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Abstract. In this paper, we consider the problem of estimating stress-
strength reliability R = Pr(X > Y ) for Gompertz lifetime models hav-
ing the same shape parameters but different location parameters under
a set of upper record values. We obtain the maximum likelihood es-
timator (MLE), the approximate Bayes estimator and the exact confi-
dence intervals of stress-strength reliability when the shape parameter
is known. Also, when the shape parameter is unknown, the MLE, the
asymptotic confidence interval and some bootstrap confidence intervals
of stress-strength reliability are studied. Furthermore, a Bayesian ap-
proach is proposed for estimating the parameters and then the corre-
sponding credible interval are achieved using Gibbs sampling technique
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via OpenBUGS software. Monte Carlo simulations are performed to
compare the performance of different proposed estimation methods. Fi-
nally, analysis of a real dataset is performed.
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1 Introduction

Increasing the reliability of any system is an important issue in many
fields of engineering. The stress-strength problem originates from relia-
bility engineering. The problem arises naturally in mechanical reliability
of a system or equipment. In the reliability engineering literature, the
stress-strength model is an evaluation of reliability of a system in terms
of random variates X representing an external stress experienced by the
system and Y representing the inherent strength of the system avail-
able to overcome the stress. The system fails if at any time the external
stress is larger than its inherent strength. Assessment of R = Pr(Y > X)
where X and Y are taken to be non-negative independent continuous
random variables is a common statistical approach of the Stress-Strength
testing. Birnbaum and McCarty [5] were the first who introduced this
model under the context of reliability engineering. The book by Kotz
et al. [12] is an excellent reference which provides a comprehensive ac-
count of this topic on the theory and applications of the stress-strength
relationships in industrial, economic and engineering systems under clas-
sical and Bayesian point of views. When the X and Y are independent
and follow the generalized exponential, three-parameter Weibull distri-
butions, and inverse Pareto, the estimation of R was studied by Kundu
and Gupta [13], Kundu and Raqab [14] and Guo and Gui [11], respec-
tively. Rao et al. [18] estimate the multicomponent stress-strength
reliability of a system when strength and stress variates are drawn from
an exponentiated Weibull distribution with different shape parameters
and common shape and scale parameters respectively. Bi and Gui [4]
consider the problem of estimating stress-strength reliability for inverse
Weibull and lifetime models having the same shape but different scale
parameters.
Since record values arise in numerous real-life situations involving data
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relating to seismology, hydrology, weather, sporting and athletic events,
economics, life tests, industrial stress testing, meteorological analysis,
oil mining surveys, stock market, and other similar situations, they are
extensively used in statistical modeling. In industrial stress-strength
testing, the measurements made chronologically and only values which
are larger or smaller than all previous ones are observed. That is, if
at a stage, an observation recorded has a value which exceeded the
value of the previous observations is called a record value. Accord-
ing to the model of record values that is examined in Chandler [6],
there are many situations in lifetime testing in which a failure time of
a product is recorded if it surpasses all preceding failure times. These
recorded failure times are the upper record value sequence. Wen-Chuan
Lee et al. [15] evaluate the lifetime performance index based on the
Bayesian estimation for the Rayleigh lifetime products with the upper
record values. Nadar et al. [17] used the maximum likelihood and
Bayesian approaches to estimate stress-strength reliability based on a
set of upper record values from Kumaraswamy distribution. The prob-
lem of estimating Pr(Y > X) based on upper record values is considered
by Tarvirdizade and Ahmadpour [21] when X and Y are independent
random variables from a two-parameter bathtub-shaped lifetime distri-
bution with the same shape but different scale parameters.
The Gompertz distribution, due to Benjamin Gompertz, was introduced
in 1825 to describe human mortality and establish actuarial tables. This
distribution plays an important role in modelling survival times and cus-
tomarily used as life time distribution in demography, biology, actuarial,
and medical science. In reliability and survival studies, many equipment
life time are characterized by an increasing hazard rate and having Gom-
pertz distribution. The problem of stress-strength reliability model is
studied by Surinder and Mayank [20] when Stress and Strength follows
Gompertz and Power function distribution, respectively.
The cumulative distribution function (cdf) and the probability density
function (pdf) of Gompertz distribution with location parameter α and
shape parameter β, respectively, is given by

F (x) = 1− e−
α
β

(eβx−1)
, x > 0, α, β > 0, (1)
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and

f(x) = αeβxe
−α
β

(eβx−1)
, x > 0, α, β > 0. (2)

Based on (1) and (2), the corresponding failure rate function of this
distribution is given by

hF (x) =
f(x)

1− F (x)
= αeβx, x > 0, α, β > 0. (3)

The rest of the paper is organized as follows. In Section 2, the likelihood
inference for R is discussed and its asymptotic confidence interval and
some bootstrap confidence intervals are obtained. In addition, Bayesian
inference is considered in Section 3. In Section 4, Monte Carlo simula-
tion is used to compare the performance of different types of estimators
presented in this paper. In Section5, a real data analysis is presented to
illustrate the proposed methods. Finally, some stochastic comparisons
are made based on stress-strength of inactivity times of two Gompertz
random variables in Section 6.

2 Likelihood inference

Let X and Y be independent random variables from the Gompertz life-
time distribution in (2) with the parameters α1 , β and α2 , β respec-
tively. Let R = Pr(X > Y ) be the stress-strength reliability. then,

R =

∫ ∞
0

FY (x).fX(x) =
α2

α1 + α2
.

