Two Approximations for P-Norms in System of Independent Functions and Trigonometric Series

M. Ghanbari
Farahan Branch, Islamic Azad University

Abstract

The aim of this article is find approximations for p-norms of terms $f(x)=\sum_{n=1}^{\infty} \frac{1}{n} \sin 2^{n} x ; x \in(0,2 \pi)$ and $P(x)=\sum_{k=1}^{\infty} \frac{1}{k} \psi_{k}(x) ; x$ in $(0,1)$, in system of independent functions $\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}$.

AMS Subject Classification: 42A05; 42A10 Keywords and Phrases: Independent functions, orthonormal system, rademacher system, trigonometric system

1. Introduction

In this article we introduce some propositions on a sequence of independent functions that will be needed. In other hand we intend to study a particular series, which is not only interesting in itself, but provide examples illuminating many points of the general theory of trigonometric series.

Definition 1.1. ([3]) A set of real measurable functions $\left\{f_{n}(x)\right\}_{n=1}^{N}$ with domain $(0,1)$ is a set of independent functions if for every interval $I_{n}, n=1, \ldots, N$, the following condition is satisfied:

$$
\begin{equation*}
m\left\{x \in(0,1): f_{n}(x) \in I_{n}, n=1, \ldots, N\right\}=\Pi_{n=1}^{N} m\left\{x \in(0,1): f_{n}(x) \in I_{n}\right\} . \tag{1}
\end{equation*}
$$

An infinite sequence of functions $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ is a sequence (or system) of independent functions (S.I.F) if the set $\left\{f_{n}(x)\right\}_{n=1}^{N}$ is a set of independent

[^0]functions for every $N=1,2,3, \ldots$.
If the measure of the set G on which functions $f_{n}(x)$ are defined is not 1 (but finite and positive), the definition of independence takes the following form:
$\left\{f_{n}(x)\right\}_{n=1}^{N}$ is a set of independent functions if
$m\left\{x \in G ; f_{n}(x) \in I_{n}, n=1,2, \ldots, N\right\}=[m(G)]^{-N+1} \prod_{n=1}^{N} m\{x \in$ $\left.G ; f_{n}(x) \in I_{n}\right\}$,
for every interval $I_{n}, \quad n=1,2, \ldots, N$.
Theorem 1.2. ([3]) An S.I.F. $\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}, x \in(0,1)$, is an orthonormal system if it satisfies, for $n=1,2, \ldots$, the conditions
$$
\int_{0}^{1}\left(\psi_{n}(x)\right) d x=0 ; \quad \int_{0}^{1} \psi_{n}^{2}(x) d x=1
$$

Theorem 1.3. ([3]) The following inequality holds for every set $\left\{\psi_{n}(x)\right\}_{n=1}^{N}$ of independent functions which satisfy

$$
\begin{align*}
\left\|\psi_{n}\right\|_{2} & =1, \quad\left\|\psi_{n}\right\|_{\infty} \leqslant M, \quad \int_{0}^{1} \psi_{n}(x) d x=0 ; \quad n=1,2, \ldots, N \tag{2}\\
\lambda(t) & =m\left\{x \in(0,1):\left|\sum_{n=1}^{N} a_{n} \psi_{n}(x)\right|>t\left(\sum_{n=1}^{N} a_{n}^{2}\right)^{1 / 2}\right\} \leqslant 2 e^{-t^{2} / 4 M^{2}}
\end{align*}
$$

for every $t \geqslant 0$.
Theorem 1.4. ([3,5]) (Khinchin's inequality). For all numbers $p>2$ and $M \geqslant 1$ there exist constants $C_{p, M}$ such that, for every polynomial $f(x)=\sum_{n=1}^{N} a_{n} \psi_{n}(x)$ in an S.I.F. $\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}$ that satisfies (2), the inequality

$$
\|f\|_{p} \leqslant C_{p, M}\|f\|_{2}=C_{p, M}\left(\sum_{n=1}^{N} a_{n}^{2}\right)^{1 / 2}
$$

will be satisfied.
Definition 1.5. ([1,3]) For $n=1,2,3, \ldots$, the $n t h$ Rademacher function is defined by

$$
r_{n}(x)= \begin{cases}1, & \text { if } i \text { odd and } x \in\left((i-1) / 2^{n}, i / 2^{n}\right)=\Delta_{n}^{i} \tag{3}\\ -1, & \text { if } i \text { even and } x \in\left((i-1) / 2^{n}, i / 2^{n}\right)=\Delta_{n}^{i}\end{cases}
$$

