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Abstract. This study aims to investigate the existence of solutions
for nonlocal functional differential inclusions with impulses effect in Ba-
nach spaces. We examine the case when the multivalued function is
non-convex, and the linear term generates a semigroup not necessarliy
compact. The significant results are obtained by applying NCHM (non-
compactness Hausdorff measure) and theorems of fixed point. Eventu-
ally, we provide an example to elaborate the outcomes.
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1 Introduction

Impulsive differential models, in both forms as inclusions and equa-
tions, have significantly participated as a storng tool in advancing vari-
ety of disciplines, physics, chemistry, biology, economics, control theory,
technology and so on. One can find some applications in [1, 5, 25].
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The essential of general theory and the applied developments of such
problems have been discussed in details, see [7, 11, 13].

In this work, we consider the functional impulsive differential inclu-
sion which is given by the form:

(PΨ)


cDαx(t) ∈ Ax(t) + F (t, τ(t)x), t ∈ J = [0, b], t 6= ti,

x(t) = Ψ(t)− g(x), t ∈ [−r, 0],

x(t+i )− x(ti) = Ii(x(t−i )), i = 1, ...,m,

where cDα is the Caputo derivative (0 < α < 1), A is the infinites-
imal generator of a C0−semigroup {T (t), t ≥ 0} on E where E is a
Banach space which is real and separable, F : J × Θ → 2E is a lower
Carathéodory multifunction, Ψ : [−r, 0] → E, for every 1 ≤ i ≤ m, Ii :
E → E, g : Λ → E, and x(t+i ) = lims→t+i

x(s), x(t−i ) = lims→t−i
x(s).

Finally, for any t ∈ J, x ∈ Λ, the element τ(t)x of Θ defined by
τ(t)x(θ) = x(t + θ), θ ∈ [−r, 0], where τ(t)x represents the history of
the state from −r to the present time t.

Nonlocal conditions problems were essentially emerged from physics,
see [4, 10, 14]. The topic of abstract differential problems with nonlocal
conditions was initially taken into investigation by Byszewski [10]. On
the other hand, when it comes to dealing with such nonlocal problems,
the compactness of the operator of solution at zero still the main ob-
stacle. Various techniques and methods have been developed by many
authors in this direction, for further specifics, one can see [2, 11, 12,
13, 17, 19, 20, 22, 24, 27, 28, 29]. For instance, Wang et.al. [28] gave
a new definition of solutions to (PΨ) without delay. Furthermore, the
authors concluded their results when F is a continuous single-valued
function satisfying Lipschitz condition and preverving bounded sets with
compactness of {T (t)}t>0. While Li [22] acquired existence results re-
garding nonlocal equations problems under particular restrictions; that
are, compactness of the nonlocal term and the semigroup is equicontin-
uous. Additionally, Ibrahim and Alsarori [19] determined conditions so
that the solutions for the problem (PΨ) exist in the case when compact-
ness of the semigroup is assumed. Lian et al. [23] recently considered
the problem (PΨ) and studied the existence results of solutions. They
assumed the problem without impulses effect as well as without delay
in the case when the multifunction is upper semicontinuous, compact
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and convex. Very recently, Alsarori et al. [3] investigated the problem
(PΨ) without delay when the semigroup is not compact and F is upper
semicontinuous, compact and convex.

Motivated by the aforementioned papers and work, we consider a
case differs from previous cases. In particular, we study the existence of
solutions of (PΨ) with condition; F is lower semicontinuous with closed
values and {T (t)}t>0 is equicontinuous.
Section 2 consists of some notations and basic materials with respect
to NCHM and the set-valued analysis. In Section 3, we go further to
achieve the main results of the present article regarding the existence
of solutions of (PΨ). NCHM and fixed point theorems, among other
techniques, are utilized in this research. The applicability of the results
is presented through introducing a numerical example in section 4.

