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σ-C∗-Dynamics of K(H)
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Abstract. Let σ be a linear ∗-endomorphism on a C∗-algebra A so that
σ(A) acts on a Hilbert spaceH which including K(H) and let {αt}t∈R be
a σ-C∗-dynamical system on A with the generator δ. In this paper, we
demonstrate some conditions under which {αt}t∈R is implemented by a
C0-groups of unitaries on H. In particular, we prove that for a rank-
one projection p ∈ A, which is invariant under αt, there is a C0-group
{ut}t∈R of unitaries in B(H) such that αt(a) = utσ(a)u

∗
t . Furthermore,

introducing the concepts of σ-inner endomorphism and σ-bijective map,
we prove that each σ-bijective linear endomorphism on A is a σ-inner
endomorphism, where σ ia idempotent. Finally, as an application, we
characterize each so-called σ-C∗-dynamical system on the concrete C∗-
algebra A := B(H)×B(H), where H is a separable Hilbert space and
σ is the linear ∗-endomorphism σ(S, T ) = (0, T ) on A.
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1 Introduction

General theory of (semi) groups of linear operators which is the paradigm
for modelling and studying phenomena in mathematical physics is estab-
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lished by acting an abstract (semi) group on an arbitrary Banach space.
In particular, the action of the additive group R+ := [0,∞) on a Banach
space is called “one parameter semigroup”. The theory of semigroups
can be applied to solve a large class of problems commonly known as
evolution equations. They are described by an initial value problem for
a differential equation.

Let A be a Banach space and σ : A → A be a bounded linear
operator. A one parameter family {αt}t∈R (resp. {αt}t≥0) of bounded
linear operators on A is called a σ-one parameter (semi)group, if

(i) α0 = σ;

(ii) αt+s = αtαs for every t, s ∈ R (resp. t, s ≥ 0).

The σ-one parameter (semi) group {αt}t∈R (resp. {αt}t≥0) is said to
be

(i) uniformly continuous if lim
t→0
‖αt−σ‖ = 0 (resp. lim

t→0+
‖αt−σ‖ = 0).

(ii) strongly continuous if lim
t→0

αt(a) = σ(a) (resp. lim
t→0+

αt(a) = σ(a))

for each a ∈ A.

We define the infinitesimal generator δ of the σ-one parameter group

{αt}t∈R as a mapping δ : D(δ) ⊆ A→ A such that δ(a) = lim
t→0

αt(a)− σ(a)

t

where D(δ) = {a ∈ A such that lim
t→0

αt(a)− σ(a)

t
exists}.

If {αt}t∈R is a σ-one parameter group with the generator δ, then one
can easily see that

(i) σ2 = σ and σαt = αtσ = αt for each t ∈ R.

(ii) αt(A) = σ(A) and ker(αt) = ker(σ) for each t ∈ R.

(iii) σδ(a) = δσ(a) = δ(a) for each a ∈ D(δ).

(iv) σ(A) is a closed subspace of A.

As an example of σ-one parameter group, let M be a closed sub-
space of Hilbert space H, let M⊥ be the set {x ∈ H : < x,m >=
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0 for every m ∈M}, and let {ϕt}t∈R be a one parameter group on H.
If σ is the first projection operator on M, then for x = y+z ∈M⊕M⊥ =
H, the one parameter family {αt}t∈R defined by αt(x) = ϕt(y) is a σ-one
parameter group on H with the same continuity of {ψt}t∈R.

In the case that σ = IA (the identity operator on A), the concept of
σ-one parameter (semi) group is nothing than a one parameter (semi)
group in the usual sense (see [23, p. 8]). This notion was introduced by
Janfada in 2008. We refer the reader to [10] for more details.

One parameter groups of bounded linear operators and their exten-
sions are of more considerable magnitude because of their applications
in the theory of dynamical systems. Such groups are applied widely to
describe the dynamical systems appearing in quantum field theory and
statistical mechanics [4, 5, 7, 22, 24, 25] . The classical C∗-dynamical
systems are expressed by means of strongly continuous one parameter
groups of ∗-automorphisms on C∗-algebras. On the other hand, the
infinitesimal generator d of a C∗-dynamical system is a closed densely
defined ∗-derivation, that is d is a ∗-linear map and it satisfies the Lieb-
niz rule d(ab) = d(a)b+ad(b) for all a, b ∈ D(d). Therefore, the theory of
C∗-dynamical systems concerns the theory of derivations in C∗-algebras.

Recently, various generalized notions of derivations have been inves-
tigated in the context of Banach algebras. As an idea, let σ be a linear
homomorphism on an algebra A and d : A→ A be a derivation. Then,
the mapping δ : A→ A defined by δ(a) := d (σ(a)) satisfies the equation
δ(ab) = δ(a)σ(b)+σ(a)δ(b) for all a, b ∈ A. This motivates us to consider
the following definition.

