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Abstract. The aim of this article is find approximations for p-norms of
terms f(x) =

∑∞
n=1

1
n
sin2nx;x ∈ (0, 2π) and P (x) =

∑∞
k=1

1
k
ψk(x);x

in (0, 1), in system of independent functions {ψn(x)}∞n=1.
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1. Introduction

In this article we introduce some propositions on a sequence of indepen-
dent functions that will be needed. In other hand we intend to study a
particular series, which is not only interesting in itself, but provide ex-
amples illuminating many points of the general theory of trigonometric
series.

Definition 1.1. ([3]) A set of real measurable functions {fn(x)}N
n=1 with

domain (0,1) is a set of independent functions if for every interval
In, n = 1, ..., N, the following condition is satisfied:

m{x ∈ (0, 1) : fn(x) ∈ In, n = 1, ..., N} = ΠN
n=1m{x ∈ (0, 1) : fn(x) ∈ In}. (1)

An infinite sequence of functions {fn(x)}∞n=1 is a sequence (or system) of
independent functions (S.I.F) if the set {fn(x)}N

n=1 is a set of independent
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functions for every N=1,2,3,. . . .
If the measure of the set G on which functions fn(x) are defined is
not 1 (but finite and positive), the definition of independence takes the
following form:
{fn(x)}N

n=1 is a set of independent functions if

m{x ∈ G; fn(x) ∈ In, n = 1, 2, ..., N} = [m(G)]−N+1
∏N

n=1m{x ∈
G; fn(x) ∈ In},

for every interval In, n = 1, 2, ..., N.

Theorem 1.2. ([3]) An S.I.F. {ψn(x)}∞n=1, x ∈ (0, 1), is an orthonormal
system if it satisfies, for n = 1, 2, ..., the conditions∫ 1

0
(ψn(x))dx = 0;

∫ 1

0
ψ2

n(x)dx = 1.

Theorem 1.3. ([3]) The following inequality holds for every set {ψn(x)}N
n=1

of independent functions which satisfy

‖ψn‖2 = 1, ‖ψn‖∞ 6 M,

∫ 1

0
ψn(x) dx = 0; n = 1, 2, ..., N, (2)

λ(t) = m{x ∈ (0, 1) : |
N∑

n=1

anψn(x)| > t(
N∑

n=1

a2
n)1/2} 6 2e−t2/4M2

,

for every t > 0.

Theorem 1.4. ([3,5]) (Khinchin’s inequality). For all numbers p > 2
and M > 1 there exist constants Cp,M such that, for every polynomial
f(x) =

∑N
n=1 anψn(x) in an S.I.F. {ψn(x)}∞n=1 that satisfies (2), the

inequality

‖f‖p 6 Cp,M‖f‖2 = Cp,M (
N∑

n=1

a2
n)1/2,

will be satisfied.

Definition 1.5. ([1,3]) For n=1,2,3,. . . , the nth Rademacher function
is defined by
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rn(x) =
{

1, if i odd and x ∈ ((i− 1)/2n, i/2n) = ∆i
n;

−1, if i even and x ∈ ((i− 1)/2n, i/2n) = ∆i
n.

(3)

In addition, it will be convenient to suppose in what follows that r0(x) =
1 for x ∈ (0, 1) and that rn(i/2n) = 0 for i = 0, 1, . . . , 2n; n = 0, 1, . . . .
Then we can give a more compact definition of the Rademacher func-
tions by the formula

rn(x) = sgnsin2nπx, x ∈ [0, 1], n = 0, 1, . . . . (4)

Theorem 1.6. ([3]) The functions {rn(x)}∞n=0;x ∈ [0, 1], form an S.I.F.

Theorem 1.7. ([4]) Let (Ω; υ), υ(Ω) 6 1, be a measurable space, and
let f ∈ L1(Ω) satisfy the inequality

‖f‖Lp(Ω;υ) 6 c log(p+ 2), p = 1, 2, · · · , c > 0.

Then the following inequality holds∫
Ω
exp(exp(

|f(x)|
cλ1

))dυ(x) 6 λ2.

Theorem 1.8. ([3]) Let f ∈ L1(0, 1), and for t ∈ R1 let

λf (t) = m{x ∈ (0, 1) : |f(x)| > t}; λ̃f (t) = m{x ∈ (0, 1) : f(x) > t}.

