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Abstract. In this paper, under growth conditions on the nonlinearity,
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1 Introduction

In this paper, we want to investigate the following problem −∆pu+
|u|p−2u

|x|p
= λf(x, u), in Ω,

u = 0, on ∂Ω,
(1)
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where λ is positive parameter and ∆pu:=div(|∇u|p−2∇u) denotes the p-
Laplace operator, Ω is a bounded domain in RN (N ≥ 2) containing the
origin and with smooth boundary ∂Ω, 1 < p < N , and f : Ω × R → R
is a Carathéodory function such that

(f1) |f(x, t)| ≤ a1 + a2|t|q−1, ∀(x, t) ∈ Ω× R,

for some non-negative constants a1, a2 and q ∈]1, p∗[, where

p∗ :=
pN

N − p
.

Several results are known concerning the existence of solutions for sin-
gular elliptic problems, and we mention the works [5–10]. For example
in [5], the authors obtained the existence of one solution for the problem −∆pu =

|u|p−2u

|x|p
+ λf(x, u), in Ω,

u|∂Ω = 0,

based on variational methods and critical point theory. Also, in [11] the
authors have considered the problem (1) and they have obtained the
existence of two distinct weak solutions requiring that the continuous
and subcritical nonlinear term f satisfies the celebrated Ambrosetti-
Rabinowitz condition.

Nonlinear singular elliptic equations are encountered in glacial ad-
vance, in transport of coal slurries down conveyor belts and in several
other geophysical and industrial contents( see [3]).
In this work, our goal is to obtain the existence of at least three weak
solutions for the problem (1) , by using variational methods.
Recall that a function f : Ω × R → R is said to be a Carathéodory
function , if
(C1) the function x→ f(x, t) is measurable for every t ∈ R;
(C2) the function t→ f(x, t) is continuous for a.e. x ∈ Ω.

2 Preliminaries and Basic Definitions

Let Ω be a bounded domain in RN (N ≥ 2) containing the origin and
with smooth boundary ∂Ω. Further, denote by X the space W 1,p

0 (Ω)
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endowed with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|p dx

)1/p

.

Let 1 < p < N, we recall classical Hardy’s inequality, which says that∫
Ω

|u(x)|p

|x|p
dx ≤ 1

H

∫
Ω
|∇u(x)|pdx, (∀u ∈ X) (2)

where H := (N−pp )p;( see, for instance, the paper [6]). By the com-
pact embedding X ↪→ Lq(Ω) for each q ∈ [1, p∗[, there exists a positive
constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖, (∀u ∈ X) (3)

where cq is the best constant.

Let us define F (x, ξ) :=
∫ ξ

0 f(x, t)dt, for every (x, ξ) in Ω×R. Moreover,
we introduce the functional Iλ : X → R associated with (1),

Iλ(u) := Φ(u)− λΨ(u), (∀u ∈ X)

where

Φ(u) :=
1

p

(∫
Ω
|∇u(x)|pdx+

∫
Ω

|u(x)|p

|x|p
dx

)
, Ψ(u) :=

∫
Ω
F (x, u(x))dx.

It is known that Φ,Ψ ∈ C1(W 1,p
0 (Ω),R), and

Φ
′
(u)(v) =

∫
Ω
|∇u|p−2∇u.∇vdx+

∫
Ω

|u|p−2

|x|p
uvdx

and

Ψ
′
(u)(v) =

∫
Ω
f(x, u(x))v(x)dx

for each u, v ∈W 1,p
0 (Ω).

Now we present one proposition that will be needed to prove the main
theorem of this paper.
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Proposition 2.1. Let T : X → X∗ be the operator defined by

T (u)(v) :=

∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx+

∫
Ω

|u(x)|p−2

|x|p
u(x)v(x)dx,

for every u, v ∈ X. Then T is strictly monotone.

Proof. Clearly T is coercive .Taking into account (2.2) of [12] for p > 1
there exists a positive constant Cp such that if p ≥ 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp|x− y|p,

if 1 < p < 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp
|x− y|2

(|x|+ |y|)2−p ,

where 〈., .〉 denotes the usual inner product in RN . Thus, it is easy to
see that, if p ≥ 2, then, for any u, v ∈ X,with u 6= v,

〈Tu− Tv, u− v〉 ≥ Cp
∫

Ω
|∇u(x)−∇v(x)|pdx = Cp‖(u− v)‖p > 0,

and if 1 < p < 2 then,

〈Tu− Tv, u− v〉 ≥ Cp
∫

Ω

|∇u(x)−∇v(x)|2

(|∇u|+ |∇v|)2−p dx > 0,

for every u, v ∈ X, which means that T is strictly monotone. �
Moreover, by Theorem 3.1 of [4] and proposition 2.1 ,Φ is weakly lower
semicontinuous and Φ

′
: W 1,p

0 (Ω) → (W 1,p
0 (Ω))∗ is a homeomorphism.