Let A be a ∗-Banach algebra and σ be a ∗-linear operator on A.
A ∗-linear map δ from a ∗-subalgebra D(δ) of A into A is called a
σ-derivations if δ(ab) = δ(a)σ(b) + σ(a)δ(b) for all a, b ∈ D(δ). For
instance, let σ be a linear ∗-endomorphism and h be an arbitrary self-
adjoint element of A. Then, the mapping δ : A → A defined by
δ(a) = i[h, σ(a)], where [h, σ(a)] is the commutator hσ(a) − σ(a)h, is
a σ-derivation which is called inner. Moreover, when σ is an automor-
phism and δ : A → A be a σ-derivation, we can consider d := δσ−1

and find out that d is an ordinary derivation. Automatic continuity,
innerness, approximately innerness and closability are some of impor-
tant subjects which are investigated in the theory of σ-derivations (see
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[8, 9, 12, 13, 18, 20] and references therein).

In each case of generalization of derivation, a noted point drawing
the attention of analysts is trying to represent a suitable dynamical
system whose infinitesimal generator is exactly the desired extended
derivation as well as being an extension of a C∗-dynamical system.
Such dynamical system is usually provided by adjoining a suitable prop-
erty to an extension of a uniformly (strongly) continuous one parame-
ter groups of bounded linear operators. Some approaches to preparing
new dynamical systems and their applications have been explained in
[1, 14, 15, 16, 17, 19] and references therein.

In order to construct an extension of a C∗-dynamical system associ-
ated with σ-derivation, as its infinitesimal generator, note that each
∗-endomorphism on a C∗-algebra is norm decreasing. This specific
property, provides the possibility that σ is considered to be a linear
∗-endomorphism and the desired extension is based on a class of σ-one
parameter groups.

Let {αt}t∈R be a strongly continuous σ-one parameter group of lin-
ear ∗-endomorphisms on the C∗-algebra A. An immediate consequence
of the features αt(A) = σ(A) and ker(αt) = ker(σ) (t ∈ R) is that
by substituting σ = I, we obtain a classical C∗-dynamical system. In
2013, the author introduced the mentioned extension of C∗-dynamical
systems and called it a σ-C∗-dynamics. So, this notion covers the clas-
sical C∗-dynamical systems and is compatible with the terminology of
σ-derivations.

It has been proved in [14] that, the infinitesimal generator δ of the

σ-C∗-dynamics {αt}t∈R is a ∗-σ-derivation such that σ
(
D(δ)

)
= σ(A).

Assume that {αt}t∈R is a σ-C∗-dynamical system on A with the
infinitesimal generator δ. Then, the one parameter family {α̃t}t∈R of
bounded linear operators on σ(A) defined by α̃t(σ(a)) = αt(a) is a C∗-
dynamical system and the mapping δ̃ : σ

(
D(δ)

)
⊆ σ(A)→ σ(A) defined

by δ̃(σ(a)) = δ(a) is its generator (see [14]).

Let σ be a ∗-linear endomorphism on the C∗-algebra A. By a σ-
inner endomorphism, we mean a linear endomorphism α : A → A such
that α(a) = uσ(a)u∗ for every a ∈ A and some unitary element u ∈ A.
In order to establish a σ-inner endomorphism, let h be a self-adjoint
element of the C∗-algebra A. Then, the mapping α : A → A given by
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α(a) = eihσ(a)e−ih is a σ-inner endomorphism.

Suppose that h is a self-adjoint element in A, σ : A → A is an
idempotent linear ∗-endomorphism such that σ(h) = h. Then, it follows
from [14, Theorem 3.7] that, the inner ∗-σ-derivation δ : A → A de-
fined by δ(a) = i[h, σ(a)] induces the σ-C∗-dynamical system ϕt(a) =
eithσ(a)e−ith of ∗-σ-inner endomorphisms.

In functional analysis, an “operator algebras” is an algebra of bounded
linear operators on a topological vector space X with the multiplication
given by the composition of mappings. In particular, the term operator
algebra is usually used in reference to algebras of bounded operators on
a Banach space or, even more specially in reference to algebras of opera-
tors on a Hilbert space, endowed with the operator norm topology. Let
H be a Hilbert space. It is known that the algebra B(H) with respect
to the operator norm and the natural involution given by the Hilbert
adjoint operation is a unital C∗-algebra. On the other hand, due to
the Gelgand-Naimark-Segal representation, each non-commutative C∗-
algebra can be regarded as a C∗-subalgebra of B(H), for some Hilbert
space H. So, the study of C∗-dynamical systems on B(H) and its C∗-
subalgebras has an important role to survey of C∗-dynamical systems
in general. Moreover, it is one of the key ideas of quantum mechanics
to use C0-one parameter groups of unitary operators on a Hilbert space
H to implement new dynamical systems on the operator algebra B(H)
and its C∗-subalgebras (see [2], [4],[7] and [24]).

Let H be a Hilbert space. A linear map T : H1 → H2 between
Hilbert spaces H1 and H2 is called compact if T (S(H1)) is relatively
compact in H2 (i.e., T (S(H1)), the norm closure of T (S(H1)) , is a
compact subset of H2), where S(H1) is the closed unit ball of H1. It
is notable that for a Hilbert space H, the set K(H), of all compact
operators on H, is a closed two sided ideal of B(H) which is also self-
adjoint (see [21, Theorem 2.4.3]). Thus, K(H) is a C∗-subalgebra of
B(H) which contains F(H), the set of all finite rank operators on H.
Especially, K(H) = F(H) (see [21, Theorem 2.4.5]).

The above considerations motivate us to investigate σ-C∗-dynamical
systems on B(H) and its C∗-subalgebras.