We are interested in estimating the quantity R based on two sets of
upper record values on both variables. Let r

∼
= (r1, · · · , rn) be a set

of upper records from distribution of X with pdf f and cdf F and let
s
∼

= (s1, · · · , sm) be an independent set of upper records from distribu-

tion of Y with pdf g and cdf G. The likelihood functions are given by
(Ahsanullah [2]),

L(α1, β|r∼) = f(rn)
∏n
i=1

(
f(ri)

1−F (ri)

)
, 0 < r1 < · · · < rn <∞

L(α2, β|s∼) = g(sm)
∏m
i=1

(
g(si)

1−G(si)

)
, 0 < s1 < · · · < sm <∞.

(4)
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Substituting f , F , g and G in the likelihood functions and using (4),
we obtain

L(α1, β|r∼) = αn1e
β
∑n
i=1 rie

−α1
β

(eβrn−1)
,

L(α2, β|s∼) = αm2 e
β
∑m
i=1 sie

−α2
β

(eβsm−1)
.

(5)

Thus, the joint log-likelihood function of the observed records r and s
is given by

`(α1, α2, β|r∼, s∼) =n lnα1 +m lnα2 + β(
n∑
i=1

ri +
m∑
i=1

si)

− α1(eβrn − 1)

β
− α2(eβsm − 1)

β
,

and subsequently the likelihood equations are found to be

∂`

∂α1
=
n

α1
− 1

β
(eβrn − 1) = 0, (6)

∂`

∂α2
=
m

α2
− 1

β
(eβsm − 1) = 0, (7)

∂`

∂β
=

n∑
i=1

ri +
m∑
i=1

si +
α1

β2
(eβrn − 1) +

α2

β2
(eβsm − 1)

− 1

β

(
α1rne

βrn + α2sme
βsm
)

= 0. (8)

Now, we consider likelihood inference for R in the following two cases:

2.1 When β is known

Under the assumption that the shape parameter β is known, the MLEs
of α1 and α2, respectively, are obtained from (6) and (7) as

α̂1 =
nβ

eβrn − 1
, α̂2 =

mβ

eβsm − 1
. (9)
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Therefore the MLE of R is given by

R̂ =
α̂2

α̂1 + α̂2
.

To study the distribution of R̂ we need the distributions of α̂1 and α̂2.
Consider first α̂1 = nβ

eβrn−1
. The pdf of Rn is given by (see [2]):

fRn (rn) =
1

(n− 1)!
f(rn)

[
− ln(1− F (rn))

]n−1

=
1

(n− 1)!
αn1e

βrne
−α1

β
(eβrn−1)

[eβrn − 1

β

]n−1
, rn > 0.

Consequently, the pdf of Z1 = α̂1 is given by:

fZ1
(z1) =

n

z2
1 + nβz1

fRn

( 1

β
ln
(
1 +

nβ

z1

))
=

(nα1)n

(n− 1)!zn+1
1

e
−nα1

z1 ,

which is an inverted gamma distribution, i.e., Z1 ∼ IΓ (n, nα1). Simi-
larly, for Z2 = α̂2, we can obtain Z2 ∼ IΓ (m,mα2). So we can find
the pdf of R̂ = α̂2

α̂1+α̂2
= Z2

Z1+Z2
= 1

1+
Z1
Z2

. We have nα1
Z1
∼ Γ(n, 1)

and mα2
Z2
∼ Γ(m, 1) according to properties of the inverted gamma

distribution and its relation with the gamma distribution. Therefore
2nα1
Z1
∼ χ2

(2n) and 2mα2
Z2
∼ χ2

(2m). Note that, by the independence of two
random quantities we have

(2mα2/2mZ2)

(2nα1/2nZ1)
=
α2Z1

α1Z2
=

R

(1−R)

α̂1

α̂2
∼ F(2m,2n).

This fact can be used to construct the following (1 − γ)% confidence
interval for R,(1 +

α̂1

α̂2F( γ
2
,2n,2m)

)−1

,

(
1 +

α̂1

α̂2F(1− γ
2
,2n,2m)

)−1
 . (10)
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2.2 When β is unknown

Here, likelihood inference for R when all of the parameters α1, α2 and
β are unknown, is discussed. Based on (6) and (7), we obtain

α̂1 =
nβ̂

eβ̂rn − 1
, α̂2 =

mβ̂

eβ̂sm − 1
. (11)

By solving likelihood equations, (6), (7) and (8), the MLE of parameter
β , i.e β̂, is obtained by substituting (9) in non-linear equation (8) as
follows

n∑
i=1

ri +
m∑
i=1

si +
n+m

β
− nrne

βrn

eβrn − 1
− msme

βsm

eβsm − 1
= 0. (12)

Therefore, β̂ can be obtained as a solution of the non-linear equation of
the form h(β) = β where

h(β) = −(n+m)

[
n∑
i=1

ri +

m∑
i=1

si −
nrne

βrn

eβrn − 1
− msme

βsm

eβsm − 1

]−1

.

Since β̂ is a fixed point solution of this non-linear equation, therefore, it
can be obtained by using a simple iterative procedure as h(βj) = βj+1,

where βj is the jth iteration of β̂. The iteration procedure should be

stopped when |βj−βj+1| is sufficiently small. Once we obtain β̂, α̂1 and
α̂2 can be deduced from (15) and therefore, the MLE of R is R̂ = α̂2

α̂1+α̂2
.