Then ∫ 1

0
f(x)dx = −

∫ ∞

−∞
tdλ̃f (t),

and if f ∈ Lp(0, 1), 0 < p <∞, then∫ 1

0
|f(x)|pdx = −

∫ ∞

0
tpdλf (t) = p

∫ ∞

0
tp−1λf (t)dt.
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2. Main Results

Theorem 2.1. For any even number p > 2 and for every series P (x) =∑∞
k=1

1
kψk(x);x ∈ (0, 1), in an S.I.F. {ψn(x)}∞n=1 whose components

satisfy the conditions (2), the inequalities

‖P‖p 6 2M
√
p(

∞∑
k=1

(1/k)2)1/2and

∫ 1

0
exp(exp(λ1|P (x)|)dx 6 λ2 ,

will be satisfied, that M,λ1, λ2 are constants.

Proof. Let λ(t) = m{x ∈ (0, 1); |P (x)| > t}, by Theorem 1.2, λ(t) 6
2exp(−t2/4M2), therefore according to Theorem 1.6

‖P‖p = {p
∫ ∞

0
tp−1λ(t)dt}1/p 6 {2p

∫ ∞

0
tp−1exp(−t2/4M2)dt}1/p.

In other hand∫ ∞

0

tp−1exp(−t2/4M2)dt = 2p−1Mp

∫ ∞

0

exp(−u)up/2−1du = 2p−1MpΓ(p/2),

then

‖P‖p 6 {2pMppΓ(p/2)}1/p = {2pMpp(p/2−1)!}1/p =
1

2
2M(p)1/p(p−2)1/p(p−4)1/p...1 ,

and it is trivial that

‖P‖p 6 M.2.(p1/p)p/2 = 2M
√
p 6 2M

√
p(

N∑
k=1

(1/k)2)1/2 6 2M
√
p(

∞∑
k=1

(1/k)2)1/2.

For other inequality can be written that

P (x) =
∞∑

k=1

1
k
ψk(x) =

∞∑
n=0

2n+1−1∑
k=2n

1
k
ψk(x) ,

and let
Pn(x) =

1
2n
ψ2n(x) + · · ·+ 1

2n+1 − 1
ψ2n+1−1(x).
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It is clear that

‖Pn(x)‖p 6 ‖Pn(x)‖∞ 6
M

2n
.2n = M.

In other hand

‖Pn(x)‖p 6 2M
√
p.

√
(

1

2n
)2 + · · ·+ (

1

2n+1 − 1
)2 6 2M

√
p.

√
(

1

2n
)2.2n =

√
c1p

2n
,

then ‖Pn(x)‖p 6 min{M,
√

c1p
2n } therefore

‖P (x)‖p 6
∞∑

n=1

min{M,

√
c1p

2n
} =

∞∑
n=1

(
M +

√
c1p
2n − |M −

√
c1p
2n |

2
) ,

with separate of last summation, it can be obtained

‖Pn(x)‖p 6

[log
c1p
2 ]∑

n=1

M +
√

c1p
2n +M −

√
c1p
2n

2
+

∞∑
n=[log

c1p
2 ]+1

M +
√

c1p
2n −M +

√
c1p
2n

2
,

and finally

‖Pn(x)‖p 6 Mlogc1p
2 +

√
2
c1p

6 c2log(p) < c2log(p+ 2).

Now by Theorem 1.5 can be written that
∫ 1
0 exp(exp(λ1|P (x)|))dx 6

λ2. �

Corollary 2.2. For series P (x) =
∑∞

k=1
1
krk(x) the following inequali-

ties will be satisfied

‖P‖p 6 c
√
p(

∞∑
k=1

(1/k)2)1/2 and

∫ 1

0
exp(exp(λ1|P (x)|))dx 6 λ2 ,

that {rn(t)} is the Rademacher system, p > 2 is an even integer and
c, λ1, λ2 are constants.
Now consider the system {φn(x)} = {sin(2nx} over [o, 2π]. With a sim-
ple change of variable it can be obtained the system {φn(t)} = {sin(2n+1πt}
over [o, 1], (x→ 2πt).

Theorem 2.3. If the series Σa2
n <∞, the function
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f(t) =
∞∑

k=0

aksin(2k+1πt), t ∈ [0, 1] , (5)

or equivalently

g(t) =
∞∑

k=0

aksin(2kt), t ∈ [0, 2π] , (6)

belongs to Lq for every q > 0.

