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Abstract. The Fermat-Weber location problem is to find a point in
Rn that minimizes the sum of the weighted Euclidean distances from m
given points in Rn. In this paper we consider the Fermat-Weber problem
of one new facilitiy with respect to n unknown customers in order to
minimizing the sum of transportation costs between this facility and the
customers. We assumed that each customer is located in a nonempty
convex closed bounded subset of Rn.
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1. Introduction

In this work we concentrate on presenting a new Weber problem whose
customers are unknown and restricted into some specific regions. A pop-
ular iterative solution method for the Weber location problem was first
introduced by Weiszfeld in 1937. In 1973 Kuhn claimed that if the d
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given points are not collinear, then for all but a denumerable number of
starting points the sequence of iterates generated by Weiszfeld’s scheme
converges to the unique optimal solution. Let a1, . . . , ad be d distinct
points in Rn. Suppose that each point aj , 1 6 j 6 d is associated with
a positive weight sj . The Fermat- Weber location problem ([17,24]) is
to find a point in Rn that will minimize the sum of the (weighted) Eu-
clidean distances from the a1, . . . , ad:

minf(x) =
d∑

j=1

sj‖x− aj‖. (1)

It is well known that if the data points are not collinear, there objective
is strictly convex, and therefore has a unique optimum. (In the collinear
case at least one of the points a1, . . . , ad is optimal and it can be found in
linear time by the algorithm introduced in [2].) There are several infinite
schemes to solve the Fermat-Weber location problem(see [3-4,17,22,25]).
One of the most popular algorithms was discovered by Weiszfeld [25]. It
is analysed extensively in [16] and [18]. The algorithm is based on the
following mapping of Rn into the convex hull of a1, . . . , ad;

T (x) =



d∑
j=1

sj‖x− aj‖−1aj

d∑
j=1

‖x− aj‖−1

if x 6= a1, . . . , ad,

aj if x = aj forsome j = 1, . . . , d.

(2)

Weiszfeld’s algorithm is defined by the following iterative scheme;

xr+1 = T (xr). (3)

Recently, the so-called Newton-Bracketing (NB) method for convex min-
imization was utilized to solve the involved location phase and thus
Cooper-NB algorithm was developed in [19]. Due that the gradients of
‖x − aj‖, (j = 1, 2, . . . , n) are used in the iteration, both the Weiszfeld
procedure and NB method share the common characteristic that their
implementations may terminate unexpectedly when the current iteration
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happens to be identical with some location of the customers. i.e. the
singular case happens. How to improve the original Weiszfeld procedure
and NB method in the singular case for location phase and allocation
phase and terminate controllable become the main challenges in this
study.The rest of the paper is organized as follows. Section 2 reformu-
lated the involved location phase. Then we present an algorithm include
a location phase and an allocation phase. Moreover, we formulated the
involved location phase into linear variational inequalities (LVI) and
present an effective method for solving these LVIs. In Section 3, conver-
gence results are presented under mild assumptions. In addition, some
numerical results are investigated.

2. Problem Structure and Solution Method

In this section we consider the generalized constrained single-source We-
ber problem (GCSWP) whose mathematical model is as follows:

GCSWP : min
n∑

j=1

SjV PHj (x),

x ∈ X,
aj ∈ Hj , j = 1, 2, . . . , d,

(4)

where

(1) Hj ⊂ Rn is non-empty closed convex subset in Rn, j = 1, 2, . . . , d;

(2) x ∈ Rn is the location of the facility to be determined;

(3) sj > 0 is the given demand required by the jth customer;

(4) aj is the location of the jth customer to be determined, j =
1, 2, . . . , d;

(5) ‖ · ‖ is the norm produced by inner product in Rn;

(6) X is non-empty closed convex subset in Rn;

(7) PHj (x) = arg min {‖x− u‖ | u ∈ Hj};
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(8) V PHj (x) = min {‖x− u‖ | u ∈ Hj};

(9) let A = {H1,H2, . . . ,Hd},if Hi,Hj ∈ A, i 6= j then Hi ∩Hj = ∅

At the (k + 1)th iteration, the location phase finds the candidate of
location of facility by solving generalized single-source Weber problem
(GSWP) denoted by

GSWP : xk+1 = arg min
x∈X

C(x) :=
d∑

j=1

sj‖x− ak+1
j ‖

 , (5)

where ak+1
j is produced by allocation phase. Then the allocation phase

involves an allocation, which depends on the x generated by solving
(5). More specifically, if x is the nearest facility for each region of xk+1,
then x is the desirable location of facility. Therefore, it is reasonable to
allocate the regions from the facility xk+1 in order to minimize the total
sum of transportation costs. The overall solution method for (GCSWP)
can be outlined as follows:

Input: Starting locations {a1
1, a

1
2, . . . , a

1
n}.