It is clear that the study of the distribution of Rˆ is very complicated and
difficult, therefore, it is not possible to obtain exact confidence interval
of R. In this case, some confidence intervals based on the asymptotic
distribution of R̂ and the bootstrap method are suggested as follows.

2.3 Asymptotic confidence interval

In this subsection, the approximate confidence interval of R is obtained
based on the asymptotic distribution of R̂ which depends on calculating
the Fisher information matrix. Since the expected information matrix
is very complicated and requires numerical integration, the observed
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information matrix is used. The 3× 3 observed information matrix I is
given by

I(α1, α2, β) =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 ,
where

I11 =− ∂2`

∂α2
1

=
n

α2
1

, I12 = I21 = − ∂2`

∂α1α2
= 0, I22 = − ∂

2`

∂α2
2

=
m

α2
2

,

I13 =I31 = − ∂2`

∂α1∂β
= − 1

β2

(
eβrn − 1

)
+
rn
β
eβrn ,

I23 =I32 = − ∂2`

∂α2∂β
= − 1

β2

(
eβsm − 1

)
+
sm
β
eβsm ,

I33 =− ∂2`

∂β2
= −2α1

β3
(eβrn − 1)− 2α2

β3
(eβsm − 1)

+
2

β2
(α1rne

βrn + α2sme
βsm)− 1

β
(α1r

2
ne
βrn + α2s

2
me

βsm).

As n→∞ and m→∞, by the asymptotic properties of the MLE, R̂ is
asymptotically normal with mean R and asymptotic variance

σ2
R =

3∑
i=1

3∑
j=1

∂R

∂λi

∂R

∂λj
I−1
ij ,

where λ1 = α1, λ2 = α2, λ3 = β and I−1
ij is the (i, j)th element of the

inverse of the I(α1, α2, β) (see Rao [18]). Since

∂R

∂λ1
=

−α2

(α1 + α2)2
,

∂R

∂λ2
=

α1

(α1 + α2)2
,

∂R

∂λ3
= 0,

therefore,

σR =

√
α2

2I
−1
11 + α2

1I
−1
22 − 2α1α2I

−1
12

(α1 + α2)4
.

Now, the asymptotic (1− γ)% confidence interval of R is given by(
R̂− z1−γ/2σ̂R , R̂+ z1−γ/2σ̂R

)
,
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where σ̂R is obtained by replacing α1, α2, and β involved in σR by their
corresponding MLEs and zγ is the γ quantile of the standard normal
distribution.

2.4 Bootstrap confidence intervals

Some confidence intervals for R based on the parametric bootstrap meth-
ods are obtained here. The following method is proposed to generate
parametric bootstrap samples of R, as suggested by Efron and Tibshirani
[9].

Step1. Compute α̂1, α̂2, β̂ and R̂ based on the original two sam-
ples of upper records r

∼
and s

∼
.

Step2.Generate independent bootstrap upper record samples r
∼
∗ =

(r∗1, r
∗
2, · · · , r∗n) and s

∼
∗ = (s∗1, s

∗
2, · · · , s∗m) from the Gompertz lifetime

distribution with the parameters α̂1, β̂ and α̂2, β̂ respectively. Using
these data, we compute the bootstrap estimators α̂∗1, α̂∗2, β̂∗ and R̂∗.

Step3. Repeat step 2, B times to obtained a set of bootstrap
samples of R, say R̂∗1, · · · , R̂∗B.

Now, we obtain the following three types of bootstrap confidence
interval using the above bootstrap samples of R:

(I) Standard normal interval:
The simplest 100(1 − γ)% bootstrap interval is the standard normal
interval as

(R̂− z1−α/2ŝeboot, R̂+ z1−α/2ŝeboot),

where ŝeboot is the bootstrap estimate of the standard error based on
R̂∗1, · · · , R̂∗B.

(II) Percentile bootstrap (Boot-p) interval:
Let G(x) = Pr(R̂∗ 6 x) be the cdf of R̂∗. Define R̂Boot(x) = G−1(x) for
a given x. Then the 100(1 − γ)% bootstrap percentile interval for R is
defined by (

R̂Boot

(γ
2

)
, R̂Boot

(
1− γ

2

))
,

that is, just use the γ/2 and 1− γ/2 quantiles of the bootstrap sample
R̂∗1, · · · , R̂∗B.
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(III) Student’s t bootstrap (Boot-t) interval:
Let

T ∗b =
R̂∗b − R̂
ŝe∗b

, b = 1, 2, . . . , B,

where ŝe∗b is an estimate of the standard error of R̂∗b and can be replaced
by its asymptotic standard error. Then 100(1−γ)% bootstrap student’s
t interval is given by

(R̂− t∗1−γ/2ŝeboot, R̂− t
∗
γ/2ŝeboot),

where t∗γ is the γ quantile of T ∗1 , . . . , T
∗
B.

3 Bayesian Inference

In this section, we discuss Bayesian methods for making inferences about
R based on upper record values. Again, two cases are considered sepa-
rately to draw inference on R, namely when the shape parameter β is
known and unknown.

3.1 When β is known

Under the assumption that the shape parameter β is known, the like-
lihood functions of α1 and α2 in (5) suggest that the conjugate family
of prior distributions for α1 and α2 is the Gamma family of probability
distributions as

π(αi) =
baii

Γ(ai)
αai−1
i e−biαi , αi > 0, ai > 0, bi > 0, i = 1, 2, (13)

where ai and bi are the parameters of the prior distributions of αi for
i = 1, 2. Using these prior distributions and the likelihood functions in
(5), the posterior distributions of α1 and α2 are obtained to be

(α1|r∼) ∼ Γ
(
n+ a1, b1 + 1

β (eβrn − 1)
)
,

(α2|s∼) ∼ Γ
(
m+ a2, b2 + 1

β (eβsm − 1)
)
.