Condition (f1) and compact embedding W 1,p
0 (Ω) ↪→ Lq(Ω) imply that

the functional Ψ has compact derivative. From the Hardy’s inequality
(see (2)), it follows that

‖u‖p

p
≤ Φ(u) ≤

(
H + 1

pH

)
‖u‖p,
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for every u ∈ X.
Fixing the real parameter λ, a function u : Ω → R is said to be a

weak solution of (1) if u ∈ X and∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx+

∫
Ω

|u(x)|p−2

|x|p
u(x)v(x)dx

−λ
∫

Ω
f(x, u(x))v(x)dx = 0,

for every v ∈ X. Hence, the critical points of Iλ are exactly the weak
solutions of (1).

Our main tools are the following critical point theorems.

Theorem 2.2 ( [2], Theorem 3.6). Let X be a reflexive real Banach
space, Φ : X → R be a coercive, continuously Gâteaux differentiable
and sequentially weakly lower semicontinuous functional whose Gâteaux
derivative admits a continuous inverse on X∗, Ψ : X → R be a con-
tinuously Gâteaux differentiable functional whose Gâteaux derivative is
compact such that

inf
x∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ;

(a2) for each λ ∈ Λr :=
]

Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x)

[
the functional Φ − λΨ is

coercive.

Then, for each λ ∈ Λr, the functional Φ − λΨ has at least three dis-
tinct critical points in X.

Theorem 2.3 ( [1], Corollary 3.1). Let X be a reflexive real Banach
space, Φ : X −→ R be a convex, coercive and continuously Gâteaux
differentiable functional whose derivative admits a continuous inverse
on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable functional
whose derivative is compact, such that

1. infX Φ = Φ(0) = Ψ(0) = 0;
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2. for each λ > 0 and for every u1, u2 ∈ X which are local minima
for the functional Φ− λΨ and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one
has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1, r2 and v ∈ X, with
2r1 < Φ(v) < r2

2 , such that

(b1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
<

2

3

Ψ(v)

Φ(v)
;

(b2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
<

1

3

Ψ(v)

Φ(v)
.

Then, for each

λ ∈

]
3

2

Φ(v)

Ψ(v)
, min

{
r1

supu∈Φ−1(]−∞,r1[) Ψ(u)
,

r2
2

supu∈Φ−1(]−∞,r2[) Ψ(u)

}[

, the functional Φ − λΨ has at least three distinct critical points which
lie in Φ−1(]−∞, r2[).

3 Main results

In this section we establish the main results of this paper. Now, fix
x0 ∈ Ω and pick D > 0 such that B(x0, D) ⊂ Ω not containing origin,
where B(x0, D) denotes the ball with center x0 and radious D.

Theorem 3.1. Let f : Ω×R→ R be a Carathéodory function such that
condition (f1) holds. Moreover, assume that

(f2) there exist α ∈ [0,+∞[ and 1 < γ < p such that

F (x, t) ≤ α(1 + |t|γ),

for each (x, t) ∈ Ω× R;

(f3) F (x, t) ≥ 0 for each (x, t) ∈ Ω× R+;
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(f4) there exist r > 0 and δ > 0 with r < 1
p(2δ

D )pm(DN − (D2 )N ) such
that

ω̄r :=
1

r

(
a1c1(pr)

1
p +

a2

q
(cq)

q(pr)
q
p

)
<

p infx∈Ω F (x, δ)(
H+1
H

)
(2δ
D )p(2N − 1)

where c1 and cq are the best constants in (3).

Then, for each λ ∈ Λr,δ =

]
(H+1

H )( 2δ
D

)p(2N−1)

p infx∈Ω F (x,δ) , 1
ω̄r

[
, the problem (1) ad-

mits at least three weak solutions.

Proof. Our aim is to apply Theorem 2.2 to problem (1). To this end
let X := W 1,p

0 (Ω) with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|pdx

)1/p

,

and the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
1

p

(∫
Ω
|∇u(x)|pdx+

∫
Ω

|u(x)|p

|x|p
dx

)
,

and

Ψ(u) :=

∫
Ω
F (x, u(x))dx,

for all u ∈ X.
As seen before, the functionals Φ and Ψ satisfy the regularity assump-
tions requested in Theorem 2.2. Now, let v̄ ∈ X be defined by

v̄(x) =


0 x ∈ Ω \B(x0, D)
2δ

D
(D − |x− x0|) x ∈ B(x0, D) \B(x0,

D
2 ),

δ x ∈ B(x0,
D
2 )

where |.| denotes the Euclidean norm on RN. We have

1

p

(
2δ

D

)p
m

(
DN −

(
D

2

)N)
≤ Φ(v̄)
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≤
(
H + 1

pH

)(
2δ

D

)p
m

(
DN −

(
D

2

)N)

where m := π
N
2

N
2

Γ(N
2

)
is the measure of unit ball of RN and Γ is the Gamma

function. Thanks to (f3),

Ψ(v̄) ≥
∫
B(x0,

D
2

)
F (x, v̄(x))dx ≥ inf

x∈Ω
F (x, δ)m

(
D

2

)N
and so

Ψ(v̄)

Φ(v̄)
≥ p infx∈Ω F (x, δ)(

H+1
H

) (
2δ
D

)p
(2N − 1)

.

