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1. Introduction

A classical question in the theory of functional equations is the following
question:

When is it true that a function which approximately satisfies a functional
equation must be close to an exact solution of the equation?.

If the problem accepts a solution, we say that the equation is stable. The
first stability problem concerning group homomorphisms was raised by
Ulam ([29]) in 1940. In the next year, Hyers ([15]) gave a positive an-
swer to the above question for additive groups under the assumption
that the groups are Banach spaces. In 1978, Rassias ([23]) proved a
generalization of Hyers’s theorem for additive mappings. The result of
Rassias has provided a lot of influence during the last three decades
in the development of a generalization of the Hyers-Ulam stability con-
cept. This new concept is known as generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations. Furthermore,
in 1994, a generalization of Rassias’s theorem was obtained by Gavruta
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([14]) by replacing the bound e(||z||P + |ly||”) by a general control func-
tion p(z,y). The stability problems of several functional equations have
been extensively investigated by a number of authors and there are many
interesting results concerning this problem ([4]-[27]).

In the sequel, we adopt the usual terminology, notions and conventions
of the theory of random normed spaces as in ([28]).

Throughout this paper, let I't denote the set of all probability distribu-
tion functions F' : R U [—00,4+00] — [0, 1] such that F' is left-continuous
and nondecreasing on R and F'(0) = 0, F/(+00) = 1. It is clear that the
set DY = {F € It : " F(—o0) = 1}, where I” f(z) = lim,_,,— f(t), is
a subset of I't. The set 't is partially ordered by the usual point-wise
ordering of functions, that is, F' < G if and only if F(t) < G(t) for all
t € R. For any a > 0, the element H,(t) of DT is defined by

0, if t<a,
H“(t)_{l, if > a.

We can easily show that the maximal element in I'" is the distribution
function Hy(t).

Definition 1.1. A function T : [0,1]?> — [0, 1] is a continuous triangular
norm (briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative; (b) T is continuous; (¢) T'(z,1) =
x for all z € [0,1]; (d) T(z,y) < T'(z,w) whenever x < z and y < w for
all z,y, z,w € [0, 1].

Three typical examples of continuous t-norms are as follows: Tp(x,y) =
xY, Traz(x,y) = max{a + b — 1,0}, Th(x,y) = min(a,b). Recall that, if
T is a t-norm and {x,} is a sequence in [0,1], then T* x; is defined
recursively by T x1 = z1 and T/ z; = T(Ti":_lla:i,xn) for all n > 2.
T:X, x; is defined by T2 Ty

Definition 1.2. A random normed space (briefly, RNS) is a triple
(X, u, T), where X is a vector space, T is a continuous t-norm and
p: X — DT is a mapping such that the following conditions hold:

(a) pg(t) = Ho(t) for allz € X and t > 0 if and only if x = 0;

(D) paz(t) = pg (\%I) foralla e R witha #0, x € X andt > 0;
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(€) paty(t+8) = T(pa(t), py(s)) for all z,y € X and t,s > 0. Every
normed space (X, ||-]|) defines a random normed space (X, u, Tyr), where
py(t) = m for all t > 0 and Thr is the minimum t-norm. This space
X s called the induced random normed space. If the t-norm T is such
that supycqc1 T'(a,a) = 1, then every RNS (X, u,T) is a metrizable
linear topological space with the topology T (called the u-topology or the
(€,9)-topology, where e > 0 and A € (0,1)) induced by the base {U (e, \)}
of neighborhoods of 0, where U(e, \) ={x € X : ¥,(e) > 1 — A}

Definition 1.3. Let (X, u,T) be an RNS.

(a) A sequence {x,} in X is said to be convergent to a point x € X
(write x, — x as n — 00) if Umy oo iy, —2(t) = 1 for all t > 0.

(b) A sequence {xy} in X is called a Cauchy sequence in X if

limy, o0 iz —2,, (t) =1 for all t > 0.

(¢) The RNS (X, u,T) is said to be complete if every Cauchy sequence
m X is convergent.

