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1 Introduction

Fractional differential equations(FDEs) are generalization of ordinary
differential equations and integration to arbitrary non-integer orders.
FDEs have gained importance due to their numerous applications in
many fields of science and engineering. Indeed, there are a large number
of phenomena including fluid flow, diffusive transport akin to diffusion,
rheology, probability, electrical networks, etc, that are modeled by dif-
ferent equations involving fractional order derivatives, see for details
[11, 14, 15, 16, 17, 19, 20, 23, 25, 26, 27, 28] and references therein. In
recent decades, many researchers proved the existence and multiplicity
of solution of nonlinear initial fractional differential equations by the
use of some fixed point theorems, one can see [4, 5, 6, 8, 9, 13, 24].
Among them, Guo [13] with Leray-Schauder nonlinear alternative has
given some sufficient conditions for the existence of nontrivial solutions
to the following nonlinear fractional differential equation boundary value
problem {

Dαu(t) + f(t, u(t)) + g(t) = 0, 0 < t < 1,
u(0) = 0, u(1) = βu(η),

where 1 < α ≤ 2, 0 < η < 1 and β ∈ R, βηα−1 6= 1, and Dα
0+ is the

Riemann-Liouville differential operator of order α, f [0, 1] × R −→ R
is continuous and g(t) : [0, 1] −→ [0,+∞) is Lebesgue integrable. Es-
pecially, f does not have the nonnegative assumption and monotonicity
which was essential for the technique used in almost all existed literature.
Recently, Cabrera et al. [9] have studied the existence and uniqueness
of solution for the following boundary value problem of fractional type
with nonlocal integral boundary conditions

cDα
0+u(t) = λf(t, u(t)), t ∈ [0, 1],

u(0) = γIρ
0+
u(η) = γ

∫ η

0

(η − s)ρ−1

Γ(ρ)
u(s)ds,

(1)

where cDα
0+ denotes the Caputo fractional derivative and 0 < α ≤ 1,

0 < η < 1 and γ, ρ, λ ∈ R, as follows.
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Theorem 1.1. [9] Suppose that 0 < α ≤ 1, 0 < η < 1, λ, ρ > 0, γ ∈ R

and γ 6= Γ(ρ+ 1)

ηρ
. Let f : [0, 1] × R −→ R be a continuous function

such that
|f(t, x)− f(t, y)| ≤ φ(|x− y|)

for any t ∈ [0, 1] and x, y ∈ R, where φ : [0,∞) −→ [0,∞) is nonde-
creasing and φ(0) = 0. Set

L =

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ 1

(ρ+ α)Γ(ρ+ α)
ηρ+α +

2

αΓ(α)
.

Under assumption that λ ≤ 1

L
, Problem (1) has a unique solution in the

space Hα[0, 1].

In present paper, in Section 2, as motivated by the work of Guo [13],
we obtain sufficient conditions of the existence of nontrivial solutions for
the following boundary value problem

cDα
0+u(t) + f(t, u(t)) + g(t) = 0, t ∈ [0, 1],

u(0) = γIρ
0+
u(η) = γ

∫ η

0

(η − s)ρ−1

Γ(ρ)
u(s)ds,

(2)

where 0 < α ≤ 1, 0 < η < 1 and γ, ρ ∈ R, and f : [0, 1] × R −→ R and
g : [0, 1] −→ [0,+∞) are continuous. Also, some remarks and examples
to support the results proved herein and to compare to the main results
of Cabrera et al. [9]. Finally, in Section 3, we recall the definition of
orthogonal set introduced in [1, 2, 12], and obtain another result for
the existence of solutions of Problem (2) with weaker conditions. Some
recent results are extended and improved.

2 Preliminaries

At first, we recall some important definitions, lemmas and propositions.

Definition 2.1. [23] For at least n-times continuously differentiable
function h : [0,∞) −→ R, the Caputo derivative of fractional order q is
defined as

cDq
0+
h(t) =

1

dΓ(n− q)

∫ t

0
(t− s)n−q−1h(n)(s)ds,
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where n = [q] + 1 and [q] denotes the integer part of q. Here, Γ(α)
denotes the classical Gamma function.

Definition 2.2. [23] The Riemann-Liouville fractional integral of order
q of a function h : (0,∞) −→ R is defined by

Iq0+h(t) =
1

Γ(q)

∫ t

0

h(s)

(t− s)1−q
ds,

provides that the right side is point wise defined on (0,∞).

Lemma 2.3. [19] Suppose that p, q ≥ 0 and h ∈ L1[0, 1]. Then

Ip
0+
Iq
0+
h(t) = Ip+q

0+
h(t) and cD1

0+I
q
0+
h(t) = h(t)

for any t ∈ [0, 1].

Lemma 2.4. [19] Suppose that β > α > 0 and h ∈ L1[0, 1]. Then

cDα
0+I

β
0+
h(t) = Iβ−α

0+
h(t) for any t ∈ [0, 1].