2 Preliminaries and Notations

During this section, we state some previous known results so that we
can use them later throughout this paper. Let
C(J,E) = {µ : J → E : µ is continuous },
L1(J,E) = {G : J → E : G is Bochner integrable},
Pb(E) = {X : X ⊂ E,X 6= ∅, Xis bounded},
Pcl(E) = {X : X ⊂ E,X 6= ∅, Xis closed},
conv(B) be the closed convex hull in E of subset B.
Let J0 = [0, t1], Ji =]ti, ti+1], i = 1, · · · ,m, we consider the sets of
functions:

Θ = {Ψ : [−r, 0]→ E; Ψ(s)is continuous everywhere except for

a finite number of points s at which Ψ(s+),Ψ(s−) exist, Ψ(s) = Ψ(s−)},

PC([0, b], E) = {x : J → E : x|Ji
∈ C(Ji, E); x(t+i ), x(t−i ) exist},

and

Λ = {x : [−r, b]→ E : x|[−r,0] ∈ Θ, x|Ji
∈ C(Ji, E); x(t+i ), x(t−i ) exist}.
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Note that Θ, PC and Λ are Banach spaces with norms:

‖Ψ‖Θ = max{‖x(t)‖ : t ∈ [−r, 0]},
‖x‖PC = max{‖x(t)‖ : t ∈ [0, b]},
‖x‖Λ = max{‖x(t)‖ : t ∈ [−r, b]}.

Let W ⊆ Λ, ∀i = 0, 1, 2, · · · ,m, define

W|Ji
= {x∗ : Ji −→ E : x∗(t) = x(t), t ∈ Ji, x∗(ti) = x(t+i ), x ∈W}.

Definition 2.1. ([21]). NCHM (noncompactness Hausdorff measure)
on E,
χ : Pb(E)→ [0,+∞) is defined by

χ(W ) = inf{ε > 0 : W ⊆ ∪nj=1Wj and radius(Wj) ≤ ε}.

Lemma 2.2. ([21]). Let χ as defined above and W1,W2 ∈ Pb(E), then

1. If W1 ⊂W2, then χ(W1) ≤ χ(W2);

2. χ({c} ∪W1) = χ(W1), ∀c ∈ E;

3. If Y ⊂ E with Y is a compact, then χ(W1 ∪ Y ) = χ(W1);

4. χ(W1 +W2) ≤ χ(W1) + χ(W2);

5. χ(W1) = 0 iff W1 is relatively compact;

6. χ(tW1) =| t | χ(W1), t ∈ R;

7. χ(L(W1)) ≤ ‖L‖χ(W1), where L is a linear bounded operator on
E.

Let us consider the map χΛ : Pb(Λ) → [0,∞[, such that for every
W ∈ Pb(Λ),

χΛ(W ) = χΘ(W|[−r,0]) + χPC(W )

= χΘ(W|[−r,0]) + max
i=0,1,··· ,m

χi(W|Ji
),

where χi is the NCHM on C(Ji, E).
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Definition 2.3. A function x ∈ Λ is a mild solution for (PΨ) if

x(t) =



Ψ(t)− g(x), t ∈ [−r, 0]

Tα(t)(Ψ(0)− g(x))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(Ψ(0)− g(x)) +
∑i=m

i=1 Tα(t− ti)Ii(x(t−i ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji,

where i = 1, · · · ,m, f ∈ S1
F (·,τ(·)x),

Tα(t) =

∫ ∞
0

ξα(θ)T (tαθ)dθ,

Sα(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

where ξ is a probability density function on (0,∞) defined as

ξα(θ) =
1

α
θ−1− 1

α$α(θ
−1
α ) ≥ 0,

such that $α(θ) = 1
π

∑∞
n=1(−1)n−1θ−αn−1 Γ(nα+1)

n! sin(nπα), θ ∈ (0,∞).

Next, we restate some results regarding of Tα(·) and Sα(·).

Lemma 2.4. ([29]).

1. If ‖T (t)‖ ≤M, ∀ t ≥ 0, then ∀ x ∈ E, ‖Tα(t)x‖ ≤M‖x‖ and

‖Sα(t)x‖ ≤ M

Γ(α)
‖x‖.

2. If {T (t)}t≥0 is equicontinuous, then Tα(t) and Sα(t) are equicon-
tinuous.

Lemma 2.5. ([11]). Assume that (Wn)n≥1 is a decreasing sequence of
nonempty, closed and bounded subsets of E, with χ(Wn)→ 0 as n→∞,
then W = ∩∞n=1Wn is nonempty and compact in E.

Lemma 2.6. ([6]). If W ⊂ C(J,E) is bounded and equicontinuous,
then χ(W (t)) is continuous on J and χ(W ) = supt∈J χ(W (t)).
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Lemma 2.7. ([16]). Let {un}∞n=1 ⊂ L1(J,E) be a sequence of uniformly
integrable functions, then χ({

∫ t
0 un(s)ds}∞n=1) ≤ 2

∫ t
0 χ({un(s)}∞n=1)ds

and χ({un(t)}∞n=1) is measurable.