In addition, it will be convenient to suppose in what follows that $r_{0}(x)=$ 1 for $x \in(0,1)$ and that $r_{n}\left(i / 2^{n}\right)=0$ for $i=0,1, \ldots, 2^{n} ; \quad n=0,1, \ldots$ Then we can give a more compact definition of the Rademacher functions by the formula

$$
\begin{equation*}
r_{n}(x)=\operatorname{sgnsin} 2^{n} \pi x, x \in[0,1], n=0,1, \ldots \tag{4}
\end{equation*}
$$

Theorem 1.6. ([3]) The functions $\left\{r_{n}(x)\right\}_{n=0}^{\infty} ; x \in[0,1]$, form an S.I.F.
Theorem 1.7. ([4]) Let $(\Omega ; v), v(\Omega) \leqslant 1$, be a measurable space, and let $f \in L^{1}(\Omega)$ satisfy the inequality

$$
\|f\|_{L^{p}(\Omega ; v)} \leqslant c \log (p+2), \quad p=1,2, \cdots, \quad c>0
$$

Then the following inequality holds

$$
\int_{\Omega} \exp \left(\exp \left(\frac{|f(x)|}{c \lambda_{1}}\right)\right) d v(x) \leqslant \lambda_{2}
$$

Theorem 1.8. ([3]) Let $f \in L^{1}(0,1)$, and for $t \in R^{1}$ let

$$
\lambda_{f}(t)=m\{x \in(0,1):|f(x)|>t\} ; \widetilde{\lambda}_{f}(t)=m\{x \in(0,1): f(x)>t\}
$$

Then

$$
\int_{0}^{1} f(x) d x=-\int_{-\infty}^{\infty} t d \widetilde{\lambda}_{f}(t)
$$

and if $f \in L^{p}(0,1), 0<p<\infty$, then

$$
\int_{0}^{1}|f(x)|^{p} d x=-\int_{0}^{\infty} t^{p} d \lambda_{f}(t)=p \int_{0}^{\infty} t^{p-1} \lambda_{f}(t) d t
$$

2. Main Results

Theorem 2.1. For any even number $p>2$ and for every series $P(x)=$ $\sum_{k=1}^{\infty} \frac{1}{k} \psi_{k}(x) ; x \in(0,1)$, in an S.I.F. $\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}$ whose components satisfy the conditions (2), the inequalities

$$
\|P\|_{p} \leqslant 2 M \sqrt{p}\left(\sum_{k=1}^{\infty}(1 / k)^{2}\right)^{1 / 2} \text { and } \int_{0}^{1} \exp \left(\exp \left(\lambda_{1}|P(x)|\right) d x \leqslant \lambda_{2},\right.
$$

will be satisfied, that $M, \lambda_{1}, \lambda_{2}$ are constants.
Proof. Let $\lambda(t)=m\{x \in(0,1) ;|P(x)|>t\}$, by Theorem 1.2, $\lambda(t) \leqslant$ $2 \exp \left(-t^{2} / 4 M^{2}\right)$, therefore according to Theorem 1.6

$$
\|P\|_{p}=\left\{p \int_{0}^{\infty} t^{p-1} \lambda(t) d t\right\}^{1 / p} \leqslant\left\{2 p \int_{0}^{\infty} t^{p-1} \exp \left(-t^{2} / 4 M^{2}\right) d t\right\}^{1 / p}
$$

In other hand

$$
\int_{0}^{\infty} t^{p-1} \exp \left(-t^{2} / 4 M^{2}\right) d t=2^{p-1} M^{p} \int_{0}^{\infty} \exp (-u) u^{p / 2-1} d u=2^{p-1} M^{p} \Gamma(p / 2),
$$

then
$\|P\|_{p} \leqslant\left\{2^{p} M^{p} p \Gamma(p / 2)\right\}^{1 / p}=\left\{2^{p} M^{p} p(p / 2-1)!\right\}^{1 / p}=\frac{1}{2} 2 M(p)^{1 / p}(p-2)^{1 / p}(p-4)^{1 / p} \ldots 1$, and it is trivial that
$\|P\|_{p} \leqslant M .2 .\left(p^{1 / p}\right)^{p / 2}=2 M \sqrt{p} \leqslant 2 M \sqrt{p}\left(\sum_{k=1}^{N}(1 / k)^{2}\right)^{1 / 2} \leqslant 2 M \sqrt{p}\left(\sum_{k=1}^{\infty}(1 / k)^{2}\right)^{1 / 2}$.
For other inequality can be written that