(14)
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Since the priors α1 and α2 are independent, then, using standard trans-
formation techniques and after some manipulations, the posterior pdf of
R will be

fR(r) = C
(1− r)n+a1−1rm+a2−1

(1− r)
(
b1 + e

βrn−1
β

)
+ r

(
b2 + e

βsm−1
β

) ,
where 0 < r < 1 and

C =
Γ(n+m+ a1 + a2)

Γ(n+ a1)Γ(m+ a2)

(
b1 +

eβrn − 1

β

)n+a1 (
b2 +

eβsm − 1

β

)m+a2

.

Under squared error loss function, the Bayes estimate of R is the ex-
pected value of R. This expected value contains an integral which is
not obtainable in a simple closed form. Alternatively, using the approx-
imate method of Lindley [16], it can be seen that the approximate Bayes
estimate of R, say R̃B, under squared error loss function is

R̃B = R̃

(
1− R̃(1− R̃)

n+ a1 − 1
+

(1− R̃)2

m+ a2 − 1

)
,

where R̃ = α̃2
α̃1+α̃2

and

α̃1 =
n+ a1 − 1

b1 + e
βrn−1
β

, α̃2 =
m+ a2 − 1

b2 + e
βsm−1
β

,

are the mode of the posterior densities α1 and α2, respectively. Further-
more, it follows from (14) that

2

(
b1 +

e
βrn − 1

β

)
(α1|r∼) ∼ χ2

2(n+a1)
,

2

(
b2 +

e
βsm − 1

β

)
(α2|s∼) ∼ χ2

2(m+a2)
.

Then, the posterior distribution of R, i.e. π(R|r
∼
, s
∼

), is equal to that of

(1 +AW )−1, where

W ∼ F2(n+a1),2(m+a2), A =
(n+ a1)

(
b2 + (e

βsm − 1)/β
)

(m+ a2)
(
b1 + (eβrm − 1)/β

) .
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Therefore, a Bayesian 100(1− γ)% confidence interval for R is given by(
(AFγ/2,2(n+a1),2(m+a2) + 1)−1, (AF1−γ/2,2(n+a1),2(m+a2) + 1)−1

)
. (15)

3.2 When β is Unknown

In this subsection, the Bayes estimation of R under assumption that
all of the parameters α1, α2 and β are unknown, is obtained. It is
assume that α1 and α2 have conjugate priors Γ(a1, b1) and Γ(a2, b2) as
mentioned in (13), respectively. Also, we consider a prior Γ(a3, b3) for
the shape parameter β. Furthermore, it is assumed that α1, α2 and β
are independent. Therefore,

π(α1, α2, β|r∼, s∼) ∝ π(α1)π(α2)π(β)L(α1, α2, β|r∼, s∼), (16)

where the right hand of (16) by using (5) and (13) is given as

ba11 α
n+a1−1
1 e

−α1

(
b1+ 1

β
(eβrn−1)

)
Γ(a1)

× ba22 α
m+a2−1
2 e

−α2

(
b2+ 1

β
(eβsm−1)

)
Γ(a2)

×b
a3
3 β

a3−1e−β(b3−
∑n
i=1 ri−

∑m
i=1 si)

Γ(a3)
.

We use the Gibbs sampling technique via OpenBUGS software which
uses the posterior distributions of each parameter conditional on all
others to obtain the bayes estimation and the credible interval of R
(see [10]). The unknown parameter’s posterior PDF’s are,

π(α1|α2, β, r∼
, s
∼

) ∝ αn+a1−1
1 e

−α1

(
b1+ 1

β
(eβrn−1)

)
,

π(α2|α1, β, r∼
, s
∼

) ∝ αm+a2−1
2 e

−α2

(
b2+ 1

β
(eβsm−1)

)
,

and
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π(β|α1, α2, r∼
, s
∼

) ∝ βa3−1e
−α1

β (eβrn−1)−α2β (eβsm−1)−β(b3−
∑n
i=1 ri−

∑m
i=1 si).

Therefore, the algorithm of Gibbs Sampling is described as follows:
Step1. Start with β(0) = β̂ as an initial guess and set t=1.

Step2. Generate α
(t)
1 , α

(t)
2 and β(t).

Step3. Compute R(t) = α
(t)
2 /(α

(t)
1 + α

(t)
2 ) .

Step4. Set t = t+ 1.
Step5. Repeat Steps 2 to 4, N times.

Based on N and R(t) values, using the method introduced by Chen and
Shao [7], we can construct the 100(1 − γ)% highest posterior density
(HPD) credible interval for R as,

(
R[ γ

2
N ], R[(1− γ

2
)N ]

)
, (17)

where R[ γ
2
N ] and R[(1− γ

2
)N ] are the [γ2N ]-th and [(1− γ

2 )N ]-th smallest

integers of
{
R(t), t = M + 1,M + 2, · · · , N

}
, respectively.