Let σ be a linear ∗-endomorphism on a C∗-algebra A so that σ(A)
acts on a Hilbert space H which including K(H) and let {αt}t∈R be a σ-
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C∗-dynamical system on A with the generator δ. In this paper, we prove
that for a rank-one projection p ∈ A, which is invariant under αt, there
is a C0-group {ut}t∈R of unitaries in B(H) such that αt(a) = utσ(a)u∗t .
We also, demonstrate a version of perturbation theorem in the setting
of σ-C∗-dynamical systems and applying it, we prove that for a rank-
one projection p ∈ D(δ) ∩ σ(A), there exist a self-adjoint operator hp

on H and a bounded ∗-σ-derivation δp such that (δ + δp)(p) = 0 and
it generates the σ-C∗-dynamical system αt,p(a) = eith

p
σ(a)e−ith

p
on

A. Furthermore, if hp ∈ A and σ(hp) = hp, then there is a self-adjoint
operator h : D(h) ⊆ H → H such that for each a ∈ D(δ)∩K(H), δ(a) =
i[h, σ(a)] and αt(a) = eithσ(a)e−ith on K(H). Introducing the concept
of σ-bijective maps, we prove that each σ-bijective linear endomorphism
on A is a σ-inner endomorphism, where σ ia idempotent. Finally, as
an application, we characterize each so-called σ-C∗-dynamical system
on the concrete C∗-algebra A := B(H)×B(H), where H is a separable
Hilbert spaces and σ is the linear ∗-endomorphism σ(S, T ) = (0, T ) on
A.

The reader is referred to [3, 6] and [21] for details on Banach algebras
and to [4, 25] for more information on dynamical systems.

2 σ-C∗-Dynamics on Some Special Classes of
Operator Algebras

In the following theorem, we show that every C0-group of unitary op-
erators on a Hilbert space H can define a σ-C∗-dynamical system on
K(H).

Theorem 2.1. Let {ut}t∈R be a C0-group of unitary operators on a
Hilbert space H and suppose that σ : B(H) → B(H) is an idempotent
linear ∗-endomorphism satisfying σ(ut) = ut. Then, αt(a) = utσ(a)u∗t is
a σ-C∗-dynamical system on K(H).

Proof. It is trivial that for each t ∈ R, αt is a homomorphism on K(H)
such that α0 = σ. Moreover, it follows from the hypotheses σ2 = σ and
σ(ut) = ut, that {αt}t∈R is a σ-one parameter group. It is sufficient to
prove that {αt}t∈R is strongly continuous. For this aim, let x, y ∈ H, and
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define x⊗ y : H −→ H by (x⊗ y)(z) =< z, y > x. Then, x⊗ y ∈ K(H)
and

‖αt(x⊗ y)− σ(x⊗ y)‖ = ‖utσ(x⊗ y)u∗t − σ(x⊗ y)‖
=‖ut(σ(x)⊗ y)u∗t − σ(x)⊗ y‖
=‖ut(σ(x))⊗ ut(y)− σ(x)⊗ y‖
≤‖ut(σ(x))⊗ ut(y)− σ(x)⊗ ut(y)‖

+ ‖σ(x)⊗ ut(y)− σ(x)⊗ y‖
≤‖(ut(σ(x))− σ(x))⊗ ut(y)‖

+ ‖σ(x)⊗ (ut(y)− y)‖
≤‖(ut(σ(x))− σ(x))‖‖ut(y)‖

+ ‖σ(x)‖‖ut(y)− y‖.

Since {ut}t∈R is strongly continuous, lim
t→0
‖αt(x ⊗ y) − σ(x ⊗ y)‖ = 0.

This shows that lim
t→0
‖αt(a)− σ(a)‖ = 0 for each a ∈ F(H). Also, F(H)

is dense in K(H). Hence, lim
t→0
‖αt(a)−σ(a)‖ = 0 for each a ∈ K(H), and

therefore, {αt}t∈R is a σ-C∗-dynamical system on K(H). �

We are going to establish some conditions making the converse of
the above theorem be held. More precisely, we like to investigate some
restrictions under which a σ-C∗-dynamical system on A can be charac-
terized with respect to a C0-group of unitaries on H.

Theorem 2.2. Let σ be a linear ∗-endomorphism on a C∗-algebra A
so that σ(A) acts on a Hilbert space H which including K(H) and let
{αt}t∈R be a σ-C∗-dynamical system on A with the generator δ. If there
exists a rank one projection p ∈ A which is invariant under αt (i.e.,
αt(p) = p for each t ∈ R), then there is a C0-group {ut}t∈R of unitaries
in B(H) such that αt(a) = utσ(a)u∗t .

Proof. Since p is invariant under αt, σ(p) = α0(p) = p. So, p ∈ σ(A).
However, p is a rank-one projection. Hence, there is a unit vector x ∈ H
such that p = x⊗x (see [21, p. 55]). Using some ideas of the proof of [2,
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Theorem 4.1], we define, ut(σ(a)x) = αt(a)x for each a ∈ A. We have

‖σ(a)x‖ = ‖ < x, x > σ(a)x‖
= ‖(σ(a)x⊗ x)x‖
= ‖σ(a)(x⊗ x)x‖
≤ ‖σ(a)(x⊗ x)‖.‖x‖.