$$
P(x)=\sum_{k=1}^{\infty} \frac{1}{k} \psi_{k}(x)=\sum_{n=0}^{\infty} \sum_{k=2^{n}}^{2^{n+1}-1} \frac{1}{k} \psi_{k}(x),
$$

and let

$$
P_{n}(x)=\frac{1}{2^{n}} \psi_{2^{n}}(x)+\cdots+\frac{1}{2^{n+1}-1} \psi_{2^{n+1}-1}(x) .
$$

It is clear that

$$
\left\|P_{n}(x)\right\|_{p} \leqslant\left\|P_{n}(x)\right\|_{\infty} \leqslant \frac{M}{2^{n}} \cdot 2^{n}=M
$$

In other hand

$$
\left\|P_{n}(x)\right\|_{p} \leqslant 2 M \sqrt{p} \cdot \sqrt{\left(\frac{1}{2^{n}}\right)^{2}+\cdots+\left(\frac{1}{2^{n+1}-1}\right)^{2}} \leqslant 2 M \sqrt{p} \cdot \sqrt{\left(\frac{1}{2^{n}}\right)^{2} \cdot 2^{n}}=\sqrt{\frac{c_{1} p}{2^{n}}},
$$

then $\left\|P_{n}(x)\right\|_{p} \leqslant \min \left\{M, \sqrt{\frac{c 1 p}{2^{n}}}\right\}$ therefore

$$
\|P(x)\|_{p} \leqslant \sum_{n=1}^{\infty} \min \left\{M, \sqrt{\frac{c_{1} p}{2^{n}}}\right\}=\sum_{n=1}^{\infty}\left(\frac{M+\sqrt{\frac{c_{1} p}{2^{n}}}-\left|M-\sqrt{\frac{c c_{1} p}{2^{n}}}\right|}{2}\right),
$$

with separate of last summation, it can be obtained

$$
\left\|P_{n}(x)\right\|_{p} \leqslant \sum_{n=1}^{\left[\log _{2}^{c_{1} p}\right]} \frac{M+\sqrt{\frac{c_{1} p}{2^{n}}}+M-\sqrt{\frac{c_{1} p}{2^{n}}}}{2}+\sum_{n=\left[\log _{2}^{c_{1} p}\right]+1}^{\infty} \frac{M+\sqrt{\frac{c_{1} p}{2^{n}}}-M+\sqrt{\frac{c_{1} p}{2^{n}}}}{2},
$$

and finally

$$
\left\|P_{n}(x)\right\|_{p} \leqslant M \log g_{2}^{c_{1} p}+\sqrt{\frac{2}{c_{1} p}} \leqslant c_{2} \log (p)<c_{2} \log (p+2)
$$

Now by Theorem 1.5 can be written that $\int_{0}^{1} \exp \left(\exp \left(\lambda_{1}|P(x)|\right)\right) d x \leqslant$ λ_{2}.

Corollary 2.2. For series $P(x)=\sum_{k=1}^{\infty} \frac{1}{k} r_{k}(x)$ the following inequalities will be satisfied

$$
\|P\|_{p} \leqslant c \sqrt{p}\left(\sum_{k=1}^{\infty}(1 / k)^{2}\right)^{1 / 2} \quad \text { and } \quad \int_{0}^{1} \exp \left(\exp \left(\lambda_{1}|P(x)|\right)\right) d x \leqslant \lambda_{2}
$$

that $\left\{r_{n}(t)\right\}$ is the Rademacher system, $p \geqslant 2$ is an even integer and $c, \lambda_{1}, \lambda_{2}$ are constants.
Now consider the system $\left\{\phi_{n}(x)\right\}=\left\{\sin \left(2^{n} x\right\}\right.$ over $[o, 2 \pi]$. With a simple change of variable it can be obtained the system $\left\{\phi_{n}(t)\right\}=\left\{\sin \left(2^{n+1} \pi t\right\}\right.$ over $[o, 1],(x \rightarrow 2 \pi t)$.

