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1. Introduction

A classical question in the theory of functional equations is the following
question:
When is it true that a function which approximately satisfies a functional
equation must be close to an exact solution of the equation?.
If the problem accepts a solution, we say that the equation is stable. The
first stability problem concerning group homomorphisms was raised by
Ulam ([29]) in 1940. In the next year, Hyers ([15]) gave a positive an-
swer to the above question for additive groups under the assumption
that the groups are Banach spaces. In 1978, Rassias ([23]) proved a
generalization of Hyers’s theorem for additive mappings. The result of
Rassias has provided a lot of influence during the last three decades
in the development of a generalization of the Hyers-Ulam stability con-
cept. This new concept is known as generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations. Furthermore,
in 1994, a generalization of Rassias’s theorem was obtained by Gǎvruta
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([14]) by replacing the bound ε(‖x‖p + ‖y‖p) by a general control func-
tion ϕ(x, y). The stability problems of several functional equations have
been extensively investigated by a number of authors and there are many
interesting results concerning this problem ([4]-[27]).
In the sequel, we adopt the usual terminology, notions and conventions
of the theory of random normed spaces as in ([28]).
Throughout this paper, let Γ+ denote the set of all probability distribu-
tion functions F : R ∪ [−∞,+∞] → [0, 1] such that F is left-continuous
and nondecreasing on R and F (0) = 0, F (+∞) = 1. It is clear that the
set D+ = {F ∈ Γ+ : l−F (−∞) = 1}, where l−f(x) = limt→x− f(t), is
a subset of Γ+. The set Γ+ is partially ordered by the usual point-wise
ordering of functions, that is, F 6 G if and only if F (t) 6 G(t) for all
t ∈ R. For any a > 0, the element Ha(t) of D+ is defined by

Ha(t) =
{

0, if t 6 a,
1, if t > a.

We can easily show that the maximal element in Γ+ is the distribution
function H0(t).

Definition 1.1. A function T : [0, 1]2 → [0, 1] is a continuous triangular
norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative; (b) T is continuous; (c) T (x, 1) =
x for all x ∈ [0, 1]; (d) T (x, y) 6 T (z, w) whenever x 6 z and y 6 w for
all x, y, z, w ∈ [0, 1].
Three typical examples of continuous t-norms are as follows: TP (x, y) =
xy, Tmax(x, y) = max{a+ b− 1, 0}, TM (x, y) = min(a, b). Recall that, if
T is a t-norm and {xn} is a sequence in [0, 1], then Tn

i=1xi is defined
recursively by T 1

i=1x1 = x1 and Tn
i=1xi = T (Tn−1

i=1 xi, xn) for all n > 2.
T∞i=nxi is defined by T∞i=1xn+i.

Definition 1.2. A random normed space (briefly, RNS) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t-norm and
µ : X → D+ is a mapping such that the following conditions hold:
(a) µx(t) = H0(t) for all x ∈ X and t > 0 if and only if x = 0;
(b) µαx(t) = µx

(
t
|α|

)
for all α ∈ R with α 6= 0, x ∈ X and t > 0;
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(c) µx+y(t + s) > T (µx(t), µy(s)) for all x, y ∈ X and t, s > 0. Every
normed space (X, ‖·‖) defines a random normed space (X,µ, TM ), where
µu(t) = t

t+‖u‖ for all t > 0 and TM is the minimum t-norm. This space
X is called the induced random normed space. If the t-norm T is such
that sup0<a<1 T (a, a) = 1, then every RNS (X,µ, T ) is a metrizable
linear topological space with the topology τ (called the µ-topology or the
(ε, δ)-topology, where ε > 0 and λ ∈ (0, 1)) induced by the base {U(ε, λ)}
of neighborhoods of θ, where U(ε, λ) = {x ∈ X : Ψx(ε) > 1− λ}.