From r < 1
p

(
2δ
D

)p
m
(
DN −

(
D
2

)N)
, one has r < Φ(v̄). Bearing in mind

define the functional Φ, we see that

Φ−1(]−∞, r]) = {u ∈ X; Φ(u) ≤ r}

⊆
{
u ∈ X;

‖u‖p

p
≤ r
}
.

So, the compact embedding X ↪→ Lq(Ω) and (f1) imply that, for each
u ∈ Φ−1(]−∞, r]), we have

Ψ(u) ≤ a1

∫
Ω
|u(x)|dx+

a2

q

∫
Ω
|u(x)|qdx ≤ a1c1‖u‖+

a2

q
(cq‖u‖)q

≤ a1c1(pr)
1
p +

a2

q
(cq)

q(pr)
q
p

and so

1

r
sup

Φ(u)≤r
Ψ(u) ≤ 1

r

(
a1c1(pr)

1
p +

a2

q
(cq)

q(pr)
q
p

)
and so condition (a1) of Theorem 2.2 is verified. Now, let us introduce
the integral functional related to problem (1)

Iλ(.) := Φ(.)− λΨ(.)
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and we prove that, for each λ > 0, Iλ is coercive. By arguments similar
to those used before, we obtain∫

Ω
|u(x)|γdx ≤ (cγ‖u‖)γ

and so, for each u ∈ X with ‖u‖ ≥ max{1, 1
cγ
}, from (f2) one has

Ψ(u) =

∫
Ω
F (x, u(x))dx ≤

∫
Ω
α(1 + |u(x)|γ)dx ≤ α (|Ω|+ (cγ‖u‖)γ) .

This leads to

Iλ(u) ≥ 1

p
‖u‖p − λα (|Ω|+ (cγ‖u‖)γ)

and, since γ < p, coercivity of Iλ is obtained. Taking into account that

Λr,δ ⊆

]
Φ(v̄)

Ψ(v̄)
,

r

supΦ(u)≤r Ψ(u)

[
,

Theorem 2.2 ensures that, for each λ ∈ Λr,δ, the functional Iλ admits at
least three critical points in X that are weak solutions of the problem
(1). �

Remark 3.2. In Theorem 3.1, if we consider f(x, 0) 6= 0, then we obtain
the existence of at least three non-zero weak solutions.

Remark 3.3. According to the Sobolev embedding theorem there is a
positive constant c such that

‖u‖Lp∗ (Ω) ≤ c‖u‖, (∀u ∈ X). (4)

The best approximation for constant c in (4) is

c :=
1

N
√
π

(
N !Γ(N2 )

2Γ(Np )Γ(N + 1− N
p )

)1/N

η
1− 1

p ,

where

η :=
N(p− 1)

N − p
,
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(see, for instance, [13]). The consequences of using the Hölder’s inequal-
ity, in (3), is as follows

cq ≤
meas(Ω)

p∗−q
p∗q

N
√
π

(
N !Γ(N2 )

2Γ(Np )Γ(N + 1−N/p)

)1/N

η1−1/p,

where meas (Ω) denotes the Lebesgue measure of the set Ω.

Another the main result of this section is as follows.

Theorem 3.4. Let f : Ω × R → R be Carathéodory function with as-
sumption (f1) that satisfies the condition f(x, t) ≥ 0 for every (x, t) ∈
Ω×R. Moreover, assume that there exist three positive constants r1, r2

and δ with
r1 <

1
2p

(
2δ
D

)p
m
(
DN −

(
D
2

)N)
and 2

(
H+1
pH

) (
2δ
D

)p
m
(
DN −

(
D
2

)N)
<

r2. Furthermore, suppose that

(B1) ω̄r1 := 1
r1

(
a1c1(pr1)

1
p + a2

q (cq)
q(pr1)

q
p

)
< 2

3
p infx∈Ω F (x,δ)

(H+1
H )( 2δ

D
))
p
(2N−1))

;

(B2) ω̄r2 := 1
r2

(
a1c1(pr2)

1
p + a2

q (cq)
q(pr2)

q
p

)
< 1

3
p infx∈Ω F (x,δ)

(H+1
H )( 2δ

D
))
p
(2N−1))

.