Lemma 2.5. [22] Suppose that γ 6= Γ(ρ+ 1)

ηρ
and ρ > 0. Then for a

function h ∈ C[0, 1], the solution of the fractional differential equation

cDα
0+ = h(t), t ∈ [0, 1],

with 0 < α ≤ 1 and under the boundary condition

x(0) = γIρ
0+
x(η) = γ

∫ η

0

(η − s)ρ−1

Γ(ρ)
x(s)ds,

where 0 < η < 1, is given by

x(t) =
1

Γ(α)

∫ t

0
(t−s)α−1h(s)ds+

γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
h(s)ds.

Let C[a, b] be the space of the continuous functions on closed interval
[a, b] with the sup-norm, i.e.,

‖x‖∞ = sup{|x(t)| : t ∈ [a, b]}.
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Set 0 < α ≤ 1 fixed, denoted by Hα[a, b] the space of the real functions
x defined on [a, b] and satisfied in the Hölder condition, that is, all
functions x so that there exists a constant Hα

x such that

|x(t)− x(p)| ≤ Hα
x |t− p|α (3)

for any t, p ∈ [a, b]. Also, we define the least possible constant for
inequality (3) is satisfied for x ∈ Hα[a, b] by Hα

x as follows:

Hα
x = sup

{
|x(t)− x(p)|
|t− p|α

: t, p ∈ [a, b], t 6= p

}
.

In [7], the authors proved the spaces Hα[a, b] with 0 < α ≤ 1 endowed
with the following norm

‖x‖ = |x(a)|+ sup

{
|x(t)− x(p)|
|t− p|α

: t, p ∈ [a, b], t 6= p

}
= |x(a)|+ Hα

x ,

is a Banach space.

We need the following proposition to prove our main results.

Proposition 2.6. Assume that 0 < α ≤ 1, 0 < η < 1, ρ > 0, γ ∈ R and

γ 6= Γ(ρ+ 1)

ηρ
. Suppose that f : [0, 1]×R −→ R and g : [0, 1] −→ [0,+∞)

are continuous functions and u ∈ Hα[0, 1]. Let T be the function defined
by

(Tu)(t) =
γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, u(s)) + g(s)]ds

− 1

Γ(α)

∫ t

0
(t− s)α−1[f(s, u(s)) + g(s)]ds

for any t ∈ [0, 1]. The operator T : Hα[0, 1] −→ Hα[0, 1] is completely
continuous.

Proof. Let M be any bounded subset of Hα[0, 1]. As f and g are
continuous functions and u ∈ Hα[0, 1] ⊂ C[0, 1], there exists M =
sup{|f(s, u) + q(s)| : s ∈ [0, 1];u ∈ [−‖u‖∞, ‖u‖∞]}. By the same ar-
gument as given in Proposition 1 in [9], we have Tu ∈ Hα[0, 1] for all
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u ∈ Hα[0, 1]. In the following, without loss of generality, we can suppose
that t > p. For any u ∈ Hα[0, 1],

‖Tu‖α = |Tu(0)|+ sup

{
|Tu(t)− Tu(p)|
|t− p|α

: t, p ∈ [a, b]

}
≤
∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
|f(s, u(s)) + q(s)|ds

+ sup
{M(

∫ p
0 [(p− s)α−1 − (t− s)α−1]ds+

∫ t
p (t− s)α−1ds)

Γ(α)|t− p|α
:

t, p ∈ [a, b]
}

≤ MΓ(α+ 1)

Γ(ρ+ α)

∣∣∣∣ γ

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0
(η − s)ρ+α−1ds

+ sup

{
M
[ (t−p)α

α + pα

α −
tα

α + (t−p)α
α

]
Γ(α)|t− p|α

: t, p ∈ [a, b]

}

≤ MΓ(α+ 1)

Γ(ρ+ α)

∣∣∣∣ γ

γηρ − Γ(ρ+ 1)

∣∣∣∣ ηρ+αρ+ α
+

2M

Γ(α)

(t− p)α

α(t− p)α

≤ MΓ(α+ 1)ηρ+α

Γ(ρ+ α+ 1)

∣∣∣∣ γ

γηρ − Γ(ρ+ 1)

∣∣∣∣+
2M

Γ(α+ α)
<∞,

and so all the functions in T (M) are uniformly bounded. Also, we show
that all the functions in T (M) are equicontinuous. Let h(t) = (t−s)α−1,
then h(t) is continuously differentiable function. For any t1, t2 ∈ [0, 1]
with t1 < t2, there exist positive constants M1 such that

|h(t2)− h(t1)| = |h(µ)(t2 − t1)| ≤M1|t2 − t1|, µ ∈ [t1, t2].