Definition 1.3. Let (X,µ, T ) be an RNS.
(a) A sequence {xn} in X is said to be convergent to a point x ∈ X

(write xn → x as n→∞) if limn→∞ µxn−x(t) = 1 for all t > 0.
(b) A sequence {xn} in X is called a Cauchy sequence in X if
limn→∞ µxn−xm(t) = 1 for all t > 0.
(c) The RNS (X,µ, T ) is said to be complete if every Cauchy sequence
in X is convergent.

Theorem 1.4. ([28]) If (X,µ, T ) is an RNS and {xn} is a sequence
such that xn → x, then limn→∞ µxn(t) = µx(t).

Definition 1.5. Let X be a set. A function d : X × X → [0,∞] is
called a generalized metric on X if d satisfies the following conditions:
(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X; (b) d(x, y) = d(y, x)
for all x, y ∈ X;(c) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.6. Let (X,d) be a complete generalized metric space and
J : X → X be a strictly contractive mapping with Lipschitz constant
L < 1. Then, for all x ∈ X, either

d(Jnx, Jn+1x) = ∞ , (1)

for all nonnegative integers n or there exists a positive integer n0 such
that
(a) d(Jnx, Jn+1x) <∞ for all n0 > n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <
∞};
(d) d(y, y∗) 6 1

1−Ld(y, Jy) for all y ∈ Y .
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In this paper, we prove the generalized Hyers-Ulam-Rassias stability of
the following functional equation:

f(f(x)− f(y)) + f(x) + f(y) = f(x+ y) + f(x− y), (2)

in RNS.

2. Main Results: RNS-Approximation of the
Functional Equation (2)

In this section, using direct method, we prove the generalized Hyers-
Ulam-Rassias stability of the functional equation (2) in random normed
spaces.

Theorem 2.1. Let X be a real linear space, (Z, µ′,min) be an RN-space
and φ : X2 → Z be a function such that there exists 0 < α < 1

2 such
that

µ′φ(x
2
, y
2
)(t) > µ′αφ(x,y)(t) (3)

for all x ∈ X and t > 0 and limn→∞ µ′
φ( x

2n , y
2n )

(
t

2n

)
= 1 for all x, y ∈ X

and t > 0. Let (Y, µ,min) be a complete RN-space. If f : X → Y be a
mapping such that

µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) > µ′φ(x,y)(t) (4)

for all x, y ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(

x
2n

)
exists for all x ∈ X and defines a unique additive mapping A : X → Y

such that and

µf(x)−A(x)(t) > µ′φ(x,x)

(
(1− 2α)t

α

)
, (5)

for all x ∈ X and t > 0.

Proof. Putting y = x in (4), we see that

µf(2x)−2f(x)(t) > µ′φ(x,x)(t). (6)
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Replacing x by x
2 in (6), we obtain

µ2f(x
2
)−f(x)(t) > µ′

φ(x
2
, x
2 )

(t) , (7)

for all x ∈ X. Replacing x by x
2n in (7) and using (3), we obtain

µ2n+1f( x
2n+1 )−2nf( x

2n )(t) > µ′
φ
(

x
2n+1 , x

2n+1

)( t

2n

)
> µ′φ(x,x)

(
t

2nαn+1

)
.

Since

2nf
( x

2n

)
− f(x) =

n−1∑
k=0

2k+1f
( x

2k+1

)
− 2kf

( x
2k

)
,

and so

µ2nf( x
2n )−f(x)

(
n−1∑
k=0

2kαk+1t

)
= µ∑n−1

k=0 2k+1f( x

2k+1 )−2kf( x

2k )

(
n−1∑
k=0

2kαk+1t

)
> Tn−1

k=0

(
µ2k+1f( x

2k+1 )−2kf( x

2k )(2
kαk+1t)

)
> Tn−1

k=0

(
µ′φ(x,x)(t)

)
= µ′φ(x,x)(t).