Thus, ‖σ(a)x‖ ≤ ‖σ(a)(x⊗ x)‖. On the other hand,

‖σ(a)(x⊗ x)‖ = ‖σ(a)x⊗ x‖
≤ ‖σ(a)x‖.‖x‖
= ‖σ(a)x‖.

Hence, ‖σ(a)(x⊗ x)‖ = ‖σ(a)x‖.
Considering the associated C∗-dynamics α̃t(σ(a)) = αt(a) on σ(A),

we obtain ‖αt(a)‖ = ‖α̃t(σ(a))‖ = ‖σ(a)‖. Further, applying the facts
that αt(A) = σ(A) and ker(αt) = ker(σ), one can conclude that for
each t ∈ R and a ∈ A, there exists b ∈ A such that αt(a) = σ(b) and
‖αt(a)x‖ = ‖σ(b)x‖ = ‖σ(b)(x⊗ x)‖ = ‖αt(a)(x⊗ x)‖. Therefore,

‖ut(σ(a)x)‖ = ‖αt(a)x‖
= ‖αt(a)(x⊗ x)‖
= ‖αt(a)αt(x⊗ x)‖
= ‖αt(a.x⊗ x)‖
= ‖σ(a.x⊗ x)‖
= ‖σ(a).σ(x⊗ x)‖
= ‖σ(a).(x⊗ x)‖
= ‖σ(a).x‖.

So, ut is well-defined isometry on σ(A)x. Since σ(A) includes K(H), we
have z⊗ x ∈ σ(A) for every z ∈ H. But, z = (z⊗ x)x. This means, that
z ∈ σ(A)x and hence, [σ(A)x] = H. Consequently, ut can be extended to
a unitary on H. Let b0 ∈ A and t ∈ R. Using the properties αt(A) = σ(A)
and ker(αt) = ker(σ) once more, it follows that there exists a0 ∈ A such
that σ(b0) = αt(a0) and σ(b0)x = αt(a0)x = ut(σ(a0)x). So,

u∗t (σ(b0)x) = u−1
t (σ(b0)x) = σ(a0)x = α−t(σ(b0))x = α−t(b0)x.
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To justify group properties of {ut}t∈R, note that

u0(σ(a)x) = α0(a)x = σ(a)x

and for each a, b ∈ A

< usut(σ(a)x), σ(b)x > =< ut(σ(a)x), u∗s(σ(b)x) >

=< αt(a)x, α−s(b)x >

=< α−s(b
∗)αt(a)x, x >

=< α−s(b
∗αt+s(a))x, x >

=< u−s(σ(b∗αt+s(a)))x, x >

=< u−s(σ(b)∗αt+s(a))x, x >

=< σ(b)∗αt+s(a)x, u∗−s((x⊗ x)x) >

=< σ(b)∗αt+s(a)x, u∗−s(σ(x⊗ x)x) >

=< σ(b)∗αt+s(a)x, αs(x⊗ x)x >

=< σ(b)∗αt+s(a)x, (x⊗ x)x >

=< σ(b)∗αt+s(a)x, x >

=< αs+t(a)x, σ(b)x >

=< us+t(σ(a)x), σ(b)x > .

Since [σ(A)x] = H, then us+t = usut. Strong continuity of {ut}t∈R
follows by

‖ut(σ(a)x)− σ(a)x‖ = ‖αt(a)x− σ(a)x‖ ≤ ‖αt(a)− σ(a)‖‖x‖.

Therefore, {ut}t∈R is a C0-group of unitaries on H.
Finally, for each a, b ∈ A, we have

utσ(a)u∗t (σ(b)x) = utσ(a)α−t(b)x

= utσ(a.α−t(b))x

= αt(a.α−t(b))x

= αt(a)(σ(b)x),

which implies that αt(a) = utσ(a)u∗t . �
The following result gives us a version of perturbation theorem in

the setting of σ-C∗-dynamical systems.
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Theorem 2.3. Let δ1 be the generator of a σ-C∗-dynamical system
{αt}t∈R on A and let δ2 be a bounded ∗-σ-derivation on A such that
δ2σ = δ2 = σδ2. Then, δ1 +δ2 generates a σ-C∗-dynamical system on A.

Proof. Define the operator δ̃1 : σ
(
D(δ1)

)
⊆ σ(A)→ σ(A) by δ̃1(σ(a)) =

δ1(a). Then, δ̃1 is the generator of the associated C∗-dynamical system
{α̃t}t∈R on σ(A) defined by α̃t(σ(a)) = αt(a). Also, the operator δ̃2 :
σ
(
D(δ2)

)
⊆ σ(A) → σ(A) defined by δ̃2(σ(a)) = δ2(a) is a bounded

∗-derivation on σ(A). By perturbation theorem ([23, Theorem 3.1.1])
δ̃1 + δ̃2 (resp. −(δ̃1 + δ̃2) ) is the generator of a strongly continuous
semigroup {Tt}t≥0 (resp. {St}t≥0) on σ(A). Then, δ̃1+δ̃2 is the generator

of the strongly continuous one parameter group {β̃t}t∈R defined by β̃t :=

{ Tt t ≥ 0
S−t t ≤ 0

on σ(A).