Proof. It is sufficient to prove the theorem for q = 2, 4, 6, · · · . We shall
show that ∫ 1

0
f2k(t)dt 6 Mk(

∞∑
n=0

a2
n)k; k = 1, 2, 3, · · · , (7)

or equivalently∫ 2π

0
g2k(t)dt 6 Mk(

∞∑
n=0

a2
n)k; k = 1, 2, 3, · · · , (8)

where Mk is a constant depending only on k.
Denoting by Sn(t) and S∗n(t), the partial sums of the series (5) and the
partial sums of the series (6) respectively.
So∫ 1

0

S2k
n (t)dt =

∑
Aα1,α2,··· ,αra

α1
m1 · · · a

αr
mr

∫ 1

0

sinα1(2m1+1πt) · · · sinαr (2mr+1πt)dt ,

or equivalently∫ 2π

0

(S∗n)2k(t)dt =
∑

Aα1,α2,··· ,αra
α1
m1 · · · a

αr
mr

∫ 2π

0

sinα1(2m1t) · · · sinαr (2mr t)dt ,

where
Aα1,α2,··· ,αr =

(α1 + α2 + · · ·+ αr)!
α1!α2! · · ·αr!

and the summations on the right are taken over the set

{m1,m2, · · ·mr, α1, α2, · · · , αr} ,
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defined by the relations:

0 6 mi 6 n, 0 6 αi 6 2k; i = 1, 2, · · · , r; 1 6 r 6 2k;α1+α2+· · ·+αr = 2k.

Now it is easily verified that the integrals on the right vanish unless
α1, α2, · · · , αr are all even, that in this case they are less than or equal
1. Thus the right side of above relations are less than or equal of the
following term ∑

A2β1,··· ,2βra
2β1
n1 · · · a2βr

nr
.

Observing that∑
Aβ1,β2,··· ,βra

2β1
m1 a

2β2
m2 · · · a

2βr
mr

= (a2
0 + a2

1 + · · ·+ a2
n)k.

It can be obtained (7) and (8) with Sn(t) and S∗n(t) replaced by f(t) and
g(t) respectively, Mk being now the upper bound of the ratio

A2β1,··· ,2βr/Aβ1,β2,··· ,βr .

Notice
Mk 6 (2k)!/2kk! = (k + 1) · · · 2k/2k 6 kk (9)

Since Sn(t) → f(t) and S∗n(t) → g(t) for almost every t, finally with use
Fatous lemma the proof is complete. �

Corollary 2.4. The function exp(µf2(t)) is integrable for µ > 0.

Corollary 2.5. For any even number p > 2 and series

f(x) =
∞∑

n=1

1
n
sin2nx; x ∈ (0, 2π),

the inequalities

‖f‖p 6 C
√
p(

∞∑
n=1

(1/n)2)1/2 and

∫ 2π

0
exp(exp(λ1|f(x)|))dx 6 λ2 ,

will be satisfied, that C, λ1, λ2 are constants.
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Proof. According to (9) the following inequality is satisfied:

‖f‖p 6 {M p
2
(
∞∑

n=1

(
1
n

)2)
p
2 }1/p 6 {(p

2
)

p
2 (

∞∑
n=1

(
1
n

)2)
p
2 }1/p = C

√
p(

∞∑
n=1

(
1
n

)2)
1
2 .

For other inequality it can be written f(x) =
∑∞

n=0 fn(x) such that
fn(x) =

∑2n+1−1
k=2n

1
ksin2kx therefore

‖fn(x)‖p 6 ‖fn(x)‖∞ 6
2n+1−1∑
k=2n

1
k
|sin2kx| 6 2n

2n
= 1 .

In other hand

‖fn(x)‖p 6 C
√
p

2n+1−1∑
k=2n

1
k2

6 C
√
p

2n

(2n)2
=
C
√
p

2n
,

then ‖fn(x)‖p 6 min{1, C
√

p
2n } therefore

‖f(x)‖p 6
∞∑

n=0

min{1,
C
√
p

2n
} =

∞∑
n=0

(
1 + C

√
p

2n − |1− C
√

p
2n |

2
).

With separate of last summation, it can be obtained

‖f(x)‖p 6

[log
C
√

p
2 ]∑

n=0

1 + C
√

p
2n + 1− C

√
p

2n

2
+

∞∑
n=[log

C
√

p
2 ]+1

1 + C
√

p
2n − 1 + C

√
p

2n

2
,

and finally

‖f(x)‖p 6 log
C
√

p
2 + 1 + C

√
p(

1
2C
√
p
) = log

C
√

p
2 +

3
2

6 αlog(p+ 2) ,

that α is a constant. Now by Theorem 1.5 can be written∫ 2π

0
exp(exp(λ1|f(x)|))dx 6 λ2. �
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