Theorem 2.3. If the series $\Sigma a_{n}^{2}<\infty$, the function

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} a_{k} \sin \left(2^{k+1} \pi t\right), t \in[0,1], \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
g(t)=\sum_{k=0}^{\infty} a_{k} \sin \left(2^{k} t\right), t \in[0,2 \pi], \tag{6}
\end{equation*}
$$

belongs to L^{q} for every $q>0$.
Proof. It is sufficient to prove the theorem for $q=2,4,6, \cdots$. We shall show that

$$
\begin{equation*}
\int_{0}^{1} f^{2 k}(t) d t \leqslant M_{k}\left(\sum_{n=0}^{\infty} a_{n}^{2}\right)^{k} ; k=1,2,3, \cdots, \tag{7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\int_{0}^{2 \pi} g^{2 k}(t) d t \leqslant M_{k}\left(\sum_{n=0}^{\infty} a_{n}^{2}\right)^{k} ; k=1,2,3, \cdots \tag{8}
\end{equation*}
$$

where M_{k} is a constant depending only on k.
Denoting by $S_{n}(t)$ and $S_{n}^{*}(t)$, the partial sums of the series (5) and the partial sums of the series (6) respectively.
So
$\int_{0}^{1} S_{n}^{2 k}(t) d t=\sum A_{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}} a_{m 1}^{\alpha_{1}} \cdots a_{m_{r}}^{\alpha_{r}} \int_{0}^{1} \sin ^{\alpha_{1}}\left(2^{m_{1}+1} \pi t\right) \cdots \sin ^{\alpha_{r}}\left(2^{m_{r}+1} \pi t\right) d t$, or equivalently

$$
\int_{0}^{2 \pi}\left(S_{n}^{*}\right)^{2 k}(t) d t=\sum A_{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}} a_{m 1}^{\alpha_{1}} \cdots a_{m_{r}}^{\alpha_{r}} \int_{0}^{2 \pi} \sin ^{\alpha_{1}}\left(2^{m_{1}} t\right) \cdots \sin ^{\alpha_{r}}\left(2^{m_{r}} t\right) d t
$$

where

$$
A_{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}}=\frac{\left(\alpha_{1}+\alpha 2+\cdots+\alpha_{r}\right)!}{\alpha_{1}!\alpha_{2}!\cdots \alpha_{r}!}
$$

and the summations on the right are taken over the set

$$
\left\{m_{1}, m_{2}, \cdots m_{r}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}
$$

defined by the relations:
$0 \leqslant m_{i} \leqslant n, 0 \leqslant \alpha_{i} \leqslant 2 k ; i=1,2, \cdots, r ; 1 \leqslant r \leqslant 2 k ; \alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}=2 k$.
Now it is easily verified that the integrals on the right vanish unless $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are all even, that in this case they are less than or equal 1. Thus the right side of above relations are less than or equal of the following term

$$
\sum A_{2 \beta_{1}, \cdots, 2 \beta_{r}} a_{n 1}^{2 \beta_{1}} \cdots a_{n_{r}}^{2 \beta_{r}} .
$$

Observing that

$$
\sum A_{\beta_{1}, \beta_{2}, \cdots, \beta_{r}} a_{m 1}^{2 \beta_{1}} a_{m 2}^{2 \beta_{2}} \cdots a_{m_{r}}^{2 \beta_{r}}=\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{n}^{2}\right)^{k}
$$

It can be obtained (7) and (8) with $S_{n}(t)$ and $S_{n}^{*}(t)$ replaced by $f(t)$ and $g(t)$ respectively, M_{k} being now the upper bound of the ratio

$$
A_{2 \beta_{1}, \cdots, 2 \beta_{r}} / A_{\beta_{1}, \beta_{2}, \cdots, \beta_{r}} .
$$

Notice

$$
\begin{equation*}
M_{k} \leqslant(2 k)!/ 2^{k} k!=(k+1) \cdots 2 k / 2^{k} \leqslant k^{k} \tag{9}
\end{equation*}
$$

Since $S_{n}(t) \rightarrow f(t)$ and $S_{n}^{*}(t) \rightarrow g(t)$ for almost every t, finally with use Fatous lemma the proof is complete.

