a unique fixed point $x^{*} \in X$ and $T^{n} x \rightarrow x^{*}$ for each $x \in X$.
ii) T is called a weakly Picard operator (briefly WPO) if the sequence $\left\{T^{n} x\right\}$ converges to a fixed point of T for all $x \in X$.

Definition 1.7. [23] Let (X, d) be a metric space endowed with a graph G. A mapping $T: X \rightarrow X$ is called orbitally G-continuous on X if for all $x, y \in X$ and all $\left\{p_{n}\right\}$ of positive integers with $\left(T^{p_{n}} x, T^{p_{n}+1} x\right) \in E(G)$ for all $n \geq 1$, the convergence $T^{p_{n}} x \rightarrow y$ implies $T\left(T^{p_{n}} x\right) \rightarrow T y$.

Let T be a self mapping on X. We denote

$$
\begin{gathered}
X_{T}=\{x \in X \mid(x, T x) \in E(G)\}, \\
F i x(T)=\{x \in X \mid T x=x\} .
\end{gathered}
$$

2 Main Results

Now, we introduce one new type of contractive mappings in the context of \mathcal{F}-metric spaces endowed with a graph and prove the corresponding new result. We also prove and extend some the results of Jachymski [23] and Falahi et al. [13] to the context of \mathcal{F}-metric spaces. Throughout this section we assume that (X, D) is a \mathcal{F}-metric space endowed with directed graph G, which $V(G)=X$ and $\Delta \subset E(G)$.

Definition 2.1. Let (X, D) be an \mathcal{F}-metric space and T be a selfmapping on X. We say that T is an $\mathcal{F}-G$-contraction if for every $x, y \in X$, we have

$$
\begin{gathered}
(x, y) \in E(G) \text { implies } \quad(T x, T y) \in E(G) \\
(x, y) \in E(G) \text { implies } \quad D(T x, T y) \leq \lambda D(x, y)
\end{gathered}
$$

where $\lambda \in[0,1)$.
Example 2.2. Let (X, \mathcal{F}) be an \mathcal{F}-metric space and $G=(X, \Delta)$. Then any self-mapping T on X is an $\mathcal{F}-G$-contraction.

Example 2.3. Let X be a nonempty set and (X, \mathcal{F}) be an \mathcal{F}-metric space. Then for any graph $G=(X, E(G))$, constant mapping $T: X \rightarrow$ X is a $\mathcal{F}-G$-contraction.

Example 2.4. Consider the \mathcal{F}-metric space given in Example 1.2. Define

$$
T x= \begin{cases}3 x & x>2 \\ \frac{x}{2} & 0 \leq x \leq 2 \\ 0 & x<0\end{cases}
$$

Then, for any $\lambda \in[0,1)$, we have

$$
D(T 2, T 3)=D\left(\frac{2}{3}, 9\right)=\left|\frac{2}{3}-9\right|=\frac{25}{3}>\lambda=\lambda D(2,3) .
$$

Then, T does not satisfy (1). Define $G=(V(G), E(G))$, where $V(G)=$ \mathbb{R} and $E(G)=\{(x, x) \mid x \in \mathbb{R}\}$. Therefore, T is an $\mathcal{F}-G$-contraction mapping for any $\lambda \in[0,1)$.

Example 2.5. Let $X=\{0,1,2\}$ be endowed with the \mathcal{F}-metric given in Example 1.3. Define $T 0=T 2=0, T 1=2$. Then, for any $\lambda \in[0,1)$, we have

$$
D(T 1 . T 2)=e^{|T 1-T 2|}=e^{2}>\lambda e=\lambda D(1,2) .
$$

Consequently, T does not satisfy (1). Define $G=(V(G), E(G))$, where $V(G)=X$ and $E(G)=\{(0,0),(1,1),(0,2),(2,2)\}$. Then T is an $\mathcal{F}-$ $G-$ contraction mapping for any $\lambda \in[0,1)$.