Step 0. Set t = 0 (t is the number of reassignment).
Step 1. Location phase:
Solving the involved GSWP (5) and find xk+1.
Step 2. Allocation phase:
For j = 1, . . . , n do:
if xk 6∈ Hj ,
then ak+1

j = PHj (x
k).

if xk ∈ Hj ,

then ak+1
j = xk + ε

xk − xk−1

‖xk − xk−1‖
,

for ε sufficiently small enough such that 0 < ε < ‖xk − xk−1‖.

2.1 LVI Reformulation of GSWP

At solving the involved GSWP (5) in the location phase by a linear
variational inequality (LVI) approach. There are many methods for LVI,
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see for example [5,8-14,20-21]. Among these methods, the projection and
contraction methods are attractive for their simplicity and efficiently,
(see [7]).

Lemma 2.1.1. Let ak+1
j be the solution of allocation phase in iteration

k. Then ak+1
j is unique and an element of Hj.

Proof. In case ak+1
j = PHj (x

k), since Hj is a compact set and ‖ · ‖ is a
continues function, it follows that ak+1

j ∈ Hj .
On the other hand, Hj is a convex set and the distant function is convex
function, hence ak+1

j is unique. In semisingular case, by the [15,Theo-
rem1] xk is unique. Hence ak+1

j is unique. �
It is easy to verify that in each iterate

V PHj (x
k) = min

{
‖xk − u‖ | u ∈ Hj

}
= ‖xk − ak+1

j ‖. (6)

For convenience, we use aT
k = (akT

1 , akT

2 , . . . , akT

d ), and H = H1 ×H2 ×
· · · ×Hd.
More specifically, if xk+1 is the nearest facility for each regions, then
xk+1 is the desirable location of facility and ak+1

j , j = 1, . . . , n are the
desirable location of customers.
We define

Bw = {ξ ∈ Rn | ‖ξ‖ 6 w}, for w > 0 (7)

Note that for any r, ξ ∈ Rn, we get rT ξ 6 ‖r‖ ‖ξ‖, and

max
ξ∈Bw

rT ξ 6 max
ξ∈Bw

‖r‖ ‖ξ‖ = w‖r‖. (8)

Since
wr

‖r‖
∈ Bw, it follows that

rT wr

‖r‖
6 max

ξ∈Bw

rT ξ ⇒ w‖r‖ 6 max
ξ∈Bw

rT ξ. (9)

From (8), (9) we deduce that

max
ξ∈Bw

rT ξ = w‖r‖. (10)
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According to (10), GSWP is equivalent to the following min-max prob-
lem:

min
x∈X

max
zi∈Bsi

d∑
i=1

zi(x− ak+1
i ), (11)

where each zi, (i = 2, . . . , d) is a vector in Bsi = {ξ ∈ Rn | ‖ξ‖ 6 si}. A
compact form of (11) is

min
x∈Rn

max
zi∈Bsi

zT (Ax− b), (12)

where

zT = (zT
1 , z

T
2 , . . . , z

T
d ) , B̄ = Bs1 ×Bs2 × · · · ×Bsd

A = (In, In, . . . , In)T , bT = (ak+1T

1 , ak+1T

2 , . . . , ak+1T

d ).

Let (x∗, z∗) ∈ X × B̄ be any solution of (12). Then it follows that

zT (Ax∗ − b) 6 z∗T (Ax∗ − b) 6 z∗T (Ax− b), ∀x ∈ X, z ∈ B̄.