Set ϑ =
M(1 +M1)

Γ(α)
. For any u ∈ Hα[0, 1], ∀ε > 0, there exists δ =

ε

ϑ
,

such that when |t2 − t1| < δ, we obtain

|Tu(t2)− Tu(t1)| = |
1

Γ(α)

∫ t2

0
(t2 − s)α−1[f(s, u(s)) + g(s)]ds

− 1

Γ(α)

∫ t1

0
(t1 − s)α−1[f(s, u(s)) + g(s)]ds|
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=
1

Γ(α)
|
∫ t2

t1

(t2 − s)α−1[f(s, u(s)) + g(s)]ds

+

∫ t1

0
(t2 − s)α−1 − (t1 − s)α−1[f(s, u(s)) + g(s)]ds

<
1

Γ(α)

(∫ t2

t1

Mds+

∫ 1

0
MM1|t2 − t1|

)
=
M(1 +M1)

Γ(α)
|t2 − t1| = ϑ|t2 − t1| < ε.

An application of the Arzela-Ascoli theorem shows that T is completely
continuous and the proof is complete. �

The following result is one of the pivotal results in fixed point theory
which we use later.

Lemma 2.7. [10] Let X be a real Banach space, Ω be a bounded open
subset of X, 0 ∈ Ω, T : Ω −→ X be a completely continuous operator.
Then either there exists x ∈ ∂Ω, µ > 1 such that T (x) = µx, or there
exists a fixed point x∗ ∈ Ω.

3 Main results

We formulate our main results as follows.

Theorem 3.1. Suppose that f(t, 0) 6= 0 for all t ∈ [0, 1], γ 6= Γ(ρ+ 1)

ηρ
,

and there exist nonnegative and continuous functions p, r defined on [0, 1]
such that

|f(t, u(t))| ≤ p(t)|u(t)|+ r(t), u ∈ Hα[0, 1], t ∈ (0, 1), almost every where,∣∣∣∣ γΓ(p+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
p(s)ds+

sup


∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]p(s)ds+

∫ t

t
′
(t− s)α−1p(s)ds

Γ(α)|t− t′ |α

 < 1.

Then Problem (2) has at least one nontrivial solution u∗ ∈ Hα[0, 1].
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Proof. Arguing as in [13], let

A =

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
p(s)ds

+ sup

{∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]p(s)ds+

∫ t

t
′
(t− s)α−1p(s)ds

Γ(α)|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
}

and

B =

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
k(s)ds

+ sup

{∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]k(s)ds+

∫ t

t
′
(t− s)α−1k(s)ds

Γ(α)|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
}
,

where k(s) = r(s)+g(s). From our assumptions, we observe that A < 1.
Since f(t, 0) 6= 0 for all t ∈ [0, 1], there exists [a, b] ⊂ [0, 1] such that

min
a≤t≤b

|f(t, 0)| > 0.

Taking into account that r(t) ≥ |f(t, 0)|, almost every where t ∈ [0, 1],
we see thatB > 0. Setm = B(1−A)−1, Ωm = {u ∈ Hα[0, 1] : ‖u‖ < m}.
Lemma 2.5 follows that Problem (2) has a solution u = u(t) if and only
if u solves the operator equation

(Tu)(t) =
γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, u(s)) + g(s)]ds

− 1

Γ(α)

∫ t

0
(t− s)α−1[f(s, u(s)) + g(s)]ds

in Hα[0, 1]. Therefore, we only need to find a fixed point of T in Hα[0, 1].
Applying Proposition 2.6, we observe that the operator T : Hα[0, 1] −→
Hα[0, 1] is completely continuous. Without loss of generality, we can
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suppose t > t
′

and u ∈ ∂Ωm, µ > 1 satisfying Tu = µu. Then

µm = µ‖u‖

= ‖Tu‖ = |Tu(0)|+ sup
{ |Tu(t)− Tu(t

′
)|

|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
Big}

6

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
|f(s, u(s)) + g(s)|ds

+ sup

{∣∣∣ ∫ t0 (t− s)α−1[f(s, u(s)) + g(s)]ds

Γ(α)|t− t′ |α

−

∫ t′
0

(t
′
− s)α−1[f(s, u(s)) + g(s)]ds

∣∣∣
Γ(α)|t− t′ |α

}
6

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
|f(s, u(s)) + g(s)|ds

+ sup

{∫ t
′

0

|(t− s)α−1 − (t
′
− s)α−1||f(s, u(s)) + g(s)|ds

Γ(α)|t− t′ |α

+

∫ t

t
′
(t− s)α−1|f(s, u(s)) + g(s)|ds

Γ(α)|t− t′ |α

}

6

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
p(s)ds‖u‖

+

∣∣∣∣ γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[r(s) + g(s)]ds

+ sup


∫ t
′

0

[(t− s)α−1 − (t
′
− s)α−1]p(s)ds+

∫ t

t
′
(t− s)α−1p(s)ds

Γ(α)|t− t′ |α

 ‖u‖

+ sup

{∫ t
′

0

[(t− s)α−1 − (t
′
− s)α−1]g(s)ds

Γ(α)|t− t′ |α

+

∫ t

t
′
(t− s)α−1(r(s) + g(s))ds

Γ(α)|t− t′ |α

}
≤ A‖u‖+B = Am+B.
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Then

µ ≤ A+
B

m
= A+

B

B(1−A)−1
= A+ (1−A) = 1.