Proposition 2.6. Let (X, D) be an \mathcal{F}-metric space and $T: X \rightarrow X$ be a $\mathcal{F}-G$-contraction. Then:
(i) T is a $\mathcal{F}-\tilde{G}$-contraction and also a $\mathcal{F}-G_{\tilde{G}}^{-1}$-contraction.
(ii) $\left[x_{0}\right]_{\tilde{G}}$ is T-invariant and $\left.T\right|_{\left[x_{0}\right]_{\tilde{G}}}$ is a $\mathcal{F}-\tilde{G}_{x_{0}}$-contraction, where $x_{0} \in X$ and $T\left(x_{0}\right) \in\left[x_{0}\right]_{\tilde{G}}$.

Proof. (i) Since \mathcal{F}-metric is symmetric, then T is a $\mathcal{F}-\tilde{G}$-contraction and also a $\mathcal{F}-G^{-1}$-contraction.
(ii) Let $x \in\left[x_{0}\right]_{\tilde{G}}$. So there exists a path $\left\{z_{i}\right\}_{i=0}^{N}$ in \tilde{G} from x to x_{0} which $x=z_{0}$ and $x_{0}=z_{N}$ and $\left(z_{i-1}, z_{i}\right) \in E(\tilde{G})$. Since T is a
$\mathcal{F}-G$-contaraction, for all $i=1, \ldots, N$, we have $\left(T z_{i-1}, T z_{i}\right) \in E(G)$. Then $T x \in\left[T x_{0}\right]_{\tilde{G}}=\left[x_{0}\right]_{\tilde{G}}$, that is, $\left[x_{0}\right]_{\tilde{G}}$ is T-invariant. Now, assume $(x, y) \in E\left(\tilde{G}_{x_{0}}\right)$. Since T is a $\mathcal{F}-G$-contraction, $(T x, T y) \in E(G)$. Also, $\left[x_{0}\right]_{\tilde{G}}$ is T-invariant, then $(T x, T y) \in E\left(\tilde{G}_{x_{0}}\right)$. Since $\tilde{G}_{x_{0}}$ is a subgraph of G, we obtain $\left.T\right|_{\left[x_{0}\right]_{\tilde{G}}}$ is a $\mathcal{F}-\tilde{G}_{x_{0}}$-contraction.
Definition 2.7. Let (X, \mathcal{F}) be a \mathcal{F}-metric space. We say that sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are equivalent if $\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=0$, and they are called \mathcal{F}-Cauchy equivalent, if each of them is a \mathcal{F}-Cauchy sequence.

The following result extend the main one from [23].
Theorem 2.8. Let (X, D) be an \mathcal{F}-metric space. The following are equivalent:
(i) G is weakly connected.
(ii) For any $\mathcal{F}-G$-contraction $T: X \rightarrow X$, given $x, y \in X$, the sequences $\left\{T^{n} x\right\}$ and $\left\{T^{n} y\right\}$ are equivalent.
iii) For any $\mathcal{F}-G-$ contraction $T: X \rightarrow X, \operatorname{card}(\operatorname{Fix}(T)) \leq 1$.

Proof. First we prove that (i) implies (ii). Let $x, y \in X$ and by hypothesis, $[x]_{\tilde{G}}=X$, then $y \in[x]_{\tilde{G}}$. So there exists a path $\left\{x_{i}\right\}_{i=0}^{N}$ in \tilde{G} from x to y which $x_{0}=x$ and $x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{G})$ for all $i=1,2, \ldots, N$. Using Proposition 2.6, T is an $\mathcal{F}-\tilde{G}$-contraction. Then, we have

$$
\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \in E(\tilde{G})
$$

consequently

$$
D\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \leq \lambda D\left(T^{n-1} x_{i-1}, T^{n-1} x_{i}\right)
$$

for all $n \in \mathbb{N}$ and $i=1, \ldots, N$. Then, we get

$$
\begin{equation*}
D\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \leq \lambda^{n} D\left(x_{i-1}, x_{i}\right) \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $i=1, \ldots, N$. Now, let $(f, \alpha) \in \mathcal{F} \times[0,+\infty)$ be such that $\left(D_{3}\right)$ is satisfied and $\varepsilon>0$ be fixed. From $\left(\mathcal{F}_{2}\right)$, there exists $\delta>0$ such that

$$
\begin{equation*}
0<t<\delta \text { implies } f(t)<f(\varepsilon)-\alpha \tag{3}
\end{equation*}
$$

