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1.

Throughout rings will have unit elements and modules will be right uni-
tary. If M is a module over a ring R, its quasi-injective (injective) hull
will be denoted by Mg (E(Mg)). For R-modules N and M the submod-
ule Trr(M,N) := > {Imh | h € Homgr(M, N)} is called the trace of M
in N, and the submodule Rejr(N, M) := N{Ker f | f € Homg(N, M)}
is called the reject of M in N. Unexplained terminology and standard
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Introduction

results may be found in [1] or [10].

The notions of prime and semiprime for modules have been studies
by several authors who have used different definitions [2]-[4], [6] and [9]-
[11]. Bican, Jambor, Kepka and Nemec called an R-module M prime
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if K« L :=Hompg(M,L)K # 0 for any non-zero submodules K, L < M
([2]). This definition of prime called *-prime by Lomp ([5]). The notion
of primeness had already been extended by Jirasko to semiprimeness for
modules ([4]). A semiprime module M (in the sense of Jirasko) is defined
by the property that the condition N x N = 0 implies N = 0, when-
ever N is a submodule in M. As noted in [5] the notion of semiprime
module coincides with that of weakly compressible, a result attributed
to Zelmanowitz ([12]). Recall that Mp is called weakly compressible
if Homp(M, N) contains an element f with f |y# 0 whenever N is a
non-zero submodule of M. We have the following implications

* — prime = weakly compressible = retractable,

where an R-module M is said to be retractable if Hompg(M, N) # 0 for
all non-zero submodules N of M. The reverse implications have been
investigated by Lomp who proved that a retractable module with prime
endomorphism ring is necessarily *-prime, and a retractable module with
semiprime endomorphism ring is weakly compressible. Furthermore, for
a semi-projective module, it is true that being *-prime is the same as
being retractable with prime endomorphism ring ([5, Propositions 4.2
and 5.2]).

Wisbauer and Wijayanti called a module My fully prime if for any non-
zero fully invariant submodule K of M, M is K—cogenerated. They
proved in [9] that M is fully prime if and only if K « L # 0 for any
non-zero fully invariant submodules K, L < M.

The notion of subhomomorphic modules comes from the aforementioned
studies. We carry out a thorough investigation of this useful notation.
For example by considering the class of simple R-modules which are
subhomomorphic to R, some new characterizations of semisimple rings
are obtained.

2. Subhomomorphic for Ring

Definition 2.1. Let M and N be two non-zero R-modules. M s
called subhomomorphic to N in case there exist R—homomorphisms
f:M — N,g: N — M such that gof is non-zero. M 1is called strongly
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subhomomorphic to N in case there exist homomorphisms f: M — N,
g: N — M such that fog and gof are non-zero.

Proposition 2.2. Let M be an *x-prime R-module. Then for every
non-zero submodules K, L of M, K is subhomomorphic to L.

Proof. Let K,L be non-zero submodules of M. By *-primeness we
have Trr(L, K) # 0 so that Hompg (K, L)Trr(L, K) # 0 and hence there
exist R—homomorphisms f : K — L, g : L — K such that gof is
non-zero. [J

Lemma 2.3. The following statements for an R-module M are equiva-
lent.

(a) Mg is strongly subhomomorphic to Rp.
(b) Mg is subhomomorphic to RR.
(c) There exist n,m € M and a homomorphism f : Mr — Rpr such that

mf(n) #0.

Proof. (a)=(b). By definition.

(b)=(c). Let f: Mr — RpR, g : Rr — Mg such that fog is a non-zero
R—homomorphism so gf(m) # 0 for some m € M. Then gf(m) =
g(1f(m)) = g(1) f(m) £ 0.

(c)=(a). If zf(x) # 0 for some x € M then we can define g : Rp — Mg
via 7 +— xr then gof(x) # 0, fog(l) # 0. Otherwise we may suppose
that m # n, f(m) # f(n), mf(n) # 0 and mf(m) = 0. Then we
define R—homomorphism h : Rp — Mpg such that r — (m — n)r then
fh(1) = f(m —n) # 0 and hf(m) = h(1)f(m) = (m — n)f(m) =
mf(m) —nf(m) =—nf(m)#0. O

Corollary 2.4. The following statements are equivalent for an R-
module M.

(a) The module M is subhomomorphic to R-module R/ann(M).
(b) Hompr(M, R/ann(M)) # 0.

Proof. (a)= (b)By definition.
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(b)=(a). Let f : M — (R/ann(M)) be a non-zero homomorphism
then there exist x € M such that f(z) # 0. If mf(z) = 0 for all
m € M we have f(x) € ann(M) and f(z) must be zero, contradiction,
then mf(xz) # 0 for some z,m € M and by Lemma 2.3 the proof is
completed. [

Examples 2.5. (a) By Lemma 2.3 if M is a semiprime R-module
in the sense of Zelmanowitz, [ i.e. for each 0 # m € M there exists
f € Hom(M, R) with mf(m) # 0] then M is strongly subhomomorphic
to R.

(b) Let M be a faithful R-module and R be an injective R-module, then
R is strongly subhomomorphic to M7 for some set I (R can be embedded
in M' and by injectivity it is a direct summand of R ).

(c) Let R be a semiprime ring. Then every non-zero ideal of R is strongly
subhomomorphic to R (by Lemma 2.3 ).

(d) Let R=7Z, M = Z4 and M = Zy. Then M is subhomomorphic to
N, but it is not strongly subhomomorphic to N.

Let M be an R-module. Then R is subhomomorphic to M if and only
if M* =Hom(M, R) # 0. So that R is subhomomorphic to I for every
right ideal I of R.