This contradicts µ > 1. Hence, Lemma 2.7 follows that T has a fixed
point u∗ ∈ Ω. Since f(t, 0) 6= 0 for all t ∈ [0, 1], Problem (2) has a
nontrivial solution u∗ ∈ Hα[0, 1]. This completes the proof. �

In the sequel, we present some theorems with some sufficient condi-
tions for the existence of a nontrivial solution to Problem (2).

Theorem 3.2. Suppose that f(t, 0) 6= 0 for all t ∈ [0, 1], t ∈ [0, 1],

γ <
Γ(ρ+ 1)

ηρ
, and there exist nonnegative and continuous functions p, r

defined on [0, 1] such that

|f(t, u(t))| ≤ p(t)|u(t)|+ r(t), u ∈ H
α[0, 1], t ∈ [0, 1], almost every where,

and one of the following conditions holds:

(a1) The function p(s) satisfies in

p(s) ≤ |γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ) ,

s ∈ [0, 1], almost everywhere,

mes

{
s ∈ [0, 1] : p(s) <

|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)(α+ ρ)Γ(α+ ρ)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)

}
> 0;

(a2) There exist constants k, λ > 1 with
1

λ
+

1

k
= 1 such that if we set

Z =

[
|γ|Γ(ρ+ 1)η

ρ+α−(
k − 1

k
)

(Γ(ρ+ 1)− γηρ)(kα+ kρ− k − 1)

1

k Γ(ρ+ α)

+
1

Γ(α)
sup


|(t
′
)
α−(

k − 1

k
)

+ 2(t− t
′
)α−( k−1

k
) − t

α−(
k − 1

k
)
|

(kα− k + 1)

1

k (t− t′)α


]
,

we have

∫ 1

0
p(s)λds <

1

Zλ
.
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Then Problem (2) has at least one nontrivial solution u∗ ∈ Hα[0, 1].

Proof. We only need to show that A < 1, where A is defined in Theorem
3.1. We consider the following cases:

(a1) Here, taking the condition γ <
Γ(ρ+ 1)

ηn
into account, we obtain

A =

∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
p(s)ds

+ sup

{∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]p(s)ds+

∫ t

t
′
(t− s)α−1p(s)ds

Γ(α)|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
}

≤
[
|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)

]
×

(
|γ|Γ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
ds

+ sup

{∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]ds+

∫ t

t
′
(t− s)α−1ds

Γ(α)|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
})

≤
[
|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)

]
×

(
|γ|Γ(ρ+ 1)

Γ(ρ+ 1)− γηρ
ηρ+α

(ρ+ α)Γ(ρ+ α)

+ sup



[
(t− t

′
)α

α
+
t
′α

α
− tα

α
+

(t− t
′
)α

α

]
|t− t′ |α

: t, t
′
∈ [a, b], t 6= t

′


)

≤
[
|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)

]
×
(
|γ|Γ(ρ+ 1)

Γ(ρ+ 1)− γηρ
ηρ+α

Γ(ρ+ α+ 1)
+

2

αΓ(α)

)
= 1.
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(a2) Using the Hölder inequality and bearing the condition γ <
Γ(ρ+ 1)

ηn

in mind, we obtain

A =

∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∣∣∣∣ ∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
p(s)ds

+ sup

{∫ t
′

0

[(t
′
− s)α−1 − (t− s)α−1]p(s)ds+

∫ t

t
′
(t− s)α−1p(s)ds

Γ(α)|t− t′ |α
:

t, t
′
∈ [a, b], t 6= t

′
}

≤ |γ|Γ(ρ+ 1)

Γ(ρ+ 1)− γηρ

[∫ η

0

(
(η − s)ρ+α−1

Γ(ρ+ α)

)k
ds

] 1

k
[∫ η

0

p(s)λds

] 1

λ

+ sup

{ [

∫ t
′

0

[(t
′
− s)α−1]kds]

1
k − [

∫ t
′

0

[(t− s)α−1]kds]
1
k

Γ(α)|t− t′ |α
[

∫ t
′

0

p(s)λds]
1
λ

+

[

∫ t

t
′
((t− s)α−1)kds]

1
k [

∫ t

t
′
p(s)λds]

1
λ

Γ(α)|t− t′ |α

}

≤ |γ|Γ(ρ+ 1)

Γ(ρ+ 1)− γηρ
ηρ+α−( k−1

k
)

(kα+ kρ− k − 1)
1
k Γ(ρ+ α)