Lemma 2.8. ([8]). If W ∈ Pb(E), then ∀ ε > 0, ∃ {µn}∞n=1 ⊂ W such
that χ(W ) ≤ 2χ({µn}∞n=1) + ε.

Definition 2.9. ([16], [21]). If X , Y are two topological spaces. A
multifunction F : X → P (Y ) is called:

1. Upper semicontinuous (u.s.c) if F−1(W ) ⊂ X is an open for every
open subset W of Y.

2. Lower semicontinuous (l.s.c) when F+1(W ) = {x ∈ X : F (x) ∩
W 6= ∅} is an open for every open subset W of Y .

3. Closed in case when its graph is closed in the topological space
X × Y .

4. F has fixed point if there is x ∈ X, such that x ∈ F (x).

Remark 2.10. Let X , Y be two topological spaces and F : X → P (Y ).

1. For any closed subset D in X, if F (x) is closed ∀ x ∈ D, and F (D)
is compact, then F is u.s.c. iff F is closed.

2. If F : X → P (Y )− {∅}. Then d(y, F (·)) is u.s.c. iff F is l.s.c. for
every y ∈ Y , where X,Y are Banach spaces.

Definition 2.11. If W is a nonempty subset of L1(J,E), we call W is
decomposable if for every f, g ∈W and for all Lebesgue measurable set
M ⊂ J , fβM + gβ(J−M) ∈ W , where βM is the characteristic function
of M .

Lemma 2.12. (Theorem 3,[9]). If F : J×X → P (L1(J,X)) multifunc-
tion with closed decomposable values, Then F has a continuous selection,
where X is separable metric space.

Theorem 2.13. ([15]). If E is Banach space, assume that W ⊂ E
which is convex, closed, bounded and nonempty and G : W → W is
continuous function. If either G or W is compact, then G has a fixed
point.
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3 Main results

By using NCHM with fixed point theorems, we will show that our prob-
lem (PΨ) has mild solutions.

Theorem 3.1. Suppose the following hypotheses:

HA: C0−semigroup {T (t) : t ≥ 0} is equicontinuous and there is a
positive constant M such that supt∈J ‖T (t)‖ ≤M .

HF: Let F : J ×Θ→ Pcl(E) be a multifunction such that:

1. x→ F (t, x) is lower semicontinuous and (t, x)→ F (t, x) is graph
measurable.

2. There is a function ϑ ∈ L
1
q (J,R+), q ∈ (0, α) with ∀x ∈ Θ,

‖F (t, x)‖ ≤ ϑ(t) for a.e. t ∈ J .

3. There is a function µ ∈ L
1
q (J,R+), q ∈ (0, α) such that

4L‖µ‖
L

1
q (J,R+)

< 1, and if W ⊂ Θ is bounded and χ is NCHM in

E, then we have

χ(F (t,W )) ≤ µ(t)χ(W ), a.e.t ∈ J,

where, L =
bα−q

Γ(α)(ω + 1)1−q , ω =
α− 1

1− q
.

Hg: g : Λ→ E is compact and continuous with ‖g(x)‖ ≤ N , ∀ x ∈ Λ,
where N is a positive constant.

HI: ∀i = 1, 2 · · · ,m, Ii : E → E is compact and continuous with
‖Ii(x)‖ ≤ hi‖x‖, x ∈ E, where hi is positive constant.

Hr: There is a positive constant r such that

M(‖Ψ‖+N) +M

[
m∑
i=1

hi(r + ‖Ψ‖) + L‖ϑ‖
L

1
q (J,R+)

]
≤ r. (1)

Then the problem (PΨ) has a mild solution on [−r, b].
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Proof. Let Π : Λ→ 2L
1(J,E), defined by

Π(x) = S1
F (·,τ(·)x) = {f ∈ L1(J,E) : f(t) ∈ F (t, τ(t)x), a.e.t ∈ J}.