Consider the one parameter family {βt}t∈R defined by βt(a) = β̃t(σ(a)).
It is easy to check that {βt}t∈R is a strongly continuous σ-one parameter
group on A and the ∗-σ-derivation δ1 +δ2 is its generator. Denote δ1 +δ2

by δ and let a, b ∈ D(δ). Note that βt is actually a ∗-homomorphism.
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Because for each t ∈ R, one calculates that

d

dt
β−t

(
βt(a).βt(b)

)
= lim
h→0

β−t−h

(
βt+h(a).βt+h(b)

)
− β−t

(
βt(a).βt(b)

)
h

= lim
h→0

β−t
h
{β−h

(
βt+h(a).βt+h(b)

)
− βt(a).βt(b)}

= lim
h→0

β−t
h
{β−h

(
βt+h(a).βt+h(b)− βt(a).βt+h(b)

)
}

+ lim
h→0

β−t
h
{β−h

(
βt(a).βt+h(b)− βt(a).βt(b)

)
}

+ lim
h→0

β−t
h
{β−h

(
βt(a).βt(b)

)
− βt(a).βt(b)}

=β−t lim
h→0

β−h

(βt+h(a)− βt(a)

h
.βt+h(b)

)
+ β−t lim

h→0
β−h

(
βt(a).

βt+h(b)− βt(b)
h

)
+ β−t lim

h→0

β−h

(
βt(a).βt(b)

)
− βt(a).βt(b)

h

=β−tσ[δ(βt(a)).σ(βt(b)) + σ(βt(a)).δ(βt(b))]

− β−tδ
(
βt(a).βt(b)

)

=β−t[δ
(
βt(a).βt(b)

)
− δ
(
βt(a).βt(b)

)
]

=β−t(0)

=0.

Thus, β−t[βt(a).βt(b)] = β0[β0(a).β0(b)] = σ(ab) and consequently, βt(a).βt(b) =
βt(a.b).

Applying boundedness of βt (t ∈ R) together with the facts that

D(δ) = D(δ1) and σ
(
D(δ1)

)
= σ(A), it follows that βt (t ∈ R) is a

homomorphism. Further, δ and σ are ∗-linear operators and the conju-
gation operation is norm continuous. So, a simple calculation indicates
that

d

dt
β−t

(
βt(a)∗

)
= β−t[σδ

(
βt(a)

)∗
− δ
(
βt(a)∗

)
] = 0.
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Thus,

β−t

(
βt(a)∗

)
= β0

(
β0(a)∗

)
= σ(σ(a)∗) = σ2(a∗) = σ(a∗)

and therefore, βt(a)∗ = βt

(
σ(a∗)

)
= βt(a

∗).

�

Theorem 2.4. Let σ be a linear ∗-endomorphism on a C∗-algebra A
so that σ(A) acts on a Hilbert space H which including K(H) and let
{αt}t∈R be a σ-C∗-dynamical system on A with the generator δ. If there
is a rank-one projection p ∈ D(δ) ∩ σ(A), then there exists a bounded
∗-σ-derivation δp on A such that (δ + δp)(p) = 0 and δ + δp generates a
σ-C∗-dynamical system on A.

Proof. First, note that p ∈ σ(A). Thus, p = σ(q) for some q ∈ A.
But, from the group property of {αt}t∈R it follows that σ2 = σ and
therefore, σ(p) = σ2(q) = σ(q) = p. Also, p is projection. So, p = p2

and δ(p) = δ(p2) = δ(p).p+ p.δ(p). Thus,

p.δ(p).p = p.δ(p2).p

= p.δ(p).p2 + p2.δ(p).p

= 2p.δ(p).p

and consequently, p.δ(p).p = 0.
Using some ideas of [4, p. 246], we define hp = i[δ(p), p] and δp(a) =

i[hp, σ(a)]. Trivially, hp is self-adjoint and δp is a bounded ∗-σ-derivation
on A satisfying δpσ = δp = σδp. Moreover, δp(p) = i[hp, p] since σ(p) =
p. Hence,

(δ + δp)(p) = δ(p) + i[hp, p]

= δ(p) + i
(
hp.p− p.hp

)
= δ(p)−

(
δ(p).p2 + p2.δ(p)

)
+ 2p.δ(p).p

= δ(p)− δ(p2) + 2p.δ(p).p

= 0.

The final part is obtained from the previous theorem. �
The next result manifests a uniqueness theorem for σ-C∗-dynamical

systems.
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Theorem 2.5. Let {αt}t∈R and {βt}t∈R be two σ-C∗-dynamical systems
on a C∗-algebra A, with the same generator δ. Then, αt = βt (t ∈ R).

Proof. Consider the associated the one parameter families {α̃t}t∈R and
{β̃t}t∈R on σ(A) defined by α̃t(σ(a)) = αt(a) and β̃t(σ(a)) = βt(a).As we
mentioned in the introduction, {α̃t}t∈R and {β̃t}t∈R are C∗-dynamical
systems. But, δ is the generator of {αt}t∈R and {βt}t∈R. Hence, the
mapping δ̃ : σ

(
D(δ)

)
⊆ σ(A) → σ(A) defined by δ̃(σ(a)) = δ(a) is

the generator of {α̃t}t∈R and {β̃t}t∈R and by uniqueness ([23, Theorem
1.1.3]), we conclude that α̃t = β̃t. Consequently,

αt(a) = α̃t(σ(a))

= β̃t(σ(a))

= βt(a).