[∫ η

0

p(s)λds

] 1
λ

+
1

Γ(α)
sup

{[ t′α−( k−1
k

) + (t− t
′
)α−( k−1

k
) − tα−( k−1

k
)

(kα− k + 1)
1
k (t− t′)α

[ ∫ t
′

0

p(s)λds
] 1
λ
]

+
[ (t− t

′
)α−( k−1

k
)

(kα− k + 1)
1
k |t− t′ |α

∫ t

t
′
p(s)λds]

1
λ
]
}

≤

[
|γ|Γ(ρ+ 1)ηρ+α−( k−1

k
)

(Γ(ρ+ 1)− γηρ)(kα+ kρ− k − 1)
1
k Γ(ρ+ α)

+
1

Γ(α)
sup

{
|t
′α−( k−1

k
) + 2(t− t

′
)α−( k−1

k
) − tα−( k−1

k
)|

(kα− k + 1)
1
k (t− t′)α

}]

×
[∫ 1

0

p(s)λds

] 1

λ

< Z × 1

Z
= 1.

�
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Here, we give an example to illustrate Theorem 3.2.

Example 3.3. Let γ = −2, η =
1

4
, ρ = 2, α =

1

2
, k = 2, f(t, u) =

u3(1− tanh2(t))

u2 + 1
and g(t) =

t

t+ 1
for all t ∈ [0, 1]. Owing to Theorem

3.2, the problem


cD

1
2

0+
u(t) +

u3(1− tanh2(t))

u2 + 1
+

t

t+ 1
= 0, t ∈ [0, 1],

u(0) = −2I20+u(14) = −2
∫ 1

4
0

(14 − s)
3
2

Γ(2)
u(s)ds,

admits at least one nontrivial solution u∗ ∈ Hα[0, 1]. Indeed, simple
calculations show that

|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)
∼= 2.28,

and

|u
3(1− tanh2(t))

u2 + 1
| ≤ (1− tanh2(t))|u(t)|+ r(t)

for all positive function r(t). Then p(t) = 1− tanh2(t) and

p(s) ≤ 1 <
|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(Γ(ρ+ 1)− γηρ)Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(Γ(ρ+ 1)− γηρ)
∼= 2.28.

On the other hand, we observe that Banach fixed point theorem can
not be applied to our example because f is not Lipschitz contraction
mappings, but we have

|f(t, u(t))| ≤ p(t)u(t) + r(t).

Now, we give a variant of Theorem 3.2.

Theorem 3.4. Suppose that f(t, 0) 6= 0, t ∈ [0, 1], γ >
Γ(ρ+ 1)

ηρ
, and

there exist nonnegative and continuous functions p, r defined on [0, 1]
such that

|f(t, u(t))| ≤ p(t)|u(t)|+ r(t), u ∈ H
α[0, 1], t ∈ [0, 1], almost everywhere,

and one of the following conditions holds:
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(b1) The function p(s) satisfies

p(s) ≤ |γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(γηρ − Γ(ρ+ 1))Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(γηρ − Γ(ρ+ 1))
,

s ∈ [0, 1], almost every where,

mes

{
s ∈ [0, 1]; p(s) ≤

|γ|αΓ(ρ)Γ(ρ+ 1)ηρ+α + 2(γηρ − Γ(ρ+ 1))Γ(α+ ρ+ 1)

(αρ+ α2)Γ(α)Γ(α+ ρ)(γηρ − Γ(ρ+ 1))

}
> 0;

(b2) There exist constants k, λ > 1 with
1

λ
+

1

k
= 1 such that if we set

Z1 =

[
|γ|Γ(ρ+ 1)ηρ+α−(

k−1
k

)

(γηρ − Γ(ρ+ 1))(kα+ kρ− k − 1)
1
kΓ(ρ+ α)

+
1

Γ(α)
sup

{
|t′α−(

k−1
k

) + 2(t− t′)α−(
k−1
k

) − tα−(
k−1
k

)|
(kα− k + 1)

1
k (t− t′)α

}]
,

we have
∫ 1
0 p(s)

λds ≤ 1

Zλ1
.

Then Problem (2) has at least one nontrivial solution u∗ ∈ Hα[0, 1].

Proof. By the same arguments as given in the proof of Theorem 3.2,
the conclusion follows by applying Theorem 3.1. �

Here, we use Banach fixed point theorem to give an extension of
Theorem 3.1.

Theorem 3.5. Suppose that f(t, 0) � 0, t ∈ [0, 1], γ 6= Γ(ρ+ 1)

ηρ
and

there exists nonnegative and continuous function p defined on [0, 1] such
that

|f(t, u1(t))− f(t, u2(t))| ≤ p(t)|u1(t)− u2(t)|, u1, u2 ∈ Hα[0, 1],
t ∈ [0, 1], almost every where,

M ≤ 1

N
,
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where M = sup{|p(s)| : s ∈ [0, 1]} and

N =
2

αΓ(α)
+

[∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∣∣∣∣∣ ηα+ρ

(α+ ρ)Γ(α+ ρ)

]
.