We prove that Π has a nonempty closed, lower semicontinuous and
decombsable values. S1

F is closed because F has closed value. From
(HF)(2), F is integrably bounded. So, S1

F is nonempty (Theorem 3.2
[18]). One can easily check that S1

F is decomposable. Now, we prove
that Π is lower semicontinuous. To do so, we need to show that x →
d(u,Π(x)) is u.s.c. for every u ∈ L1(J,E). From Theorem 2.2 in [18],

d(u,Π(x)) = inf
f∈Π(x)

‖u− f‖L1

= inf
f(t)∈F (t,τ(t)x)

∫ b

0
‖u(t)− f(t)‖dt

=

∫ b

0
inf

f(t)∈F (t,τ(t)x)
‖u(t)− f(t)‖dt

=

∫ b

0
d(u(t), F (t, τ(t)x))dt. (2)

For any δ ≥ 0, we show that the set uδ = {x ∈ Λ : d(u,Π(x)) ≥ δ}
is closed. To this end, let {xn}n≥1 ⊆ uδ and xn → x in Λ. So, for
every xn(t) → x(t) in E. From (HF)(1), F is l.s.c.. By Remark 2.10,
z → d(u(t), F (t, z)) is u.s.c. and then by Fatou Lemma with (2),

δ ≤ lim
n→∞

sup d(u,Π(xn))

= lim
n→∞

sup

∫ b

0
d(u(t), F (t, τ(t)xn)dt

≤
∫ b

0
lim
n→∞

sup d(u(t), F (t, τ(t)xn)dt

≤
∫ b

0
d(u(t), F (t, τ(t)x)dt = d(u,Π(x)).

Therefore, x ∈ uδ. This means d(u,Π(x)) is u.s.c.. So, by Remark 2.10,
the multifunction Π is l.s.c. and by Lemma 2.12, Π has a continuous
selection f : Λ → L1(J,E) such that f(x) ∈ Π(x), for every x ∈ Λ. So,
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f(x)(s) ∈ F (s, τ(s)x), a.e.s ∈ J . Now, let us define the map G : Λ→ Λ,
such that

G(x)(t) =



Ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(Ψ(0)− g(x))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(Ψ(0)− g(x))

+
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji,

(3)

where i = 1, · · · ,m, f ∈ S1
F (·,τ(·)x). Thus, if G has fixed point, then the

problem (PΨ) has a mild solution. So, we prove that G satisfies all the
hypothesis of Theorem 2.13. We give our proof in several steps. in the
first let us define the set W0 = {x ∈ Λ : ‖x− x0‖ ≤ r}, where

x0(t) =

{
Ψ(t), t ∈ [−r, 0],

Ψ(0), t ∈ J.

Clearly, W0 is bounded, convex and closed subset of Λ.
Step 1. We prove that G(W0) ⊆ W0. Let x ∈ W0, if t ∈ [−r, 0], then
from (3), (Hg) and (1) we have

‖G(x)(t)− x0(t)‖ ≤ ‖g(x)‖ ≤ N ≤ r.

If t ∈ J , then, by using Holder’s inequality, (3), (HF)(2), (Hg), with
Lemma 2.4 and (1), we get ∀ t ∈ J0,

‖G(x)(t)− x0(t)‖ ≤ ‖Tα(t)(Ψ(0) + g(x))‖

+ ‖
∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖

≤M(‖Ψ‖+N) +
M

Γ(1 + α)

∫ t

0
(t− s)α−1ϑ(s)ds

≤M(‖Ψ‖+N) +ML‖ϑ‖
L

1
q (J,R+)

≤ r.
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For t ∈ Ji, i = 1, · · · ,m, in the same way, with the condition (HI), we
get

‖G(x)(t)− x0(t)‖ ≤M(‖Ψ‖+N) +M

k=i∑
k=1

hk (‖Ψ‖+ r)

+
M

Γ(1 + α)

t(1+ω)(1−q)

(1 + ω)(1−q) ‖ϑ‖L 1
q (J,R+)

≤ r.

Then, G(W0) ⊆W0.
Let Wn = convG(Wn−1), n ≥ 1. Clearly, Wn is closed, convex and
nonempty subset of Λ. Moreover, W1 = convG(W0) ⊆ W0 and W2 =
convG(W1) ⊆ convG(W0) ⊆ W1. It can easily be proven that the
sequence (Wn)∞n=1 is decreasing of bounded, convex and closed subsets of
Λ. By Lemma 2.5, we only need to show that W = ∩∞n=1Wn is compact
and nonempty set. To do that, we shall prove

lim
n→∞

χΛ(Wn) = 0. (4)

where χΛ is defined in the previous section. Now, we will prove (4) by
step 2 and step 3.