4 Simulation

In this section, we conduct the Monte Carlo simulation study to assess
on the finite sample behavior of the different estimators of R. All results
are obtained from 5000 Monte Carlo replications.
In each replication, the upper set of records r

∼
= (r1, · · · , rn) is drawn

from Γ(α1, β) and an independent set of upper records s
∼

= (s1, · · · , sm)

is drawn from Γ(α2, β) such that Γ(α, β) is Gompertz distribution with
parameters α and β.
The true value of parameter β in data generating processes is β = 0.1,
and α1 = (0.1, 0.3, 0.5, 0.7, 0.9) and α2 = (0.9, 0.7, 0.5, 0.3, 0.1) are dif-
ferent values for the parameters α1 and α2. Tables 1, 2 and 3 represent
the empirical means and confidence intervals of the corresponding esti-
mators of R for sample sizes n = 3, 5, 10, 15 and 20.
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Table 1: Average estimates of R (AVR).

R(α1, α2) (n,m) MLE MLE BE BE
(Knownβ) (Unknown β) (Knownβ) (Unknown β)

0.9(0.9,0.1) (3,3) 0.8455 0.9563 0.8455 0.8159
(5,5) 0.8940 0.9594 0.894 0.8535

(10,10) 0.9262 0.9375 0.9162 0.8828
(15,15) 0.9159 0.9167 0.9012 0.8899
(20,20) 0.9112 0.9034 0.9009 0.9108

0.7(0.7,0.3) (3,3) 0.6567 0.8937 0.6567 0.6579
(5,5) 0.6848 0.8616 0.6848 0.6810

(10,10) 0.7273 0.8466 0.7081 0.6956
(15,15) 0.7187 0.8006 0.7076 0.7042
(20,20) 0.7123 0.7846 0.7023 0.7094

0.5(0.5,0.5) (3,3) 0.5076 0.4823 0.5076 0.5284
(5,5) 0.4952 0.4739 0.5052 0.5170

(10,10) 0.5045 0.5073 0.5041 0.5096
(15,15) 0.5008 0.5037 0.5082 0.5077
(20,20) 0.5005 0.5030 0.5003 0.5034

0.3(0.3,0.7) (3,3) 0.3364 0.3464 0.3355 0.3248
(5,5) 0.3105 0.3281 0.3164 0.3151

(10,10) 0.2972 0.3154 0.3052 0.3106
(15,15) 0.2958 0.3117 0.3078 0.3059
(20,20) 0.2838 0.3089 0.3038 0.3015

0.1(0.1,0.9) (3,3) 0.1533 0.1345 0.1533 0.2364
(5,5) 0.1119 0.1147 0.1119 0.2081

(10,10) 0.1031 0.1169 0.1030 0.1507
(15,15) 0.0963 0.1095 0.0965 0.1172
(20,20) 0.0852 0.1082 0.0853 0.1013

Table 1 represents the MLEs and Bayes estimators (BEs) of parame-
ter R for different values of α1, α2 and sample sizes. The prevailing view
is that by increasing the size of sample, the estimation of R towards to
correct values as expected also, it is notable that in most cases, when the
value of parameter β is known, the results of ML and Bayes estimators
are close together.
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Table 2: MLE, Asymptotic and Bayes confidence intervals of R.

R(α1, α2) (n,m) MLE MLE Asy. Bayes Bayes
(Known β) (Unknown β) (Known β) (known β) (Unknown β)

0.9(0.9,0.1) (3,3) (0.512 , 0.968) (0.828 , 0.992) (0.656 , 1.035) (0.512 , 0.968) (0.496 , 0.923)
(5,5) (0.701 , 0.969) (0.882 , 0.988) (0.786 , 1.002) (0.700 , 0.969) (0.510 , 0.968)

(10,10) (0.808 , 0.954) (0.865 , 0.973) (0.855 , 0.978) (0.818 , 0.964) (0.532 , 0.932)
(15,15) (0.830 , 0.940) (0.851 , 0.953) (0.853 , 0.949) (0.830 , 0.940) (0.553 , 0.948)
(20,20) (0.863 , 0.930) (0.797 , 0.974) (0.877 , 0.935) (0.863 , 0.930) (0.597 , 0.928)

0.7(0.7,0.3) (3,3) (0.253 , 0.916) (0.693 , 0.977) (0.308 , 1.006) (0.325 , 0.916) (0.348 , 0.893)
(5,5) (0.372 , 0.889) (0.688 , 0.959) (0.424 , 0.945) (0.416 , 0.889) (0.406 , 0.883)

(10,10) (0.496 , 0.856) (0.769 , 0.949) (0.531 , 0.884) (0.496 , 0.856) (0.473 , 0.929)
(15,15) (0.540 , 0.834) (0.750 , 0.927) (0.565 , 0.853) (0.540 , 0.834) (0.518 , 0.822)
(20,20) (0.581 , 0.830) (0.744 , 0.918) (0.601 , 0.844) (0.581 , 0.830) (0.624 , 0.760)

0.5(0.5,0.5) (3,3) (0.159 , 0.849) (0.191 , 0.777) (0.128 , 0.887) (0.159 , 0.849) (0.157 , 0.931)
(5,5) (0.211 , 0.782) (0.215 , 0.742) (0.189 , 0.801) (0.211 , 0.782) (0.217 , 0.872)

(10,10) (0.290 , 0.711) (0.296 , 0.710) (0.282 , 0.719) (0.290 , 0.711) (0.264 , 0.882)
(15,15) (0.329 , 0.678) (0.333 , 0.679) (0.326 , 0.683) (0.329 , 0.678) (0.247 , 0.814)
(20,20) (0.356 , 0.659) (0.351 , 0.655) (0.354 , 0.662) (0.356 , 0.659) (0.355 , 0.649)