� Before we state the next theorem, we need the following useful
proposition which can be found in [10].

Proposition 2.6. Let {αt}t∈R be a strongly continuous σ-one parameter
group with the generator δ. Then, for each a ∈ D(δ),

(i) αt(a) ∈ D(δ) and δ (αt(a)) = αt (δ(a)) = d
dtαt(a);

(ii) αt(a)− αs(a) =

∫ t

s
ατ

(
δ(a)

)
dτ.

Theorem 2.7. Let σ be a linear ∗-endomorphism on a C∗-algebra A
so that σ(A) acts on a Hilbert space H which including K(H) and let
{αt}t∈R be a σ-C∗-dynamical system on A with the generator δ. Then,
for a rank one projection p ∈ D(δ)∩σ(A), there exist a σ-C∗-dynamical
system {αt,p}t∈R on A and a self-adjoint operator hp : D(hp) ⊆ H → H
such that αt,p(a) = eith

p
σ(a)e−ith

p
. Furthermore, if hp ∈ A and σ(hp) =

hp, then there is a self-adjoint operator h : D(h) ⊆ H → H such that
for each a ∈ D(δ) ∩ K(H), δ(a) = i[h, σ(a)] and αt(a) = eithσ(a)e−ith

on K(H).

Proof. By Theorem 2.4, there exists a bounded ∗-σ-derivation δp such
that (δ + δp)(p) = 0 and δ + δp generates a perturbed σ-C∗-dynamical
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system on A, namely {αt,p}t∈R which satisfies αt,p(p) = p. Since, apply-

ing the previous proposition, we have d
dsαs,p(p) = αs,p

(
(δ+ δp)(p)

)
= 0.

Therefore, αt,p(p)−σ(p) =

∫ t

0
αs,p

(
(δ+δp)(p)

)
ds = 0 and consequently,

αt,p(p) = σ(p). From the comment as stated at the beginning of the
proof of Theorem 2.4, σ(p) = p. Hence, αt,p(p) = p (t ∈ R) which
means that p is invariant under {αt,p}t∈R and it follows from Theorem
2.2 that, {αt,p}t∈R is implemented by a C0-group {ut,p}t∈R of unitaries

in B(H) (i.e., αt,p(a) = ut,pσ(a)u∗t,p). Assume that ĥp to be the genera-

tor of {ut,p}t∈R and take hp := −iĥp. By Stone’s theorem ([21, Theorem
1.10.8]), hp is a self-adjoint operator in H and ut,p = eith

p
.

Now, take h := hp − hp, where hp := i[δ(p), p] (as we defined in
the proof of Theorem 2.4). Since, hp is bounded, D(h) = D(hp) and
h is self-adjoint. Using Stone’s theorem once more, we reach the con-
clusion that ih is the generator of the C0-group {eith}t∈R of unitaries.
Also, the assumption σ(hp) = hp together with continuity of σ, imply
that σ(eith) = eith. By Theorem 2.1, βt(a) = eithσ(a)e−ith is a σ-C∗-
dynamical system on K(H) whose generator is δh(a) = i[h, σ(a)].

But, for each a ∈ D(δ) ∩ K(H) we have

δh(a) = i[h, σ(a)]

= i[hp, σ(a)]− i[hp, σ(a)]

= (δ + δp)(a)− δp(a)

= δ(a).

It follows that {αt}t∈R and {βt}t∈R have identical generators on K(H)
and by Theorem 2.5, αt(a) = eithσ(a)e−ith which completes the proof.
�

Definition 2.8. Let σ be a linear mapping on a vector space A. A linear
map α on A is called σ-bijective if σ(A) ⊆ α(A) and ker(α) ⊆ ker(σ).

Theorem 2.9. Let σ be an idempotent linear ∗-endomorphism on a
C∗-algebra A so that σ(A) acts on a Hilbert space H which including
K(H). Then, each σ-bijective linear endomorphism on A is a σ-inner
endomorphism.
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Proof. Let α be an arbitrary σ-bijective linear endomorphism on A.
Consider the associated map β on σ(A) defined by β (σ(a)) := α(a).
Since α is σ-bijective, β is a linear automorphism. Let p be an arbitrary
rank one projection in K(H). So, there is a unit vector x ∈ H such
that p = x ⊗ x. Also, by the assumption K(H) ⊆ σ(A), it follows that
p is contained in σ(A) and there exists an element ap ∈ A such that
σ(ap) = p. However, σ2 = σ. So, σ(p) = σ2(ap) = σ(ap) = p. On the
other hand, following as stated in the proof of [21, Theorem 2.4.8], β(p) is
also a rank-one projection, namely q. Thus, α(p) = β (σ(p)) = β(p) = q
and q = y ⊗ y, for some unit vector y ∈ H. Define for each a ∈ A,
u (σ(a)x) = α(a)y . Then, by the same reasoning as in the proof of
Theorem 2.2, we have

‖u(σ(a)x)‖ = ‖α(a)y‖
= ‖α(a)(y ⊗ y)‖
= ‖α(a)α(x⊗ x)‖
= ‖α(a.x⊗ x)‖
= ‖σ(a.x⊗ x)‖
= ‖σ(a).σ(x⊗ x)‖
= ‖σ(a).(x⊗ x)‖
= ‖σ(a)(x⊗ x)x‖
= ‖σ(a).x‖.