Step 2. For every n ∈ N and ∀i = 0, 1, · · · ,m, let

Wn|Ji
= {x∗ ∈ C(Ji, E) : x∗(t) = x(t), x∗(ti) = x(t+i ), t ∈ Ji, x ∈Wn}.

Without loss of generality, we show that W1|Ji
is equicontinuous. Since,

W1 = convG(W0), so we only need to prove that G(W0)|Ji is equicon-

tinuous. Let x ∈W0 and y = G(x). Form (3), we have

y(t) =


Ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(Ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(Ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji,

where i = 1, · · · ,m. By the continuity of Ψ, one can easily see that if
t, t+ υ ∈ [−r, 0], then

lim
υ→0
‖y∗(t+ υ)− y∗(t)‖ = 0,
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not dependent on x.
For t ∈ Ji, ∀ i = 0, 1, · · · ,m, by the same way in Step 3 and Step 4
in the proof of Theorem 2 of [3] and Theorem 4 of [19] respectively, we
obtain

lim
υ→0
‖y∗(t+ υ)− y∗(t)‖ = 0,

not dependent on x. Therefore, W1|Ji
is equicontinuous for all i.

Step 3. Set W = ∩∞n=1Wn. Our goal to show that W ⊂ Λ is
nonempty and compact in Λ. To this end, by Lemma 2.5, we need
only to prove that limn→∞ χΛ(Wn) = 0. From Lemma 2.8, ∀ ε > 0,
∃ {uk}∞k=1 ⊂ G(Wn−1), such that

χΛ(Wn) = χΛG(Wn−1) ≤ 2χΛ{uk : k ≥ 1}+ ε

≤ 2χΘ{uk : k ≥ 1}+ 2χPC{uk : k ≥ 1}+ ε.

It follows from definition of χΛ that

χΛ(Wn) ≤ 2χΘ(z|[−r,0]) + 2 max
0≤i≤m

χi(z|Ji
) + ε,

where z = {uk : k ≥ 1}. From Lemma 2.6,

χi(z|Ji
) = sup

t∈Ji
χ(z(t)).

Henece, using the nonsinglarity of χ we get

χΛ(Wn) ≤ 2χΘ(z|[−r,0]) + 2 max
i=0,1,··· ,m

[sup
t∈Ji

χ(z(t))] + ε

= 2 sup
t∈[−r,0]

χ(z(t)) + 2 sup
t∈J

χ(z(t)) + ε.

Then,

χΛ(Wn) ≤ 2 sup
t∈[−r,0]

χ(z(t)) + 2 sup
t∈J

χ{uk : k ≥ 1}+ ε. (5)

Since uk ∈ G(Wn−1), k ≥ 1 ∃ xk ∈ Wn−1 with uk ∈ G(xk). So, (5) can
be rewrite as
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χΛ(Wn) ≤



χ(Ψ(t)− g(xk)), t ∈ [−r, 0],

χ(Tα(t)(Ψ(0)− g(xk)))

+χ(
∫ t

0 (t− s)α−1Sα(t− s)fk(s)ds), t ∈ J0,

χ(Tα(t)(Ψ(0)− g(xk)))

+
∑j=i

j=1 χ(Tα(t− tj)Ij(xk(t−j )))

+χ(
∫ t

0 (t− s)α−1Sα(t− s)fk(s)ds), t ∈ Ji.

Since, g and Ii are compact for all i, then by Lemma 2.2, ∀ t ∈ [−r, b],

χ{Tα(t)(Ψ(t)− g(xk)) : k ≥ 1} = 0,

χ{Tα(t)(Ψ(0)− g(xk)) : k ≥ 1} = 0,

χ{Tα(t− tj)Ij(xk(t−j )) : k ≥ 1} = 0.

Hence, for every t ∈ [−r, b] we have

χΛ(Wn) ≤ ε+ 2 sup
t∈J

χ

{∫ t

0
(t− s)α−1Sα(t− s)fk(s)ds : k ≥ 1

}
.

From [3],

0 ≤ χΛ(Wn) ≤
(

4L‖µ‖
L

1
q (J,R+)

)n−1

χPC(W1).

If we take the limit as n→∞, we obtain

lim
n→∞

χΛ(Wn) = 0.

Thus, W = ∩∞n=1Wn is nonempty and compact.