Theorem 1.4. ([28]) If (X,u,T) is an RNS and {z,} is a sequence
such that x,, — x, then limy, o0 fiz, (1) = pg(t).

Definition 1.5. Let X be a set. A function d : X x X — [0,00] is
called a generalized metric on X if d satisfies the following conditions:
(a) d(z,y) =0 if and only if x =y for all xz,y € X; (b) d(z,y) = d(y,x)
for all x,y € X;(c) d(x,z) < d(x,y) + d(y,2) for all x,y,z € X.

Theorem 1.6. Let (X,d) be a complete generalized metric space and
J : X — X be a strictly contractive mapping with Lipschitz constant
L < 1. Then, for all x € X, either

d(J"z, J" ) =00 | (1)

for all nonnegative integers m or there exists a positive integer ng such
that

(a) d(J"z, J"x) < 0o for all ng = no;

(b) the sequence {J"x} converges to a fized point y* of J;

(¢) y* is the unique fized point of J in the setY = {y € X : d(J™z,y) <
00}

(d) d(y,y*) < 12gd(y, Jy) for ally €Y.
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In this paper, we prove the generalized Hyers-Ulam-Rassias stability of
the following functional equation:

(@) =FW) + f@) + fy) = fz+y) + flz —y), (2)

in RNS.

2. Main Results: RNS-Approximation of the
Functional Equation (2)

In this section, using direct method, we prove the generalized Hyers-
Ulam-Rassias stability of the functional equation (2) in random normed
spaces.

Theorem 2.1. Let X be a real linear space, (Z, ', min) be an RN-space
and ¢ : X% — Z be a function such that there exists 0 < a < % such

that
forallz € X and t >0 and limp—oo iy = o (55) =1 for allz,y € X

and t > 0. Let (Y, u,min) be a complete RN-space. If f: X — Y be a
mapping such that

BF (@)= F )~ f ety)—f (e—g)+ 1 @) +1 () () = By (E) (4)

for all z,y € X and t > 0. Then the limit A(z) = lim, 0 2"f(2%)
exists for all x € X and defines a unique additive mapping A: X — Y
such that and

(1 —-2a)t
Ki@)—Ag) () 2 H(a,) (a : (5)

forallz € X andt > 0.

Proof. Putting y = = in (4), we see that

Hf2z)—2f(x) (t) > M;f)(x,r) (t) (6)
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Replacing by % in (6), we obtain

x
2

(NI

Haf(3)-1@) (&) = Hy(z ) (0) (7)

for all z € X. Replacing x by 5 in (7) and using (3), we obtain

t t

n e v _onpan(t) =1 — ) = .
st ) 2 ) (3) > theer ()
Since

x — kil kel %
2f (5a) ~ f Z 7 (gerr) — 27 (5)
=

and so
Ham £ ()~ £ (x) (ZZk kﬂt) = Sl ok f( )~ 2K (5 ><22k Hlf)

T (“2"'“1”( -2+ () (2N Wt))

+
mn—1
=z T,— (M;s(z,z) ) s () (1)

WV

This implies that ,LLan(QLn),f(x)(t) > M;b(x,a:) (W) . Replacing

x by 55 in the recent inequality, we obtain

; t
/‘2”+Pf(2nip)—2”f(2ip)(t) Z Fop () ( Z+p Lok k+1 (8)

n=1

Since limy, .00 uib(%x) <ZW> = 1, it follows that {2" f (&)} °
is a Cauchy sequence in a Egmplete RN-space (Y, p, min) and so there
exists a point A(x) € Y such that lim,, 2"f(2%) = A(z). Fixx € X
and put p =0 in (8). Then we obtain

, t
P ()~ 1) (8) 2 Ho(a,a) (W) ’
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and so, for any € > 0,

Ba@ton () st +Te =2 T(“A(:v)—2"f(%)(€)7MQ"f(%)—f(x)(t)) 9)

t
> T z)—2n (2 (€), ! z.x e E— .
(MA( )—2n £ () (€)s o (a,) (ZZ;SQ’“G’“I))