Using (2), we have

$$
\sum_{i=1}^{N} D\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \leq \sum_{i=1}^{N} \lambda^{n} D\left(x_{i-1}, x_{i}\right)=\lambda^{n} \sum_{i=1}^{N} D\left(x_{i-1}, x_{i}\right) .
$$

Scince $\lim _{n \rightarrow \infty} \lambda^{n} \sum_{i=1}^{N} D\left(x_{i-1}, x_{i}\right)=0$, there exists some $N_{0} \in \mathbb{N}$ such that

$$
0<\lambda^{n} \sum_{i=1}^{N} D\left(x_{i-1}, x_{i}\right)<\delta, \quad n \geq N_{0}
$$

Using (3) and $\left(\mathcal{F}_{1}\right)$, we obtain

$$
\begin{equation*}
f\left(\sum_{i=1}^{N} D\left(T^{n} x_{i-1}, T^{n} x_{i}\right)\right) \leq f\left(\lambda^{n} \sum_{i=1}^{N} D\left(x_{i-1}, x_{i}\right)\right)<f(\varepsilon)-\alpha, \tag{4}
\end{equation*}
$$

for all $n \geq N_{0}$. Using (D_{3}) and (4), we have
$f\left(D\left(T^{n} x, T^{n} y\right)\right) \leq f\left(\sum_{i=1}^{N} D\left(T^{n} x_{i-1}, T^{n} x_{i}\right)\right)+\alpha \leq f(\varepsilon)-\alpha+\alpha<f(\varepsilon)$,
for all $n \geq N_{0}$. Then, we get

$$
D\left(T^{n} x, T^{n} y\right)<\varepsilon, \quad n \geq N_{0} .
$$

So $D\left(T^{n} x, T^{n} y\right) \rightarrow 0$ as $n \rightarrow \infty$, that is, the sequences $\left\{T^{n} x\right\}$ and $\left\{T^{n} y\right\}$ are equivalent.
Now, we shall prove that (ii) implies (iii). Let T be a $\mathcal{F}-G$-contraction and $x, y \in \operatorname{Fix}(T)$. From (ii), $\left\{T^{n} x\right\}$ and $\left\{T^{n} y\right\}$ are equivalent. Then, we have $D(x, y)=D\left(T^{n} x, T^{n} y\right) \rightarrow 0$ as $n \rightarrow \infty$, that is, $x=y$.
Finally we prove that (iii) implies (i). On the contrary, we assume that G is not weakly connected, that is, \tilde{G} is disconnected. Suppose that there exists $x_{0} \in X$ such that both sets $\left[x_{0}\right]_{\tilde{G}}$ and $X-\left[x_{0}\right]_{\tilde{G}}$ are nonempty. Suppose $y_{0} \in X-\left[x_{0}\right]_{\tilde{G}}$ and define

$$
T x=x_{0} \text { if } x \in\left[x_{0}\right]_{\tilde{G}} \quad ; \quad T x=y_{0} \text { if } x \in X-\left[x_{0}\right]_{\tilde{G}} .
$$

Consequently, $\operatorname{Fix}(T)=\left\{x_{0}, y_{0}\right\}$. Now, we show that T is a $\mathcal{F}-$ G-contraction. Suppose $(x, y) \in E(G)$, so $[x]_{\tilde{G}}=[y]_{\tilde{G}}$, that is, $x, y \in$
$\left[x_{0}\right]_{\tilde{G}}$, or $x, y \in X-\left[x_{0}\right]_{\tilde{G}}$. Then, we have $T x=T y$, so $(T x, T y) \in E(G)$. Since $\Delta \subset E(G)$ and $D(T x, T y)=0 \leq \lambda D(x, y)$ for any $\lambda \in[0,1)$, we get T is a $\mathcal{F}-G$-contraction having two fixed points which violates assumption (iii).