Then Problem (2) has at least one nontrivial solution u∗ ∈ Hα[0, 1].

Proof. If u2 = 0, then |f(t, u1(t))| ≤ p(t)|u1(t|+|f(t, 0))|, u1 ∈ Hα[0, 1],
t ∈ [0, 1]×R almost every where. Applying Theorem 3.1, it follows that
Problem (2) admits a nontrivial solution u∗ ∈ Hα[0, 1]. If u2 6= 0,
we show that the function T given in the proof of Theorem 3.1 is a
contraction. We have

‖Tu1 − Tu2‖ = |Tu1(0)− Tu2(0)|

+ sup

{
|[Tu1(t)− Tu2(t)]− [Tu1(t

′
)− Tu2(t

′
)]|

|t− t′ |α
:

t, t
′
∈ [0, 1], t 6= t

′
}

≤

∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, u1(s))− f(s, u2(s)]ds

∣∣∣∣
+ sup

∣∣∣∣ ∫ t

0

(t− s)α−1[f(s, u1(s))− f(s, u2(s))]ds

Γ(α)|t− t′ |α

−

∫ t
′

0

(t
′
− s)α−1[f(s, u1(s))− f(s, u2(s))]ds

∣∣∣∣∣
Γ(α)|t− t′ |α

≤

∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, u1(s))− f(s, u2(s)]ds

∣∣∣∣∣
+ sup

∫ t
′

0

|(t− s)α−1 − (t
′
− s)α−1||f(s, u1(s))− f(s, u2(s))|ds

Γ(α)|t− t′ |α

+

∫ t

t
′
(t− s)α−1|f(s, u1(s))− f(s, u2(s))|ds

Γ(α)|t− t′ |α

≤

∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1p(t)|u1(s)− u2(s)|
Γ(ρ+ α)

ds

∣∣∣∣∣
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+ sup

∫ t
′

0

((t
′
− s)α−1 − (t− s)α−1)p(t)|u1(s)− u2(s)|ds

Γ(α)|t− t′ |α

+

∫ t

t
′
(t− s)α−1p(t)|u1(s)− u2(s)|ds

Γ(α)|t− t′ |α

≤ M‖u1 − u2‖

[∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
ds

∣∣∣∣∣
+ sup

[
(t− t

′
)α

α
+
t
′α

α
+
tα

α
+

(t− t
′
)α

α
]

Γ(α)|t− t′ |α

]

≤

[
2

αΓ(α)
+

∣∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
ds

∣∣∣∣∣
]
M‖u1 − u2‖.

This proves that T is contraction. Applying Banach fixed point theo-
rem, Problem (2) has a unique solution in Hα[0, 1]. �

Here, we give the following example as an application of Theorem
3.5.

Example 3.6. Let α =
1

2
, η =

1

2
, ρ =

1

2
and γ =

1

100
. Consider the

following problem


cD

1
2

0+
+

1

10
sin(2(t+ 1))sin(u(t)− 1) + cost = 0, t ∈ [0, 1],

u(0) =
1

100
I

1
2

0+
u(12) =

1

100

∫ 1
2

0

(12 − s)
− 1

2

Γ(12)
u(s)ds.

(4)

Clearly, we see that γ 6= Γ(ρ+ 1)

ηρ
and

|f(t, x1(t))− f(t, x2(t))| = | 1

10
sin(2(t+ 1)) sin(x1(t)− 1)

− 1

10
sin(2(t+ 1)) sin(x2(t)− 1)|
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=
1

10
sin(2(t+ 1))| sin(x1(t)− 1)− sin(x2(t)− 1)|

≤ 1

5
cos(t+ 1) sin(t+ 1)|(x1(t)− 1)− (x2(t)− 1)|

≤ 1

5
cos(t+ 1)|x1(t)− x2(t)|.

Namely, the first condition of Theorem 3.5 is satisfied with f(t, x) =
1

10
sin(2(t+1))sin(x−1) for each t ∈ [0, 1], x ∈ R and p(t) =

1

5
cos(t+1)

for each t ∈ [0, 1]. Moreover, we have

N =
4√
π

+ [
2

599
× 200

101
√

2
] ∼= 2.27 and M ∼== 0.19.