Thus (x∗, z∗) is a solution of the following LVI :

Find x∗ ∈ X, z∗ ∈ B̄ such that

{
(x− x∗)(AT z∗) > 0 ∀x ∈ X

(z − z∗)(−Ax∗ + b) > 0 ∀z ∈ B̄

A compact form of the above LVI is

LVI : u∗ ∈ Ω, (u− u∗)(Mu∗ + q) > 0, ∀u ∈ Ω, (13)

where

u =
(
x
z

)
, M =

(
0 AT

−A 0

)
, q =

(
0
b

)
, Ω = X × B̄. (14)

Therefore, the GSWP (8) is reformulated into the LVI (13)- (14). It is
well known, see, e.g. ([19]), that for any β > 0, u∗ is a solution of the
LVI (13), (14) if and only if

e(u∗, β) := u∗ − PΩ[u∗ − β(Mu∗ + q)] = 0, (15)
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The LVI is solved in [16] and the solution is unique. The solution method
for (GSWP) is as follows:

Location phase Algorithm. Given a tolerance ε′ > 0 and a initial
iterate u0 = (x0, z0) ∈ Ω. For k = 0, 1, . . ., if ‖e(uk)‖ > ε′ then do:

zk+1 = PB̄

[
zk + (Axk − b)

]
,

xk+1 = PX

[
1
d
(dxk −AT zk+1 −AT (zk+1 − zk))

]
.

3. Convergence

This section analyzes the convergence of this method.The global con-
vergence of it is proved under mild assumptions. Suppose that the map
B : X ×H → X ×H is given by

B

(
xk

ak

)
=
(

xk

ak+1

)
.

If xk 6∈ Hj , then
ak+1

j = PHj (x
k)

, and if xk ∈ Hj , then

ak+1
j = xk + ε

xk − xk−1

‖xk − xk−1‖
,

for ε sufficiently small enough such that 0 < ε < ‖xk − xk−1‖.
We also define the map C : X ×H → X ×H by

C

(
xk

ak+1

)
=
(
xk+1

ak+1

)
,

where xk+1 = arg min
x∈X

d∑
j=1

sj‖x− ak+1
j ‖.

We set α
(
x
a

)
=

d∑
j=1

Sj‖x− aj‖, where aT = (aT
1 , a

T
2 , . . . , a

T
n ).
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Lemma 3.2. Let xk be the sequence produced by the location phase and
ak+1 be that by the allocation phase. And also ak 6= ak+1, then for each
k:

α

(
xk

ak+1

)
< α

(
xk

ak

)
.

Proof. In the case of xk 6∈ Hj , since ak
j ∈ Hj and ak+1

j = PHj (x
k) =

arg min
{
‖xk − u‖ | u ∈ Hj

}
it follows that,

V PHj (x
k) 6 ‖xk − ak

j ‖.

Since ak 6= ak+1 and ak is unique in each iterate, therefore

‖xk − ak+1
r ‖ < ‖xk − ak

r‖ for some r ∈ {1, 2, . . . , d}.

It follows that:

α

(
xk

ak+1

)
=

d∑
j=1

Sj‖xk − ak+1
j ‖ <

d∑
j=1

Sj‖xk − ak
j ‖ = α

(
xk

ak

)
.

Hence ak
j = ak−1

j for j = 1, 2, . . . , n, j 6= r.
In the semisingular case, we have V PHr(xk) = xk. Hence

ak+1
r = xk + ε

xk − xk−1

‖xk − xk−1‖
.

Since xk 6= xk−1, it follows that

∃ε > 0 s.t ε < ‖xk − xk−1‖, sr‖xk − ak−1
r ‖ = srε < sr‖xk − ak

r‖.

Thus

α

(
xk

ak+1

)
< α

(
xk

ak

)
. �

Lemma 3.3. Let C
(

xk

ak+1

)
=
(
xk+1

ak+1

)
, then the following inequal-

ity holds true for each k:

α

(
xk+1

ak+1

)
6 α

(
xk

ak+1

)
.
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Proof. Since in each iterate xk+1 = argmin
x∈X

d∑
j=1

sj‖x− ak+1
j ‖ and since

xk ∈ X, it follows that

d∑
j=1

sj‖xk+1 − ak+1
j ‖ 6

d∑
j=1

sj‖xk − ak+1
j ‖,

Which implies that α
(
xk+1

ak+1

)
6 α

(
xk

ak+1

)
. �

Lemma 3.4. Let Ω ⊆ X ×H be the nonempty solution set of problem
GMWP, and B : X × H → X × H. Then B : X × H → X × H and
C : X ×H → X ×H are closed maps over the complement of Ω.