Step 4. We prove that G is continuous on W .
Let (xn) be a sequence in W with xn → x in W ⊂ Λ. From the uniform
convergence of xn towards x, for any t ∈ J ,

lim
n→∞

‖τ(t)xn − τ(t)x‖ = 0.
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As consequence, for every t ∈ J ,

lim
n→∞

‖F (t, τ(t)xn)− F (t, τ(t)x)‖ = 0.

For every t, s ∈ J ,

‖(t− s)α−1f(xn)(s)‖ ≤ (t− s)α−1ϑ(s) ∈ L1(J,R+),

and
‖(t− s)α−1f(x)(s)‖ ≤ (t− s)α−1ϑ(s) ∈ L1(J,R+).

Then, from the Lebesgue dominated convergence theorem,

lim
n→∞

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds = 0.

Therefore, if t ∈ J0, by the continuity of g, we get

lim
n→∞

‖G(xn)(t)−G(x)(t)‖

≤ lim
n→∞

M‖g(xn)− g(x)‖

+ lim
n→∞

M

Γ(α)

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds

= 0.

Similarly, if t ∈ Ji, then by the continuity of Ii for all i, we get

lim
n→∞

‖G(xn)(t)−G(x)(t)‖

≤ lim
n→∞

M‖g(xn)− g(x)‖

+M

k=i∑
k=1

lim
n→∞

‖Ik(xn(tk))− Ik(x(tk))‖

+ lim
n→∞

M

Γ(α)

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds

= 0.

This shows the continuity of G. Thus, by Theorem 2.13 G has a fixed
point x ∈W ⊂ Λ. So, (PΨ) has a mild solution on [−r, b].
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4 Example

For all z ∈ [0, 1], 0 < α < 1 and i = 1, 2, · · · ,m, consider the problem:

∂αt u(t, z) ∈ ∂2
zu(t, z) +R(t, τ(t, z)u), t ∈ [0, 1], t 6= ti,

u(t, 0) = u(t, 1) = 0,

u((
i

m+ 1
)+, z) = u(

i

m+ 1
, z) +

1

2i
,

u(t, z) =
∑j=q

j=0

∫ 1
0 kj(z, v)tan−1(u(pj , v))dv

+u0(υ, z), −1 ≤ υ ≤ 0,

(6)

where ∂αt is the Caputo fractional partial derivative, 0 < p0 < p1 < · · · <
pq < 1, kj ∈ C([0, 1]×[0, 1],R), j = 0, 1, · · · , q and R : [0, 1]×E → P (E).

Put E = L2([−1, 1],R), and A =
∂2

∂z2
on D(A) = {y ∈ E : y, y′ are

absolutely continuous, y′′ ∈ E, y(0) = y(1) = 0}. From [26], A is the
infinitesimal generator of compact and analytic semigroup {T (t)}t≥0 in
E. This implies that A satisfies the assumption (HA). For every i =
1, · · · ,m define Ii : E → E by

Ii(y)(z) =
1

2i
, z ∈ [0, 1].

The functions Ii satisfy (HI).
∀j = 0, 1, · · · , q, let Hj : E → E such that

(Hj(y))(z) =

∫ 1

0
kj(z, v)tan−1(y(v))dv, z ∈ [0, 1].

Now take g : Λ→ E as

g(y) =

j=q∑
j=0

Hj(y(pj)).

Also, we define Ψ : [−1, 0]→ E by

Ψ(t) = u0(t, z), z ∈ [0, 1].
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Finally, let F (t, τ(t)y) = R(t, τ(t, z)u) where z ∈ [0, 1]. Then,we can
rewrite (6) as

cDαy(t) ∈ Ay(t) + F (t, τ(t)y), t ∈ J = [0, 1], t 6= ti,

y(t) = Ψ(t)− g(y),

y(t+i )− y(ti) = Ii(y(t−i )).

If we put conditions on F as in Theorem 3.1, then (6) has solution on
[−1, 1].

Conclusion

This study argued about the existence results of Nonlocal functional
fractional differential inclusions with impulses effect in Banach spaces.
We investigated the situation when F is lower semicontinuous, noncon-
vex and {T (t)}t>0 is not essentially compact. Various techniques were
utilized such as NCHM and theorems of fixed point by which the exis-
tence of solutions to (PΨ) was established. In the essence, the results
given in this work widened and advanced some preceding results. A nu-
merical system was demonstrated in Section 4 to strengthen our results.
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