Lemma 2.6. Let I,J be non-zero two sided ideals of R. If I1JI # 0
then I is subhomomorphic to J.

Proof. If IJI # 0, there exist x € I, b € J such that bl # 0 then
we can define R—homomorphisms f, : Ig — Jg and g, : Jg — Ir via
fo(i) = bi, g2(j) = zj, so that g fp(I) = go(bI) = xbl # 0, thus [ is
subhomomorphic to J. O

Corollary 2.7. If I is an ideal of R with, I> # 0 then I is subhomo-
morphic to R.

Proof. Apply Lemma 2.6 for J = R. [

Lemma 2.8. Let I be a right ideal of R. Then R/I is subhomomorphic
to R if and only if there exist v,y € R such that xI =0 and yx & I.

Proof. Let R/I be subhomomorphic to R so there exist f : R/ — R
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and ,t € R/I such that gf(t) = yf(1)t = gat = (y + I)xt # 0 so that
xl = f(1)I = f(I) = 0 and yz £I. Conversely if we define f: R/T — R
and g : R — R/I via f(r+ 1) = ar, g(r) = yr + I for r € R then
gf(1+1)=g(z) =yz+ 1 # 0, and the proof is completed. [

Note: Let I be a two sided ideal of R then I is not subhomomorphic
to R if and only if I.Tr(I, R) = 0 if and only if Tr(I, R) C r.ann([).

Let I be a proper ideal of R. Then R/I is subhomomorphic to R if and
only if there exists x, y in R such that xI = 0 and yz ¢ I if and only if

I(I) 1.

Proposition 2.9. If I is a non-zero two sided ideal of R and I =
lann(I), then I is not subhomomorphic to R and R/I is not subho-
momorphic to R.

Proof. By Lemma 2.8, R/I is subhomomorphic to R if and only if [(I) € I
for proper ideal I of R so this trivial that R/I is not subhomomorphic
to R.

If f: I — Rand m,n € I with mf(n) # 0 then f(I?) = f(I)I =0
so f(I) C I and f(n) € I thus mf(n) € I? and mf(n) = 0, this is a
contradiction, so that I is not subhomomorphic to R. 0

Proposition 2.10. Let I be an ideal of R. If for every right ideal K of
R we have R/I subhomomorphic to R/K, then I is T—nilpotent.

Proof. Let ay,as,as,... be elements in I such that ajas...a, # 0 for
all n. Then S = {K < Rp | aias...a; ¢K for all t} is a non-empty
set. By Zorn’s lemma has a maximal element, say B. Because R/I
is subhomomorphic to R/B, then there exists r + B # B such that
(r+ B)I =0. Thus rI C B and ajas...a, € TR+ B for some n. Then
aias...ap, = rt + b for some t € R and b € B and hence ajas...apl C
(rt +b)I C B and ajas....anan+1 € B and this is a contradiction, and T
is T'— nilpotent. [

Proposition 2.11. Let R be a commutative ring and N be an R-module.
Then the following statements are equivalent.
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(1) N is semiprime in the sense of Zelmanowitz.
(2) The class of submodules of N are subhomomorphic to R.
(3) The class of cyclic submodules of N are subhomomorphic to R.

Proof. (1)=(2). For 0 # k € K there exists f : N — R such that
kf(k) # 0 then the restriction of f to K is in K* and kf(k) # 0 (by
Lemma 2.3) the proof is completed.

(2)=(3). Trivial.

(3)=(1). For 0 # n € N there exist f : Rn — R and g : R — Rn such
that gf(n) # 0 then gf(n) = g(1)f(n) = nrf(n) = nf(n)r # 0 and
nf(n) # 0. Then N is semiprime in the sense of Zelmanowitz. [

Let E(S) be an injective hull of simple R-module S. If E(S) is sub-
homomorphic to R with R—homomorphisms f : E(S) — R and g :
R — E(S) then we can deduce that either S is subhomomorphic to R
or gf € J(End(E(S))).

A ring R is called right (left) hereditary if every right (left) ideal of R is
projective.

Theorem 2.12. Let R be a nonsingular ring. Then the following state-
ments are equivalent.

(1) The class of injective R-modules is subhomomorphic to R.

(2) For any injective R-module E there exists a nonsingular projective
R-module P such that E is subhomomorphic to P.

(3) R is a semisimple ring.

Proof. (1)=(2) Let P = R.

(2)=-(3) Let S be a simple R-module and E(S) be subhomomorphic to
P for some projective R-module P and f : E(S) — P. If f(5) = 0,
then Kerf <. E(S), and E/Kerf is a singular module embedded in P,
a contradiction. Then f(S) # 0 and hence S is nonsingular. It follows
that S is a projective R-module. The proof is now completed by [10,
20.3(1)].

(3)=(1) This is routine. [

Proposition 2.13. Let R be a ring with a unique simple R-module (up
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to isomorphism). Then the class of projective modules is subhomomor-
phic to itself.

Proof. Let P, P» be two projective modules. Then by [1, 17.14] there
exist maximal submodules My < P; and M2 < P». So by our assumption
Py /My = Py/Mjy with isomorphism v : P;/M; — Py/Ms. Let 7o :
Py, — Py/Ms and m : P; — P;/Mj be the natural projections then by
projectivity of Py, Ps there exist f; : P — P> and fo : P — P; such
that mofi = ¢m and Y fo = mo. Now let © € Py \ My if fifa(z) =
fi(f2(x)) = 0 then ma(z) = ¥mi(f2(x)) = 0 this is a contradiction. O

Corollary 2.14. Let R be a ring with Jacobson radical J such that
R/J is a simple Artinian ring. Then the class of projective modules is
subhomomorphic to itself.

Proof. By Proposition 2.13. [J
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