This concludes that M ≤ 1

N
. Hence, applying Theorem 3.5, Problem

(4) admits a unique nontrivial solution x∗ ∈ Hα[0, 1]. It is simple to
verify that Theorem 1.1 [9] can not be applied to our example. In fact,

it is just enough to put g(t, x) =
1

10
sin(2(t+ 1))sin(1− x)− cos(t) and

λ = 1. Therefore, we have the following problem equivalent to Problem
(4), that is

cD
1
2

0+
= λg(t, u(t)), t ∈ [0, 1],

u(0) =
1

100
I

1
2

0+
u(12) =

1

100

∫ 1
2

0

(12 − s)
− 1

2

Γ(12)
u(s)ds,

Moreover, an easy computation shows

|f(t, x1(t))− f(t, x2(t))| ≤ φ(|x1(t)− x2(t|),

where φ(x) =
1

5
cos(t+ 1)x for t ∈ [0, 1]. But, clearly

L =

∣∣∣∣ γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ

∣∣∣∣ 1

(ρ+ α)Γ(ρ+ α)
ηρ+α +

2

αΓ(α)
∼= 2.27,

and so

λ = 1 �
1

2.27
∼=

1

L
< 1.
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In the following, by setting some conditions for f and γ in Theorem
3.5, we give a theorem for the existence of a negative solution to Problem
(2).

Theorem 3.7. Suppose that f : [0, 1] × R −→ [0,∞), f(t, 0) 6= 0,

t ∈ [0, 1], 0 ≤ γ < Γ(ρ+ 1)

ηρ
and there exists nonnegative and continuous

function p defined on [0, 1] such that
|f(t, u1(t))− f(t, u2(t))| ≤ p(t)|u1(t)− u2(t)|,
u1, u2 ∈ Hα[0, 1], t ∈ [0, 1], almost every where,

M ≤ 1

N
,

where M and N are defined in Theorem 3.5. Then Problem (2) has at
least one negative solution u∗ ∈ Hα[0, 1].

Proof. As the same proof of Theorem 3.5, we can show that T is
contraction. Then, Problem (2) has at least one solution u∗ ∈ Hα[0, 1].
On the other hand, since f and g are nonnegative functions and 0 ≤ γ <
Γ(ρ+ 1)

ηρ
, the function Tu(t) for each t ∈ [0, 1] admits negative value,

that is
Tu(t) ≤ 0 for all t ∈ [0, 1].

Hence, u∗ is negative. �

4 Another results for the existence of solution
of Problem (2)

In this section, we present some theorems that condition

|f(t, u1(t))− f(t, u2(t))| ≤ p(t)|u1(t)− u2(t)|

is not necessarily needed for all u1 and u2. In fact, it is sufficient to
satisfy just in a limited number of u1 and u2 in Hα[0, 1]. Very recently,
Eshaghi Gordji et al. [12] introduced the notation of the orthogonal sets
and gave a real generalization of Banach fixed point theorem. For the
depth of the subject, we refer to [1, 2]. In below, we remind some useful
definitions to prove some fixed point theorems with weaker conditions.
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Definition 4.1. [12] Let X 6= ∅, and ⊥ ⊆ X ×X be a binary relation.
If ” ⊥ ” satisfies the following condition:

∃x0: (∀y, y⊥x0) or (∀y, x0⊥y),

then ” ⊥ ” is called an orthogonality relation and the pair (X,⊥) an
orthogonal set(briefly, O-set).

Note that in the above definition, we say that x0 is an orthogonal el-
ement. Also, we say that elements x, y ∈ X are ⊥-comparable either
x ⊥ y or y ⊥ x.

Definition 4.2. [1] Let (X,⊥) be an O-set. A sequence {xn} is called
a strongly orthogonal sequence(briefly, SO-sequence) if

(∀n, k; xn⊥xn+k) or (∀n, k; xn+k⊥xn).

Let (X,⊥) be an O-set and ”d” be a metric on X. The triplet
(X,⊥, d) is called an orthogonal metric space.

Definition 4.3. [1] Let (X,⊥, d) be an orthogonal metric space. X is
said to be strongly orthogonal complete(briefly, SO-complete) if every
Cauchy SO-sequence is convergent.

Definition 4.4. [1] Let (X,⊥, d) be an orthogonal metric space. A
mapping f : X → X is strongly orthogonal continuous (briefly, SO-
continuous) in a ∈ X if for each SO-sequence {an} in X, an → a, then
f(an)→ f(a). Also, f is SO-continuous on X if f is SO-continuous in
each a ∈ X.

Definition 4.5. [12] Let (X,⊥) be an O-set. A mapping T : X → X is
said to be ⊥-preserving if x⊥y implies T (x)⊥T (y).

Definition 4.6. [2] Let (X,⊥, d) be an orthogonal metric space and
0 < λ < 1. A mapping T : X −→ X is called an orthogonally
contraction(briefly, ⊥-contraction) with Lipschitz constant λ if for all
x, y ∈ X with x⊥y,

d(Tx, Ty) ≤ λd(x, y).
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Theorem 4.7. [3] Let (X,⊥, d) be an SO-complete metric space(not
necessarily complete metric space) and 0 < λ < 1. Let T : X −→
X be SO- continuous, ⊥-contraction with Lipschitz constant λ and ⊥-
preserving. Then T has a unique fixed point x∗ ∈ X.