Corollary 2.4. The function $\exp \left(\mu f^{2}(t)\right)$ is integrable for $\mu>0$.
Corollary 2.5. For any even number $p \geqslant 2$ and series

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n} \sin 2^{n} x ; \quad x \in(0,2 \pi),
$$

the inequalities

$$
\|f\|_{p} \leqslant C \sqrt{p}\left(\sum_{n=1}^{\infty}(1 / n)^{2}\right)^{1 / 2} \quad \text { and } \quad \int_{0}^{2 \pi} \exp \left(\exp \left(\lambda_{1}|f(x)|\right)\right) d x \leqslant \lambda_{2}
$$

will be satisfied, that $C, \lambda_{1}, \lambda_{2}$ are constants.

Proof. According to (9) the following inequality is satisfied:
$\|f\|_{p} \leqslant\left\{M_{\frac{p}{2}}\left(\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}\right)^{\frac{p}{2}}\right\}^{1 / p} \leqslant\left\{\left(\frac{p}{2}\right)^{\frac{p}{2}}\left(\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}\right)^{\frac{p}{2}}\right\}^{1 / p}=C \sqrt{p}\left(\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}\right)^{\frac{1}{2}}$.
For other inequality it can be written $f(x)=\sum_{n=0}^{\infty} f_{n}(x)$ such that $f_{n}(x)=\sum_{k=2^{n}}^{2^{n+1}-1} \frac{1}{k} \sin 2^{k} x$ therefore

$$
\left\|f_{n}(x)\right\|_{p} \leqslant\left\|f_{n}(x)\right\|_{\infty} \leqslant \sum_{k=2^{n}}^{2^{n+1}-1} \frac{1}{k}\left|\sin 2^{k} x\right| \leqslant \frac{2^{n}}{2^{n}}=1 .
$$

In other hand

$$
\left\|f_{n}(x)\right\|_{p} \leqslant C \sqrt{p} \sum_{k=2^{n}}^{2^{n+1}-1} \frac{1}{k^{2}} \leqslant C \sqrt{p} \frac{2^{n}}{\left(2^{n}\right)^{2}}=\frac{C \sqrt{p}}{2^{n}},
$$

then $\left\|f_{n}(x)\right\|_{p} \leqslant \min \left\{1, \frac{C \sqrt{p}}{2^{n}}\right\}$ therefore

$$
\|f(x)\|_{p} \leqslant \sum_{n=0}^{\infty} \min \left\{1, \frac{C \sqrt{p}}{2^{n}}\right\}=\sum_{n=0}^{\infty}\left(\frac{1+\frac{C \sqrt{p}}{2^{n}}-\left|1-\frac{C \sqrt{p}}{2^{n}}\right|}{2}\right) .
$$

With separate of last summation, it can be obtained
$\|f(x)\|_{p} \leqslant \sum_{n=0}^{\left[\log _{2}^{C \sqrt{p}}\right]} \frac{1+\frac{C \sqrt{p}}{2^{n}}+1-\frac{C \sqrt{p}}{2^{n}}}{2}+\sum_{n=\left[\log _{2}^{C} \sqrt{\bar{p}}^{2}\right]+1}^{\infty} \frac{1+\frac{C \sqrt{p}}{2^{n}}-1+\frac{C \sqrt{p}}{2^{n}}}{2}$,
and finally

$$
\|f(x)\|_{p} \leqslant \log _{2}^{C \sqrt{p}}+1+C \sqrt{p}\left(\frac{1}{2 C \sqrt{p}}\right)=\log _{2}^{C \sqrt{p}}+\frac{3}{2} \leqslant \alpha \log (p+2),
$$

that α is a constant. Now by Theorem 1.5 can be written

$$
\int_{0}^{2 \pi} \exp \left(\exp \left(\lambda_{1}|f(x)|\right)\right) d x \leqslant \lambda_{2}
$$

References

[1] G. A. Karagulyan, On the order of growth $o(\log \log n)$ of the partial sums of Fourier-Stieltjes series of random measures, in: Russian Acad. Sci. sb. Math., 78 (1994), 11-33.
[2] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Mth. Monographs, 75, 2005.
[3] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.
[4] F. Sukochev and D. Zanin, Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces, Studia Math., 191 (2009), 101-122.
[5] A. zygmund, Triginimetrical series, .3rd. Ed., Vol 2. New York, Cambridge university press, 2002.

Mojtaba Ghanbari

Department of Mathematics
Assistant Professor of Mathematics
Farahan Branch, Islamic Azad University
Farahan, Iran
E-mail: m.ghanbari@iau-farahan.ac.ir

[^0]: Received: May 2011; Accepted: January 2012