Corollary 2.9. Let (X, D) be an \mathcal{F}-complete \mathcal{F}-metric space endowed with a graph weakly connected G. Then, for any $\mathcal{F}-G$-contraction $T: X \rightarrow X$, there is $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$ for all $x \in X$.

Proof. Let $T: X \rightarrow X$ be a $\mathcal{F}-G$-contraction and fix any point $x \in X$. Let $m>n \geq 0$ and $m, n \in \mathbb{N}$. Scince G is a weakly connected, from Theorem 2.8, the sequences $\left\{T^{n} x\right\}$ and $\left\{T^{n} T^{m-n} x\right\}$ are equvailent. Then $\lim _{n, m \rightarrow \infty} D\left(T^{n} x, T^{m} x\right)=0$, that is, $\left\{T^{n}(x)\right\}$ is a \mathcal{F}-Cauchy sequence in X. Hence, there exists $x^{*} \in X$ such that $T^{n} x \rightarrow x^{*}$ as $n \rightarrow \infty$. Suppose $y \in X$, then by Theorem 2.8, sequencs $\left\{T^{n} x\right\}$ and $\left\{T^{n} y\right\}$ are equivalent. Using $\left(D_{3}\right)$, we have

$$
f\left(D\left(T^{n} y, x^{*}\right) \leq f\left(D\left(T^{n} x, T^{n} y\right)+D\left(T^{n} x, x^{*}\right)\right)+\alpha\right.
$$

for all $n \in \mathbb{N}$. Since $D\left(T^{n} x, T^{n} y\right)+D\left(T^{n} x, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$, so $\lim _{n \rightarrow \infty} f\left(D\left(T^{n} x, T^{n} y\right)+D\left(T^{n} x, x^{*}\right)\right)+\alpha=-\infty$. Then $D\left(T^{n} y, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2.10. Let (X, D) be an \mathcal{F}-complete \mathcal{F}-metric space endowed with a graph G and T be a self-mapping on X such that T is a \mathcal{F} -G-contraction mapping. Then $\left.T\right|_{X_{T}}$ is a weakly Picard operator if one of the following conditions hold:
i) T is orbitally G-continuous on X.
ii) If $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left(x_{n_{k}}, x\right) \in E(G)$ for all $k \in \mathbb{N}$.

Moreover, if (i) or (ii) holds, then $X_{T} \neq \emptyset$ if and only if Fix $(T) \neq \emptyset$.
Proof. If $X_{T}=\emptyset$, then it is clear that there is nothing to prove. Let $x \in X_{T}$, then $(x, T x) \in E(G)$ and since T is an $\mathcal{F}-G$-contraction mapping, it following $\left(T x, T^{2} x\right) \in E(G)$, that is, $T x \in X_{T}$. Thus, T
maps X_{T} into X_{T}. Then, it follows by induction that $\left(T^{n} x, T^{n+1} x\right) \in$ $E(G)$ and

$$
\begin{equation*}
D\left(T^{n} x, T^{n+1} x\right) \leq \alpha^{n} D(x, T x), \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Let $(f, \alpha) \in \mathcal{F} \times[0,+\infty)$ be such that $\left(D_{3}\right)$ is satisfied and $\varepsilon>0$ be fixed. Using $\left(\mathcal{F}_{2}\right)$, there exists $\delta>0$ such that

$$
\begin{equation*}
0<t<\delta \text { implies } f(t)<f(\varepsilon)-\alpha \tag{6}
\end{equation*}
$$

From (5), we have

$$
\sum_{i=n}^{m} D\left(T^{i} x, T^{i+1} x\right) \leq \sum_{i=n}^{m} \lambda^{i} D(x, T x) \leq \frac{\lambda^{n}}{1-\lambda} D(x, T x)
$$

for all $m \geq n \geq 0$. Scince $\lim _{n \rightarrow \infty} \frac{\lambda^{n}}{1-\lambda} D(x, T x)=0$, there exists some $N_{0} \in \mathbb{N}$ such that

$$
0<\frac{\lambda^{n}}{1-\lambda} D(x, T x)<\delta, \quad n \geq N_{0}
$$

Using (6) and $\left(\mathcal{F}_{1}\right)$, we have

$$
\begin{equation*}
f\left(\sum_{i=n}^{m} D\left(T^{i} x, T^{i+1} x\right)\right) \leq f\left(\frac{\lambda^{n}}{1-\lambda} D(x, T x)\right)<f(\varepsilon)-\alpha . \tag{7}
\end{equation*}
$$