Then, for each λ ∈
]

3
2

(H+1
H )( 2δ

D
)p(2N−1)

p infx∈Ω F (x,δ) ,min{ 1
ω̄r1

, 1
2 ω̄r2
}
[
, the problem

(1) admits at least three weak solutions ui for i = 1, 2, 3, such that

‖ui‖ < (p r2)
1
p .

Proof. Take Φ and Ψ as in the proof of Theorem 3.1. Our aim is to
verify (b1) and (b2) in Theorem 2.3. To this end, choose v̄ as given in
Theorem 3.1. Using

1

p

(
2δ

D

)p
m

(
DN −

(
D

2

)N)
≤ Φ(v̄) ≤

(
H + 1

pH

)(
2δ

D

)p
m

(
DN −

(
D

2

)N)
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and theorem data it is clear that we have 2r1 < Φ(v) < r2
2 . Now we

have

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)

r1
=

sup
u∈Φ−1(]−∞,r1[)

∫
Ω
F (x, u(x))dx

r1

≤ ω̄r1 <
1

λ
<

2

3

Ψ(v̄)

Φ(v̄)

and

2 sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

r2
=

2 sup
u∈Φ−1(]−∞,r2[)

∫
Ω
F (x, u(x))dx

r2

≤ 2 ω̄r2 <
1

λ
<

2

3

Ψ(v̄)

Φ(v̄)
.

Therefore, (b1) and (b2) of Theorem 2.3 are established. Finally, we
verify that Φ − λΨ satisfies the assumption 2. of Theorem 2.3. Let u1

and u2 be two local minima for Φ−λΨ. Then u1 and u2 are critical points
for Φ−λΨ, and so, they are weak solutions for the problem (1). We will
show that they are nonnegative.

Let ū be a weak solution of problem (1). Using the argument of
contradiction, assume that the set T =

{
x ∈ Ω : ū(x) < 0

}
is non-empty

and of positive measure. Put u∗(x) = min{0, ū(x)} for all x ∈ Ω. It is
clear that, u∗ ∈ X and hence we have∫

Ω
|∇ū(x)|p−2∇ū(x)∇u∗(x)dx+

∫
Ω

|ū(x)|p−2

|x|p
ū(x)u∗(x)dx

−λ
∫

Ω
f(x, ū(x))u∗(x)dx = 0.

Thus, from our sign assumptions on the data, we have

0 ≤
∫
T
|∇ū(x)|pdx+

∫
T

|ū(x)|p

|x|p
dx ≤ 0.
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Hence, ū = 0 in T and this is antithesis. Hence, u1(x) ≥ 0 and u2(x) ≥ 0
for every x ∈ Ω. Thus, it follows that su1 +(1−s)u2 ≥ 0 for all s ∈ [0, 1],
and that

f(x, su1 + (1− s)u2) ≥ 0,

and consequently, Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1].
By using Theorem 2.3, for every

λ ∈

]
3

2

(
H+1
H

)
(2δ
D )p(2N − 1)

p infx∈Ω F (x, δ)
,min{ 1

ω̄r1
,

1

2 ω̄r2
}

[
⊆

3

2

Φ(w)

Ψ(w)
, min

 r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
,

r2/2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)


 ,

the functional Φ−λΨ has at least three distinct critical points which are
the weak solutions of the problem (1) and the proof is complete. �
To illustrate the Theorem 3.2, we provide an example.

Example 3.5. Let f : R → R be a non-negative continuous function
with F (t) =

∫ t
0 f(ξ)dξ and f(t) ≤ t2 for every t ∈ R. Also suppose

that there exist positive constants r1 , r2 and δ such that the following
inequalities hold.
(i1) r1 < min{δ

3
2π, 4

3(c3)3 } , 4
(
H+1
H

)
δ

3
2π < r2 <

2
3(c3)3

(i2) 3
(
H+1
H

)
δ

3
2 <

∫ δ
0 f(ξ)dξ

where c3 is best constant in (3).In this case problem −∆ 3
2
u+
|u|
−1
2 u

|x|
3
2

= f(u), in Ω,

u = 0, on ∂Ω,

where Ω be a bounded domain in R2 containing the origin and containing
the ball with radious 2 not containing origin and with smooth boundary
∂Ω, has at least three weak solutions. To this end according to conditions
f(t) ≤ |t|2 and (f1) we can consider a1 = 0 , a2 = 1 and q = 3. also
consider p = 3

2 and D = 2. On the other hand, from N = 2 we have
m = π. Hence according to Theorem 3.2, it is enough to show that

λ = 1 ∈

]
3

2

(
H+1
H

)
(2δ
D )p(2N − 1)

p infx∈Ω F (x, δ)
,min{ 1

ω̄r1
,

1

2 ω̄r2
}

[
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and this, according to the inequalities (i1) and (i2) can be easily re-
searched.
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