Taking n — oo in (9), we get

!/

1—2a)t
HA(z)— (o) (E +€) = Hp(ax,) <( ) ) :

«

Since € is arbitrary, by taking e — 0 in (10), we get

(1 —2a)t
A~ @) () Z o) <a :

Replacing = and y by 5 and 5% in (4), respectively, we get

, t
)51 5+ O > o (3

forall z,y € X and ¢t > 0. Since lim,, “i;ﬁ(
that A satisfies (2). On the other hand

24 (%) — A(z) = lim 271§ (2;;1) ~ lim 2" f (2%) =0. (11)

n—oo

2 (2%) = 1, we conclude

x
22

This implies that A : X — Y is an additive mapping. To prove the
uniqueness of the additive mapping A, assume that there exists another
additive mapping B : X — Y which satisfies (5). Then we have

HA(@)-B()(t) = Hm ponacz) anp(z)(t)

n—oo

. . t t
2 nILH;o min y,gnA(z%),an(z%) <2> 7/,1,277,](‘(2%)7271,3(2%) (2)}

_ 1 - 2a)t . (1 - 2a)t
> ! (1= 20t > ! — ).
Z m o) ( ontlg ) 2 hm 14 (a,) ( gntign
. . 1-2a)t : 1-20)t
Since lim,, o (2n+1§)n = 00, we get lim,,_,o ,uib(x,x) ((2"“221) = 1.Therefore,

it follows that 114(;)—p(e)(t) = 1 for all £ > 0 and so A(x) = B(z). This
completes the proof. [
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Corollary 2.2. Let X be a real normed linear space, (Z, ', min) be an
RN-space and (Y, u, min) be a complete RN-space. Let r be a positive
real number withr > 1, 20 € Z and f: X — Y be a mapping satisfying

B @) F )~ oty)— Fla—y)+ £ @)+ 1) () Z B yinz (D), (12)

for all z,y € X and t > 0. Then the limit A(x) = lim, o 2" f (2%)
exists for all x € X and defines a unique additive mapping A : X — Y
such that and

(2" —2)t
@) -A@) (E) 2 Hafoz, (2 ,
forallz € X andt > 0.

Proof. Let « = 27" and ¢ : X2 — Z be a mapping defined by ¢(x,y) =
(llz)I” + l|yl")z0. Then, from Theorem 2.1, the conclusion follows. [

Theorem 2.3. Let X be a real linear space, (Z, ', min) be an RN-
space and ¢ : X2 — Z be a function such that there exists 0 < a <
2 such that “%(21,23/)@) > 'u:l¢>(m,y)(t) for all x € X and t > 0 and
lim,, o0 'u,d)(Z”:r,Q”y)(2nx) =1 forallz,y € X and t > 0. Let (Y, p, min)
be a complete RN-space. If f : X — Y be a mapping satisfying (4).
Then the limit A(x) = lim, . f(g:x) exists for all x € X and defines a
unique additive mapping A : X — 'Y such that

[f (@) - A) (8) =tz ) (2 = @)2), (13)
forallxz € X andt > 0.
Proof. Putting y = z in (4), we see that

Replacing = by 2"z in (14), we obtain that

/ n+1 2n+1t
[yentin  sena (8) 2 Bgangong) (2" 1) 2 o) ( m ) . (15)
on+1 on (6%

The rest of the proof is similar to the proof of Theorem 2.1. [
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Corollary 2.4. Let X be a real normed linear space, (Z, i/, min) be an
RN-space and (Y, u, min) be a complete RN-space. Let r be a positive real
number with 0 <r <1, 2y € Z and f : X — Y be a mapping satisfying
(12). Then the limit A(z) = lim, oo f(g:x) exists for all x € X and
defines a unique additive mapping A : X — 'Y such that

(2 — 2"t
K@) —AG) () Z Higpz, (2 :

forallxz € X andt > 0.

Proof. Let a = 2" and ¢ : X? — Z be a mapping defined by ¢(z,y) =
(lz]]” + ly||")z0- Then, from Theorem 2.2., the conclusion follows. [
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