Proof. Since PHj is continues where Hj ’s is convex and closed set and

argmin
x∈X

d∑
j=1

sj‖x− ak+1
j ‖ is continues where X is convex and closed set.

Hence B and C are closed over the complement of Ω. �

Theorem 3.5. Let X × H be a nonempty closed set in Rn, and w =(
x
a

)
, and let Ω ⊆ X ×H be a nonempty solution set. Let α : Rn → R

be a continuous function, and consider the point-to-point map C : X ×
H → X × H satisfying the following property: Given w ∈ X × H,
then α(y) 6 α(w) for y = C(w). Let B : X × H → X × H be a
point-to-point map that is closed over the complement of Ω and that
satisfies α(y) < α(w) for each if w 6∈ Ω. Now consider the algorithm
defined by composite map A = CB. Given w1 ∈ X, suppose that the
sequence {wk} is generated as follows: If wk ∈ Ω, then stop; otherwise,
let wk+1 = A(wk), replace k by k + 1, and repeat. Suppose that the set
Λ = {w; α(w) 6 α(w1)} is compact. Then either the algorithm stops in
a finite number of steps with a point in Ω or all accumulation points of
{wk} belong to Ω.

Proof. The proof follows from lemma 1, 2, 3 and 4 and Theorem 7.3.4
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in [1]. 

4. Numerical Example

In this Section, we present an example for proposed method.

Example. Consider x ∈ R2 and sj = 1, j = 1, 2, 3, 4,

H1 =

y22 + (y1 − 2)2, H2 =


(y2 + 4)2 + (y1 + 4)2,

H3 =

(y2 − 6)2 + (y1 + 5)2, H4 =


(y2 + 2)2 + (y1 + 7)2,

a1 ∈ H1, a2 ∈ H2, a3 ∈ H3, a4 ∈ H4,
4

j=1

Hj = ∅.

Clearly Hj for j = 1, 2, 3, 4 are closed bounded convex sets in R2.
Since in each iterate doesn’t lie in any regions, it fllows that

ak+1j = PHj (x
k) for j = 1, 2, . . . , 4. A summary of computations is

presented in the following table.

iter xk
T

a
(k+1)T

1 a
(k+1)T

2 a
(k+1)T

3 a
(k+1)T

4

k = 0 (-0.6878,2.0253) (-0.6658,2.4130) (-4.2955,3.4733) (1.7988,-3.6335) (3.5840,-3.0017)

k = 1 (0.5125,-0.4776) (1.0479,-0.3057) (-3.2117,-3.3847) (-4.3519,5.2384) (-6.0199,-1.8014)

k = 2 (-3.4918,-1.2664) (1.0256,-0.2247) (-3.8172,-3.0168) (-4.7968,5.0209) (-6.0212,-1.7953)

k = 3 (-4.0204,-1.3494) (1.0242,-0.2187) (-4.0077,-3.0000) (-4.8679,5.0088) (-6.0230,-1.7867)

k = 4 (-4.1820,-1.3771) (1.0239,-0.2174) (-4.0692,-3.0024) (-4.8898,5.0061) (-6.0236,-1.7842)

k = 5 (-4.2348,-1.3865) (1.0238,-0.2171) (-4.0895,-3.0040) (-4.8970,5.0053) (-6.0237,-1.7834)

k = 6 (-4.2522,-1.3897) (1.0238,-0.2170) (-4.0962,-3.0046) (-4.8993,5.0051) (-6.0238,-1.7832)

k = 7 (-4.2580,-1.3908) (1.0238,-0.2169) (-4.0984,-3.0049) (-4.9001,5.0050) (-6.0238,-1.7831)

k = 8 (-4.2599,-1.3911) (1.0238,-0.2169) (-4.0991,-3.0049) (-4.9004,5.0050) (-6.0238,-1.7831)

k = 9 (-4.2606,-1.3912) (1.0238,-0.2169) (-4.0994,-3.0050) (-4.9005,5.0050) (-6.0238,-1.7831)

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming
Theory and Algorithms,Wiley, 1993, 3th Edition.
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