So, u is well-defined isometry on σ(A)x. Also, u is onto since for each
z ∈ H, z = (z ⊗ y)(y), and by the assumption K(H) ⊆ σ(A) we obtain
z ⊗ y ∈ σ(A). However, α is σ-bijective so, there is an element a ∈ A
such that α(a) = z ⊗ y. Therefore, z = α(a)(y) = u (σ(a)x) .

Moreover, applying the relation z = (z ⊗ x)x together with the the
assumption K(H) ⊆ σ(A) one concludes that z ∈ σ(A)x and [σ(A)x] =
H. Similarly, [σ(A)y] = H. Consequently, u can be extended to a unitary
on H.

Let b ∈ A. Since β is an automorphism, there exists c ∈ A such that
σ(b) = β (σ(c)) = α(c) and σ(b)y = α(c)y = β (σ(c)) y = u(σ(c)x). So,

u∗(σ(b)y) = u−1(σ(b)y) = u−1 (β(σ(c))y)) = σ(c)x.
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Consequently, for each a, b ∈ A

uσ(a)u∗(σ(b)y) = uσ(a)σ(c)x

= uσ(a.c)x

= α(a.c)y

= α(a)α(c)y

= α(a)(σ(b)y),

which implies that α(a) = uσ(a)u∗ on σ(A)y and the density of σ(A)y
in H completes the proof. �

Substituting σ := IA (the identity operator on A), we have the fol-
lowing corollary.

Corollary 2.10. Let A be a C∗-subalgebra of B(H) including K(H).
Then, each linear automorphism on A is inner.

Now, let’s return to B(H) and its C∗-dynamical systems. We are
going to show that each C∗-dynamical system on B(H), where H is a
separable Hilbert space is implemented by a C0-group of unitaries on H.
First, we recall that a strongly closed ∗-subalgebra of B(H), where H
is a Hilbert space is called a von Neumann algebra. Obviously, B(H) is
a von Neumann algebra (see [21, p.116]). Now, we need the following
useful theorem which can be found in [11].

Theorem 2.11. Let A be a C∗-algebra acting on a separable Hilbert
space H, M be a von Neumann algebra generated by A, and let {αt}t∈R
be a one parameter group of ∗-automorphisms on A such that t→ αt(a)x
is continuous for all a ∈ A and x ∈ H. Suppose that for each t ∈ R,
αt extends to be an inner automorphism on M. Then, there exists a
C0-group of unitary operators in M such that αt(a) = utau

∗
t .

Before we state the next remark, it is necessary to recall that for a
Hilbert space H, a net {xλ}λ∈Λ ⊆ H converges weakly to an element x
in H if and only if < xλ, y >→< x, y > for each y ∈ H.

Remark 2.12. Let A be a C∗-algebra acting on a separable Hilbert
space H, and {αt}t∈R be a C∗-dynamical system on A. Then, as stated
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in [2, p.91], due to the Cauchy- Schwarz inequality we have

| < αt(a)x, y > − < αs(a)x, y > | = | < (αt(a)− αs(a))x, y > |
≤ ‖αt(a)− αs(a)‖ ‖x‖ ‖y‖

for each s, t ∈ R and x, y ∈ H and a ∈ A.
By applying strong continuity of {αt}t∈R, one can deduce that

lim
t→s

< αt(a)x, y >=< αs(a)x, y > (a ∈ A, x, y ∈ H).

That is, t→ αt(a)x is weakly continuous for each x ∈ H.

The following theorem is an immediate consequence of Theorem 2.11
and the previous remark.

Theorem 2.13. Let A be a C∗-algebra acting on a separable Hilbert
space H, M be a von Neumann algebra generated by A, and let {αt}t∈R
be a C∗-dynamical system on A. Suppose that for each t ∈ R, there is
a unitary operator vt in M such that αt(a) = vtav

∗
t for each a ∈ A.

Then, there exists a C0-group {ut}t∈R of unitary operators in M such
that αt(a) = utau

∗
t (a ∈ A).

Applying corollary 2.10 and substituting M = A = B(H) in the
above theorem, we have the following main result.

Theorem 2.14. Let H be a separable Hilbert space and {αt}t∈R be a
C∗-dynamical system on B(H). Then, there exists a C0-group {ut}t∈R
of unitary operators in B(H) such that αt(a) = utau

∗
t (a ∈ A).

3 Comments and an Application

In this section, we characterize each σ-C∗-dynamical system on the con-
crete C∗-algebra A := B(H) × B(H), where H is a separable Hilbert
spaces and σ is the linear ∗-endomorphism σ(S, T ) = (0, T ) on A.

For this aim, suppose that Aj (j = 1, 2) is a C∗-algebra. It is easy
to observe that, A := A1 × A2 is also a C∗-algebra by regarding the
following algebraic structure

(i) (a, b) + (c, d) = (a+ c, b+ d),
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(ii) λ(a, b) = (λa, λb)

(iii) (a, b).(c, d) = (ac, bd), (a, b)∗ = (a∗, b∗)

(iv) ‖ (a, b) ‖= max{‖ a ‖, ‖ b ‖}.