This implies that µ2nf( x
2n )−f(x)(t) > µ′φ(x,x)

(
t∑n−1

k=0 2kαk+1

)
. Replacing

x by x
2p in the recent inequality, we obtain

µ2n+pf( x
2n+p )−2pf( x

2p )(t) > µ′φ(x,x)

(
t∑n+p−1

k=p 2kαk+1

)
. (8)

Since limp,n→∞ µ′φ(x,x)

(
t∑n+p−1

k=p 2kαk+1

)
= 1, it follows that

{
2nf( x

2n )
}∞

n=1

is a Cauchy sequence in a complete RN-space (Y, µ,min) and so there
exists a point A(x) ∈ Y such that limn→∞ 2nf

(
x
2n

)
= A(x). Fix x ∈ X

and put p = 0 in (8). Then we obtain

µ2nf( x
2n )−f(x)(t) > µ′φ(x,x)

(
t∑n−1

k=0 2kαk+1

)
,
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and so, for any ε > 0,

µA(x)±2nf( x
2n )−f(x)(t+ ε) > T

(
µA(x)−2nf( x

2n )(ε), µ2nf( x
2n )−f(x)(t)

)
(9)

> T

(
µA(x)−2nf( x

2n )(ε), µ
′
φ(x,x)

(
t∑n−1

k=0 2kαk+1

))
.

Taking n→∞ in (9), we get

µA(x)−f(x)(t+ ε) > µ′φ(x,x)

(
(1− 2α)t

α

)
. (10)

Since ε is arbitrary, by taking ε→ 0 in (10), we get

µA(x)−f(x)(t) > µ′φ(x,x)

(
(1− 2α)t

α

)
.

Replacing x and y by x
2n and y

2n in (4), respectively, we get

µ2n[f(f( x
2n )−f( y

2n ))−f(x+y
2n )−f(x−y

2n )+f( x
2n )+f( y

2n )](t) > µ′φ( x
2n , y

2n )

(
t

2n

)
for all x, y ∈ X and t > 0. Since limn→∞ µ′

φ( x
2n , y

2n )

(
t

2n

)
= 1, we conclude

that A satisfies (2). On the other hand

2A
(x

2

)
−A(x) = lim

n→∞
2n+1f

( x

2n+1

)
− lim

n→∞
2nf

( x
2n

)
= 0. (11)

This implies that A : X → Y is an additive mapping. To prove the
uniqueness of the additive mapping A, assume that there exists another
additive mapping B : X → Y which satisfies (5). Then we have

µA(x)−B(x)(t) = lim
n→∞

µ2nA( x
2n )−2nB( x

2n )(t)

> lim
n→∞

min
{
µ2nA( x

2n )−2nf( x
2n )

(
t

2

)
, µ2nf( x

2n )−2nB( x
2n )

(
t

2

)}
> lim

n→∞
µ′

φ( x
2n , x

2n )

(
(1− 2α)t
2n+1α

)
> lim

n→∞
µ′φ(x,x)

(
(1− 2α)t
2n+1αn

)
.

Since limn→∞
(1−2α)t
2n+1αn = ∞, we get limn→∞ µ′φ(x,x)

(
(1−2α)t
2n+1αn

)
= 1.Therefore,

it follows that µA(x)−B(x)(t) = 1 for all t > 0 and so A(x) = B(x). This
completes the proof. �
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Corollary 2.2. Let X be a real normed linear space, (Z, µ′,min) be an
RN-space and (Y, µ,min) be a complete RN-space. Let r be a positive
real number with r > 1 , z0 ∈ Z and f : X → Y be a mapping satisfying

µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) > µ′(‖x‖r+‖y‖r)z0
(t), (12)

for all x, y ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(

x
2n

)
exists for all x ∈ X and defines a unique additive mapping A : X → Y

such that and

µf(x)−A(x)(t) > µ′‖x‖pz0

(
(2r − 2)t

2

)
,

for all x ∈ X and t > 0.