0.3(0.3,0.7) (3,3) (0.077 , 0.699) (0.041 , 0.549) (0.004 , 0.625) (0.077 , 0.699) (0.042 , 0.856)
(5,5) (0.121 , 0.549) (0.119 , 0.526) (0.067 , 0.605) (0.121 , 0.649) (0.059 , 0.789)

(10,10) (0.147 , 0.504) (0.126 , 0.507) (0.119 , 0.471) (0.147 , 0.504) (0.119 , 0.742)
(15,15) (0.163 , 0.455) (0.141 , 0.459) (0.145 , 0.431) (0.163 , 0.455) (0.183 , 0.694)
(20,20) (0.165 , 0.382) (0.238 , 0.423) (0.187 , 0.261) (0.199 , 0.382) (0.218 , 0.607)

0.1(0.1,0.9) (3,3) (0.031 , 0.484) (0.006 , 0.144) (0.009 , 0.341) (0.031 , 0.484) (0.038 , 0.677)
(5,5) (0.033 , 0.310) (0.019 , 0.188) (0.009 , 0.225) (0.033 , 0.225) (0.016 , 0.540)

(10,10) (0.036 , 0.182) (0.024 , 0.126) (0.022 , 0.144) (0.036 , 0.182) (0.014 , 0.453)
(15,15) (0.038 , 0.146) (0.033 , 0.126) (0.050 , 0.133) (0.038 , 0.146) (0.018 , 0.391)
(20,20) (0.007 , 0.137) (0.093 , 0.169) (0.064 , 0.125) (0.041 , 0.137) (0.022 , 0.280)

Tables 2 and 3 give the confidence intervals of R with various meth-
ods that explained in above. It can be seen that generally by increasing
the sample size, confidence intervals get shorter. The results of simu-
lation study shows that the confidence intervals of ML and Bayes esti-
mations with known β are more accurate than similar estimators with
unknown β. By and large, the bootstrap methods had worst confidence
intervals in comparison of other methods.
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Table 3: Bootstrap confidence intervals of R.

R(α1, α2) (n,m) Boot-s Boot-p Boot-t
0.9(0.9,0.1) (3,3) (0.872 , 1.020) (0.809 , 1.112) (0.801 , 1.297)

(5,5) (0.807 , 1.089) (0.833 , 1.065) (0.835 , 1.144)
(10,10) (0.874 , 1.037) (0.881 , 0.998) (0.747 , 1.081)
(15,15) (0.794 , 1.048) (0.821 , 0.996) (0.841 , 1.037)
(20,20) (0.850 , 1.016) (0.865 , 0.986) (0.847 , 0.972)

0.7(0.7,0.3) (3,3) (0.594 , 0.813) (0.598 , 0.811) (0.608 , 0.909)
(5,5) (0.579 , 0.798) (0.607 , 0.795) (0.632 , 0.893)

(10,10) (0.574 , 0.823) (0.594 , 0.872) (0.627 , 0.841)
(15,15) (0.635 , 0.849) (0.625 , 0.940) (0.686 , 0.796)
(20,20) (0.673 , 1.053) (0.616 , 0.877) (0.644 , 0.749)

0.5(0.5,0.5) (3,3) (0.480 , 0.529) (0.489 , 0.524) (0.448 , 0.567)
(5,5) (0.488 , 0.519) (0.492 , 0.515) (0.392 , 0.612)

(10,10) (0.471 , 0.524) (0.478 , 0.515) (0.425 , 0.674)
(15,15) (0.459 , 0.550) (0.474 , 0.536) (0.400 , 1.598)
(20,20) (0.344 , 0.656) (0.390 , 0.610) (0.245 , 1.261)

0.3(0.3,0.7) (3,3) (0.046 , 0.513) (0.460 , 0.499) (0.094 , 0.424)
(5,5) (0.044 , 0.514) (0.444 , 0.498) (0.014 , 0.426)

(10,10) (0.015 , 0.524) (0.209 , 0.460) (0.157 , 0.458)
(15,15) (0.004 , 0.471) (0.063 , 0.381) (0.168 , 0.397)
(20,20) (0.060 , 0.339) (0.022 , 0.347) (0.181 , 0.343)

0.1(0.1,0.9) (3,3) (0.004 , 0.522) (0.091 , 0.493) (-0.056 , 0.495)
(5,5) (0.020 , 0.517) (0.082 , 0.461) (-0.044 , 0.323)

(10,10) (0.001 , 0.349) (0.038 , 0.309) (0.004 , 0.306)
(15,15) (0.000 , 0.242) (0.004 , 0.246) (0.001 , 0.265)
(20,20) (0.005 , 0.199) (0.006 , 0.193) (0.005 , 0.277)

Figure 1 represent the AMSE of the parameter R for fixed value of
β = 0.1 and different sample sizes. In all figures, black and green lines
show AMSEs of MLE and Bayes estimators with known β and red and
blue lines show AMSEs of MLE and Bayes estimators with unknown
β respectively. We note that, as the sample size increases, the mean
squared errors decrease in all the cases analyzed, as expected. Moreover,
similar to results of Table 1, the AMSE of ML and Bayes estimators are
close together. The simulations were carried out in ’R’ and ’OpenBugs’
statistical softwares.