Then, from $\left(D_{3}\right)$ and (7), we get

$$
f\left(D\left(T^{m} x, T^{n} x\right)\right) \leq f\left(\sum_{i=n}^{m} D\left(T^{i} x, T^{i+1} x\right)\right)+\alpha<f(\varepsilon) .
$$

Using $\left(\mathcal{F}_{1}\right)$, we obtain

$$
D\left(T^{m} x, T^{n} x\right)<\varepsilon, \quad m>n \geq N_{0} .
$$

This prove that $\left\{T^{n} x\right\}$ is a \mathcal{F}-Cauchy sequence. Since (X, D) is \mathcal{F} complete, there exists $x^{*} \in X$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T^{n} x=x^{*} \tag{8}
\end{equation*}
$$

Now, we show that x^{*} is a fixed point of T. To this end, if T is orbitally G-continuous on X, then $T^{n+1} x \rightarrow T x^{*}$ as $n \rightarrow \infty$. Because the limit of convergent sequence in a \mathcal{F}-metric space is unique, we get, $T x^{*}=x^{*}$. Now, we suppose that condition (ii) holds. Then there exists a strictly increasing sequence $\left\{n_{k}\right\}$ of positive integer such that $\left(T^{n_{k}} x, x^{*}\right) \in E(G)$ for all $k \geq 1$. Then, from $\left(D_{3}\right)$, we have

$$
\begin{aligned}
f\left(D\left(T x^{*}, x^{*}\right)\right) & \leq f\left(D\left(T x^{*}, T^{n_{k}+1} x\right)+D\left(T^{n_{k}+1} x, x^{*}\right)\right)+\alpha \\
& \leq f\left(\lambda D\left(x^{*}, T^{n_{k}} x\right)+D\left(T^{n_{k}+1} x, x^{*}\right)\right)+\alpha
\end{aligned}
$$

Using $\left(\mathcal{F}_{2}\right)$ and (8), we have

$$
\lim _{k \rightarrow \infty} f\left(\lambda D\left(x^{*}, T^{n_{k}} x\right)+D\left(T^{n_{k}+1} x, x^{*}\right)\right)+\alpha=-\infty
$$

which is a contradiction. Therefore, we have $D\left(T x^{*}, x^{*}\right)=0$, i.e. $T x^{*}=$ x^{*}. Since $\operatorname{Fix}(T) \subset X_{T}$, we have $x^{*} \in X_{T}$, that is, $\left.T\right|_{X_{T}}$ is a weakly Picard operator.
In Theorem 2.10, if $G=G_{0}$, where $G_{0}=(X, X \times X)$, then $X_{T}=X$ and we get the following corollary.

Corollary 2.11. Let (X, D) be a \mathcal{F}-complete \mathcal{F}-metric space and T be a self-mapping on X which satisfy (1). Then T is a Picard operator.