Proof. Let α = 2−r and φ : X2 → Z be a mapping defined by φ(x, y) =
(‖x‖r + ‖y‖r)z0. Then, from Theorem 2.1, the conclusion follows. �

Theorem 2.3. Let X be a real linear space, (Z, µ′,min) be an RN-
space and φ : X2 → Z be a function such that there exists 0 < α <

2 such that µ′φ(2x,2y)(t) > µ′αφ(x,y)(t) for all x ∈ X and t > 0 and
limn→∞ µ′φ(2nx,2ny)(2

nx) = 1 for all x, y ∈ X and t > 0. Let (Y, µ,min)
be a complete RN-space. If f : X → Y be a mapping satisfying (4).
Then the limit A(x) = limn→∞

f(2nx)
2n exists for all x ∈ X and defines a

unique additive mapping A : X → Y such that

µf(x)−A(x)(t) > µ′φ(x,x)((2− α)t), (13)

for all x ∈ X and t > 0.

Proof. Putting y = x in (4), we see that

µ f(2x)
2

−f(x)
(t) > µ′φ(x,x)(2t). (14)

Replacing x by 2nx in (14), we obtain that

µ f(2n+1x)

2n+1 − f(2nx)
2n

(t) > µ′φ(2nx,2nx)(2
n+1t) > µφ(x,x)

(
2n+1t

αn

)
. (15)

The rest of the proof is similar to the proof of Theorem 2.1. �
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Corollary 2.4. Let X be a real normed linear space, (Z, µ′,min) be an
RN-space and (Y, µ,min) be a complete RN-space. Let r be a positive real
number with 0 < r < 1 , z0 ∈ Z and f : X → Y be a mapping satisfying
(12). Then the limit A(x) = limn→∞

f(2nx)
2n exists for all x ∈ X and

defines a unique additive mapping A : X → Y such that

µf(x)−A(x)(t) > µ′‖x‖pz0

(
(2− 2r)t

2

)
,

for all x ∈ X and t > 0.

Proof. Let α = 2r and φ : X2 → Z be a mapping defined by φ(x, y) =
(‖x‖r + ‖y‖r)z0. Then, from Theorem 2.2., the conclusion follows. �
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[14] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of ap-
proximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

[15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl.
Acad. Sci. USA., 27 (1941), 222-224.

[16] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations
in several variables, Birkhäuser, Basel, 1998.

[17] H. Khodaei and Th. M. Rassias, Approximately generalized additive func-
tions in several variabels, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.

[18] Z. Kominek, On a local stability of the Jensen functional equation, De-
mon. Math., 22 (1989), 499-507.

[19] D. Mihet and V. Radu, On the stability of the additive Cauchy functional
equation in random normed spaces, J. Math. Anal. Appl., 343 (2008),
567-572.

[20] C. Park, Fuzzy stability of a functional equation associated with inner
product spaces, Fuzzy Sets and Systems, 160 (2009), 1632-1642.



20 H. AZADI KENARY

[21] C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-
quadratic mappings on Banach modules over C∗-algebras, J. Comput.
Appl. Math., 180 (2005), 279-291.

[22] C. Park, J. Hou, and S. Oh, Homomorphisms between JC -algebras and
Lie C∗-algebras, Acta Math. Sin., 21 (2005), 1391-1398.

[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc., 72 (1978), 297-300.

[24] Th. M. Rassias, On the stability of functional equations and a problem of
Ulam, Acta Applicandae Math., 1 (2000), 23-130.

[25] R. Saadati and C. Park, Non-Archimedean L-fuzzy normed spaces and
stability of functional equations (in press).

[26] R. Saadati, M. Vaezpour, and Y. J. Cho, A note to paper “On the stability
of cubic mappings and quartic mappings in random normed spaces”, J.
Ineq. Appl., 2009, Article ID 214530, doi: 10.1155/2009/214530.

[27] R. Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Sta-
bility of an ACQ Functional Equation, Journal of Inequalities and Appli-
cations, Volume 2011, Article ID 194394, 23 pages.

[28] B. Schewizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Se-
ries in Probability and Applied Mathematics, North-Holland, New York,
USA., 1983.

[29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John
Wiley and Sons, 1964.

Hassan Azadi Kenary
Department of Mathematics
College of Sciences
Assistant Professor of Mathematics
Yasouj University
P. O. Box 75914-353
Yasouj, Iran
E-mail: azadi@mail.yu.ac.ir