5 Data Analysis

As an example, we analyze the real dataset to illustrate the methods
of inference discussed in this article. We consider two datasets of the
amount of annual rainfall (in inches) recorded at the Los Angeles Civic
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Figure 1: The mean square error of parameter R when the true value
is 0.1.

Figure 2: The mean square error of parameter R when the true value
is 0.3.
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Figure 3: The mean square error of parameter R when the true value
is 0.5.

Figure 4: The mean square error of parameter R when the true value
is 0.7.
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Figure 5: The mean square error of parameter R when the true value
is 0.9.

Center for two 30-year periods as follows:

Dataset 1 (from 1960 to 1989): 4.85, 18.79, 8.38, 7.93, 13.69,
20.44, 22.00, 16.58, 27.47, 7.77, 12.32, 7.17, 21.26, 14.92, 14.35, 7.22,
12.31, 33.44, 19.67, 26.98, 8.98, 10.71, 31.25, 10.43, 12.82, 17.86, 7.66,
12.48, 8.08, 7.35,

Dataset 2 (from 1990 to 2019): 11.47, 21.00, 27.36, 8.11, 24.35,
12.46, 12.40, 31.01, 9.09, 11.57, 17.94, 4.42, 16.49, 9.24, 37.25, 13.19,
3.21, 13.53, 9.08, 16.36, 20.20, 8.69, 5.85, 6.08, 8.52, 9.65, 19.00, 4.79,
18.82, 14.86.

The Gompertz distribution given in (1) is fitted to the two datasets
separately, and its performances is examined. The estimated location
and shape parameters (based on the ML method), Kolmogorov-Smirnov
(K-S) distances and corresponding p-values are presented in Table 4.
Obviously, the Gompertz distributions with equal shape parameters fit
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Figure 6: The empirical distribution function (dashed) and fitted dis-
tribution function for Datasets 1 and 2.

reasonably well to the both datasets. It is clear that we cannot reject
the null hypothesis that the two shape parameters are equal. Figures 6
confirms this result

Table 4: Location parameter, shape parameter, K-S distances and p-
values of the fitted Gompertz distribution to Datasets 1 and 2.

Dataset Location Parameter Shape Parameter K-S p-value
1 0.2459 0.0049 0.1843 0.2297
2 0.2659 0.0049 0.2014 0.1525

For the above data, we observe that the upper record values are as
follows:

r
∼

: 4.85, 18.79, 20.44, 22.00, 27.47, 33.44,

s
∼

: 11.47, 21.00, 27.36, 31.01, 37.25.

Based on these record values, we consider the following two cases:

Case I : Under the assumption that the shape parameter is known,
we take β = 0.0049 from Table 4. The MLEs of α1 and α2, are obtained
from (9) as, 0.1651 and 0.1223, respectively. The MLE of R is R̂ =
0.4255 and the corresponding 95% confidence interval based on (10) is
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equal to (0.1802, 0.7284). Since we have no prior information, to obtain
the approximate Bayes estimator of R, we use very small non-negative
values of the hyper-parameters, i.e. a1 = a2 = b1 = b2 = 0.0001, as
suggested by Congdom [8]. Therefore, we can conduct R̃B as 0.4310
and corresponding Bayesian 95% confidence interval based on (15) can
be obtained as (0.2057, 0.7596).

Case II : Under the assumption that the shape parameter is known,
the MLEs of β, α1 and α2 are 0.0054, 0.1637 and 0.1211 from (11)
and (12), respectively. Therefore, the MLE of R is obtained as R̂ =
0.4253. The asymptotic 95% confidence interval of R (12) is obtained as
(0.1352, 0.6903). Based on 1000 bootstrap samples, the 95% standard
normal, percentile bootstrap and Student’s t bootstrap confidence in-
tervals constructed in subsection (2.4) are obtained as, (0.1143, 0.7028),
(0.1167, 0.7139) and (0.0908, 0.6962), respectively. Moreover, based on
N = 10000 samples and using hyper-parameters ai = bi = 0.0001 for
i = 1, 2, 3, the approximate Bayes estimator of R becomes 0.4301 and the
corresponding 95% HPD credible interval from (17) is equal to (0.1731,
0.6924).

6 Stochastic comparisons

In this section, strength-stress reliability in terms of sequences of records
instead of the original variables is firstly derived. Then, a preservation
property of a stochastic ordering which constructed by strength-stress
reliability, is established for two random variables with Gompertz distri-
butions. We assume that Rn and Sn are the nth upper records based on
sequences of i.i.d random lifetimes X1, X2, . . . and Y1, Y2, . . . from distri-
butions F known as Gompertz(α1, β) and G known as Gompertz(α2, β),
respectively. From [3], recall that Rn and Sn have pdf’s

fRn(r) =
(ΛF (r))n

n!
f(r), r > 0 and fSn(s) =

(ΛG(s))n

n!
g(s), s > 0

where ΛF (r) =
∫ r

0 hF (x)dx and ΛG(s) =
∫ s

0 hG(y)dy are cumulative
hazards of F and G, respectively, given by

ΛF (r) = − ln(F̄ (r)) and ΛG(s) = − ln(Ḡ(s)).
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To extend the quantity R evaluated before, to a more developed setting
based on record values, R

′
= P (Rn > Sn) as the probability that Rn

exceeds Sn could be obtained. In spirit of the Gompertz distribution,
since for α1 = α2 it holds that P (Rn > Sn) = 1/2 and because R

′
=

1−P (Sn > Rn), thus without loss of generality, we assume that α2 < α1

as the other case will be derived by symmetry.