We state the main result of this section as extension of Theorem 3.7,
in which the condition |f(t, u1(t))−f(t, u2(t))| ≤ p(t)|u1(t)−u2(t)| only
in u1, u2 with u1(t)u2(t) > 0 is assumed.

Theorem 4.8. Suppose that 0 < α ≤ 1, 0 < η < 1, ρ > 0 and 0 ≤ γ <
Γ(ρ+ 1)

ηρ
. Assume that f : [0, 1] × R −→ [0,∞) is a function satisfying

the following assumptions:

(e1) f is continuous and f(t, 0) 6= 0 for all t ∈ [0, 1];

(e2) there exists nonnegative and continuous function p defined on [0, 1]
such that

|f(t, u1(t))− f(t, u2(t))| ≤ p(t)|u1(t)− u2(t)|,
u1(t)u2(t) ≥ 0, t ∈ [0, 1], almost every where,

p(s) ≤ 1

N
,

where N =
2

αΓ(α)
+

[
γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ
ηα+ρ

(α+ ρ)Γ(α+ ρ)

]
.

Then, Problem (2) has a unique negative solution u∗ ∈ Hα[0, 1].

Proof. Consider the following orthogonality relation in X:

u ⊥ v ⇔ u(t)v(t) ≥ 0 for all t ∈ [0, 1] and u, v ∈ Hα[0, 1].

Then (X,⊥) is an O-set with orthogonal element x0 = 0. Since (X, d)
is a complete metric space, then (X,⊥, d) is SO-complete. Clearly, T
is SO-continuous and ⊥-contraction. Now, we prove T is ⊥-preserving.
Let u, v ∈ Hα[0, 1] with u ⊥ v. We must show that

Tu(t)Tv(t) ≥ 0 for all t ∈ [0, 1].
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Since f and g are positive and 0 ≤ γ < Γ(ρ+ 1)

ηρ
, by definition of Tu(t),

we have

Tu(t) ≤ 0 for all t ∈ [0, 1] and u ∈ Hα[0, 1]. (5)

This concludes that Tu(t)Tv(t) ≥ 0, and so T is ⊥-preserving. Applying
Theorem 4.7, there exists unique nontrivial solution u∗ ∈ Hα[0, 1] to
Problem (2). Hence, using (5), we observe that u∗ is negative. This
completes the proof. �

We end this paper by giving a variant version of Theorem 4.8.

Theorem 4.9. Suppose that 0 < α ≤ 1, 0 < η < 1, ρ > 0 and 0 ≤ γ <
Γ(ρ+ 1)

ηρ
. Assume that f : [0, 1] × R −→ [c,∞) is a function satisfying

the following assumptions:

(h1) f is continuous;

(h2) f(t, 0) 6= 0 and f(t, x(t)) is decreasing respect to the second argu-
ment for any t ∈ [0, 1];

(h3) there exists nonnegative and continuous function p defined on [0, 1]
such that

|f(t, u1(t))− f(t, u2(t))| ≤ p(t)|u1(t)− u2(t)|,
u1(t) ≤ u2(t) ≤ c, t ∈ [0, 1], almost every where,

p(s) ≤ 1

N
,

where c is arbitrary nonnegative value and

N =
2

αΓ(α)
+

[
γΓ(ρ+ 1)

Γ(ρ+ 1)− γηρ
ηα+ρ

(α+ ρ)Γ(α+ ρ)

]
.

Then, Problem (2) has a unique negative solution u∗ ∈ Hα[0, 1].

Proof. We consider the following orthogonality relation in X:

u ⊥ v ⇔ u(t) ≤ v(t) ≤ c for all t ∈ [0, 1] and u, v ∈ Hα[0, 1].
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Then (X,⊥) is an O-set with orthogonal element x0 = c. Now, it is
enough to show that T is ⊥-preserving. Let u, v ∈ Hα[0, 1] with u ⊥ v.
We must show that

Tu(t) ≤ Tv(t) ≤ c for all t ∈ [0, 1].

Applying (h2), we have

(Tu)(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1[f(s, u(s)) + g(s)]ds

+
γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, u(s)) + g(s)]ds

≤ − 1

Γ(α)

∫ t

0
(t− s)α−1[f(s, v(s)) + g(s)]ds

+
γΓ(ρ+ 1)

γηρ − Γ(ρ+ 1)

∫ η

0

(η − s)ρ+α−1

Γ(ρ+ α)
[f(s, v(s)) + g(s)]ds

= (Tv)(t).

On the other hand, since f and g are positive value and 0 ≤ γ <
Γ(ρ+ 1)

ηρ
, by definition of Tu(t), we have

Tu(t) ≤ 0 for all t ∈ [0, 1]. (6)

Therefore, since c is nonnegative value, we conclude that Tu(t) ≤ Tv(t) ≤
c. Applying (6) and Theorem 4.7, Problem (2) has a unique negative so-
lution u∗ ∈ Hα[0, 1]. �
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