Now, consider Aj (j = 1, 2) as the concrete C∗-algebra B(H), where
H is a separable Hilbert space and define σ : A→ A by σ(S, T ) := (0, T ).
Evidently, σ is an idempotent norm decreasing linear ∗-endomorphism
onA. The following theorem characterizes each so-called σ-C∗-dynamical
system on A.

Theorem 3.1. Let H be a separable Hilbert space. The following asser-
tions are equivalent.

(i) {αt}t∈R is a σ-C∗-dynamical system on A.

(ii) There exists a C0-group {Ut}t∈R of unitary operators in A satis-
fying σ(Ut) = Ut and αt(S, T ) = Utσ(S, T )U∗t (S, T ∈ B(H)).

Proof. Suppose that {αt}t∈R is a σ-C∗-dynamical system on A. So,
for each t ∈ R and (S, T ) ∈ A, there is a unique pair (S′, T ′) ∈ A
such that αt(S, T ) = (S′, T ′). However, σ (αt(S, T )) = αt(S, T ) and
therefore, S′ = 0. On the other hand, αt(S, T ) = αt (σ(S, T )) . That is,
αt(S, T ) = αt(0, T ). Define βt : B(H) → B(H) by βt(T ) := T ′. Hence,
for each t ∈ R and S, T ∈ B(H) we have

(0, βt(TS)) = αt(0, TS)

= αt(0, T ).αt(0, S)

= (0, βt(T )).(0, βt(S))

= (0, βt(T )βs(T )).

So, for each t ∈ R, βt(TS) = βt(T ).βt(S) and βt is a homomorphism.
Similarly, one can show that βt (t ∈ R) is ∗-linear.

Let t ∈ R and suppose that T ∈ kerβt. Thus, αt(0, T ) = (0, βt(T )) =
(0, 0) and so, σ(0, T ) = α−t (αt(0, T )) = (0, 0). By the definition of σ,
we get T = 0 and therefore βt is injective. Also, for each S ∈ B(H),
σ(0, S) = (0, S) and hence, (0, S) ∈ σ(A). From the comment as stated
at the beginning of the introduction, σ(A) = αt(A) (t ∈ R). This feature



σ-C∗-DYNAMICS OF K(H) 19

implies that (0, S) = αt(T
′, T ) for some T ′, T ∈ B(H). But, αt(T

′, T ) =
αt(0, T ) and

(0, βt(T )) = αt(0, T )

= αt(T
′, T )

= (0, S).

Consequently, βt(T ) = S for each t ∈ R. So for each t ∈ R, βt is a
bounded linear ∗−automorphism on A.

To justify group property, note that for each T ∈ B(H), we have
(0, T ) = α0(0, T ) = (0, β0(T )) and thus, β0 = I. Moreover, for each
s, t ∈ R and T ∈ B(H) we have

(0, βt+s(T )) = αt+s(0, T )

= αt (αs(0, T ))

= αt (0, βs(T ))

= (0, βt (βs(T )))

Furthermore, applying the relation (0, βt(T )−T ) = αt(0, T )−σ(0, T )
together with strong continuity of {αt}t∈R, we observe that {βt}t∈R is
also strongly continuous. Consequently, {βt}t∈R is a C∗-dynamics on
B(H).

By Theorem 2.14, there exists a C0-group {Vt}t∈R of unitary opera-
tors in B(H) such that βt(T ) = VtTV

∗
t . Hence, for each T ∈ B(H)

αt(0, T ) = (0, βt(T ))

= (0, VtTV
∗
t )

= (0, Vt)σ(0, T )(0, V ∗t ).

By taking Ut := (0, Vt), it follows that the family {Ut}t∈R is a C0-
group of unitaries in A satisfying σ(Ut) = Ut (t ∈ R) and the σ-C∗-
dynamical system {αt}t∈R is implemented by the C0-group {Ut}t∈R of
unitaries in A.

Conversely, let {Ut}t∈R be a C0-group of unitary operators in A satis-
fying σ(Ut) = Ut and αt(S, T ) = Utσ(S, T )U∗t (S, T ∈ B(H)). Trivially,
for each t ∈ R, αt is a homomorphism on A such that α0 = σ. Moreover,
it follows from the fact that σ2 = σ and σ(Ut) = Ut, that {αt}t∈R is a
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σ-one parameter group. It is sufficient to prove that {αt}t∈R is strongly
continuous. For each S, T ∈ B(H), we have

‖αt(S, T )− σ(S, T )‖ = ‖Utσ(S, T )U∗t − σ(S, T )‖
= ‖(Utσ(S, T )− σ(S, T )Ut)U

∗
t ‖

≤ ‖Utσ(S, T )− σ(S, T )Ut‖
≤ ‖Utσ(S, T )− σ(S, T )‖+ ‖σ(S, T )− Utσ(S, T )‖
≤ 2‖Utσ(S, T )− σ(S, T )‖.

Since {Ut}t∈R is strongly continuous, lim
t→0
‖αt(S, T ) − σ(S, T )‖ = 0 and

therefore, {αt}t∈R is a σ-C∗-dynamical system on A. �
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