R
′

=

∫ ∞
0

FSn(r)fRn(r) dr

=

∫ ∞
0

∫ r

0

(ΛG(s))n

n!
g(s)

(ΛF (r))n

n!
f(r) ds dr

=

∫ ∞
0

∫ ΛG(r)

0

(y)ne−y

n!

(ΛF (r))n

n!
f(r) dy dr

=
(α1/β)n+1

(n!)2

∫ ∞
0

Un(x)B(U(x))e−(α1/β)U(x) dU(x),

where B(u) =
∫ uα2/β

0 yne−y dy and U(x) = eβx − 1. By making the
change of variable v = U(x) and using the expansion of the incomplete
gamma function,

R
′

=
(α1/β)n+1

(n!)2

∫ ∞
0

vnB(v)e−(α1/β)v dv

=
(α1/β)n+1

(n!)2

∫ ∞
0

vn(vα2/β)n+1e−(α1/β)v
∞∑
k=0

(−vα2/β)k

k!(k + n+ 1)
dv

=
(α1α2)n+1

(n!)2β2n+2

∫ ∞
0

∞∑
k=0

(−α2/β)k

k!(k + n+ 1)
vk+2n+1e−(α1/β)v dv

=
(α1α2)n+1

(n!)2β2n+2

∞∑
k=0

(−α2/β)k

k!(k + n+ 1)
(α1/β)−(k+2n+2)Γ(k + 2n+ 2)

=
(α2/α1)n+1

(n!)2

∞∑
k=0

(−α2/α1)k(k + 2n+ 1)!

k!(k + n+ 1)
.
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In view of (3), ifX follows Gompertz(α1, β) and Y follows Gompertz(α2, β)
then X and Y have proportional hazards as hG(x) = θhF (x), in which
θ = α2/α1. The concept of inactivity time of an equipment at time
of observation of its failure has attracted the attention of many re-
searchers. The conditional random variables X(t) = (t − X | X ≤ t)
and Y(t) = (t − Y | Y ≤ t) are called the inactivity times associated
with X and Y, respectively. In hydrology the Gompertz distribution is
applied to extreme events such as annual maximum one-day rainfalls
and river discharges. Thus, in this case to evaluate water shortage, it
may be useful to investigate the deficiency of water in days in which
the the amount of water falling in rain is below a (necessary) threshold.
The inactivity time is, therefore, useful for such an analysis in terms of
inactivity time probability order ([1]).

Definition 6.1. Let X and Y be non-negative continuous random vari-
ables denoting the lifetimes of two systems. The lifetime Y is said to be
greater than X in inactivity probability (denoted by X ≤ipr Y ) if for all

t > 0, R̃(t) ≥ 1/2.

In the following theorem, we demonstrate that the ipr order passes
from the maximum Gompertz variables into the variables themselves.
Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be two random (i.i.d) samples from
Gompertz(α1, β) and Gompertz(α2, β), respectively, and let X(n) and
Y(n) be the maximum order statistics in the specified samples, respec-
tively. We can see that the pdf’s of X(n) and Y(n) are, respectively,
obtained as

f(n)(τ) = nα1e
βτe
−α1

β
(eβτ−1)

(1− e−
α1
β

(eβτ−1)
)n−1, τ > 0

and

g(n)(τ) = nα2e
βτe
−α2

β
(eβτ−1)

(1− e−
α2
β

(eβτ−1)
)n−1, τ > 0.

The cdf’s of X(n) and Y(n) are, respectively, derived as

F(n)(τ) = (1− e−
α1
β

(eβτ−1)
)n, τ > 0

and
G(n)(τ) = (1− e−

α2
β

(eβτ−1)
)n, τ > 0.
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Theorem 6.2. In the Gompertz distribution, X(n) ≤ipr Y(n) implies
X ≤ipr Y.

Proof. It holds that X(n) ≤ipr Y(n), if and only if,∫ x

0
[g(n)(τ)F(n)(τ)− f(n)(τ)G(n)(τ)] dτ ≥ 0, for all x > 0,

which is equivalent to the condition that for all x > 0,∫ x

0
[α2e

βτe
−α2

β
(eβτ−1)

(v2(τ))n−1(v1(τ))n−α1e
βτe
−α1

β
(eβτ−1)

(v1(τ))n−1(v2(τ))n] dτ ≥ 0.

where vi(τ) = 1− e−
αi
β

(eβτ−1)
for i = 1, 2. Let us denote, for all x > 0,

W (x) =

∫ x

0
[v1(τ)v2(τ)]n−1(g(τ)F (τ)− f(τ)G(τ)) dτ.

Then, from what resulted above, one concludes that
∫ T

0 dW (x) ≥ 0, for
all T > 0. For each fixed T > 0, we further have∫ T

0
[g(τ)F (τ)− f(τ)G(τ)] dτ

sign
=

∫ ∞
0

h(τ) dW (τ),

where

h(τ) =


1

[v1(τ)v2(τ)]n−1 , τ ≤ T

0, τ > T,

which is non-negative and non-increasing in τ, for all τ > 0. The result
now follows from Lemma 7.1(b) in [19]. �

7 Conclusion

The paper has achieved two goals. The first is the problem of estimation
of stress-strength reliability in Gompertz distribution via classical and
bayesian inference. Data analysis has been carried out by simulation and
a real dataset. The second goal is to make some stochastic comparisons
based on stress-strength of inactivity times of two Gompertz random
variables.
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