References

[1] M. Abbas, T. Nazir and H. Aydi, Fixed points of generalized graphic contraction mappings in partial metric spaces endowed with a graph, J. Adv. Math. Stud., 6(2), (2013), 130-139.
[2] M. Abbas, T. Nazir, B. Popovíć and S. Radenović, On weakly commuting set-valued mappings on a domain of sets endowed with directed graph, Results Math., 71(3-4), (2017), 1277-1295.
[3] M. Abbas, T. Nazir, T. Aleksić Lampert and S. Radenović, Common fixed points of set-valued F-contraction mappings on domain of sets endowed with directed graph, Comput. Appl. Math., 36(4), (2017), 1607-1622.
[4] S. P. Acharya, Some results on fixed points in uniform spaces, Yokohama Math. J., 22, (1974), 105-116.
[5] S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl., 159(3) (2012), 659-663.
[6] M. A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapınar, A note on extended Z-contraction, Mathematics, 8(2) (2020), p. 195.
[7] M. U. Ali, Fahimuddin, T. Kamran and E. Karapınar, Fixed point theorems in uniform space endowed with graph, Miskolc Mathematical Notes, 18(1) (2017), pp. 57-69.
[8] A. Azam, N. Mehmood, T. Došenović and S. Radenović, Coincidence point of L-fuzzy sets endowed with graph, RACSAM, (2018), 112:915-931.
[9] I. C. Chifu and E. Karapınar, Admissible Hybrid Z-Contractions in b-Metric Spaces, Axioms, 9(1), (2020), 2.
[10] C. Chifu, E. Karapınar and G. Petrusel, Qualitative properties of the solution of a system of operator inclusions in b-metric spaces endowed with a graph, Bull. Iranian Math. Soc., 44(5) (2018), 12671281.
[11] L. B. Ćirić, Some Recent Results In Metrical Fixed Point Theory, Faculty of Mechanical Engineering, University of Belgrade, Belgrade (2003).
[12] R. Espinola and W.A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, (2006), 10461055.
[13] K. Fallahi and A. Aghanians, Fixed points for Chatterjea contractions on a metric space with a graph, Int. J. Nonlinear Anal. Appl., 7(2), (2016), 49-58.
[14] H. Faraji, K. Nourouzi and D. O'Regan, A fixed point theorem in uniform spaces generated by a family of b-pseudometrics, Fixed Point Theory, 20(1), (2019), 177-183.
[15] H. Faraji, D. Savić and S. Radenović, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Axioms, 8(1), (2019), 34.
[16] R. George, H. A. Nabwey, R. Ramaswamy and S. Radenović, Some generalized contraction classes and common fixed points in b-metric space endowed with a graph, Mathematics, 7(8), (2019), 754; doi:10.3390/math7080754.
[17] G. Gwozdz-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356(2), (2009), 453-463.
[18] A. Hussain and T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst., 172(3), (2018), 481-490.
[19] T. Kamran, M. Samreen and N. Shahzad, Probabilistic Gcontractions, Fixed Point Theory Appl., 2013(1), (2013), 223, 14.
[20] E. Karapinar and C. Chifu, Results in wt-Distance over b-Metric Spaces, Mathematics, 8(2), (2020), 220.
[21] E. Karapinar, A. Fulga and A. Petrusel, On Istratescu Type Contractions in b-Metric Spaces, Mathematics, 8(3), (2020), 388.
[22] W. Kirk and N. Shahzad, Fixed Point Theory In Distances Spaces, Springer: Berlin, Germany, (2014).
[23] J. Jachymski, The contraction principal for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 36(4), (2008), 13591373.
[24] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20(3), (2018), Art. 128, 20 pp.
[25] S.G. Matthews, Partial Metric Topology, Research Report 212, Dept. of Computer Science, University of Warwick, (1992).
[26] Z. D. Mitrović, H. Aydi, N. Hussain and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on \mathcal{F}-metric spaces and an application, Mathematics, (2019), 7, 387.
[27] A. Petrusel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2), (2006), 411-418.
[28] M. D. L. Sen, N. Nikolić, T. Došenović, M. Pavlović and S. Radenović, Some results on $(s q)$-graphic contraction mappings in b-metric-like spaces, Mathematics, 7(12), (2019), 1190; doi:10.3390/math7121190.

Hamid Faraji

Assistant Professor of Mathematics.
Department of Mathematics
College of Technical and Engineering
Saveh Branch, Islamic Azad University
Saveh, Iran.
E-mail: faraji@iau-saveh.ac.ir

Stojan Radenović

Professor of Mathematics.
Faculty of Mechanical Engineering
University of Belgrade
Kraljice Marije 16
11120 Beograd 35, Serbia.
E-mail: radens@beotel.rs

[^0]: Received: January 2020; Accepted: September 2020.
 *Corresponding Author

